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The mechanics and statistical mechanics of a suspension of active particles are determined by
the traction (force per unit area) on their surfaces. Here we present an exact solution of the direct
boundary integral equation for the traction on a spherical active particle in an imposed slow viscous
flow. Both single- and double-layer integral operators can be simultaneously diagonalised in a basis
of irreducible tensorial spherical harmonics and the solution, thus, can be presented as an infinite
number of linear relations between the harmonic coefficients of the traction and the velocity at
the boundary of the particle. These generalise Stokes laws for the force and torque. Using these
relations we obtain simple expressions for physically relevant quantities such as the symmetric-
irreducible dipole acting on, or the power dissipated by, an active particle in an arbitrary imposed
flow. We further present an explicit expression for the variance of the Brownian contributions to
the traction on an active colloid in a thermally fluctuating fluid.

I. INTRODUCTION

A passive colloidal particle produces flow in the ambient fluid when it translates or rotates. In contrast, an active
particle can produce a flow even when stationary [1–5]. Examples include microorganisms [6] and autophoretic
particles [4]. The exterior flow of active particles is due to local non-equilibrium processes such as ciliary motion
(in the case of microorganisms) and osmotic flows (in the case of autophoretic particles). These non-equilibrium
processes, when confined to a thin layer at the surface of the particles, can be modelled by adding a surface slip
vA to the commonly used no-slip boundary condition on particle surfaces [7–9]. The surface slip sets the ambient
fluid in motion, causing stresses that react back on the particle. For a rigid particle, these integrate to a net force
and a net torque on the particle centre of mass. Since fluid inertia is negligible at the colloidal scale, fluid motion is
governed by the Stokes equation. The solution of the Stokes equation with prescribed velocity boundary conditions
provides the stress in the fluid and, when evaluated on the particle, the traction (force per unit area) [10–17]. The
boundary integral formulation of the Stokes equation provides an alternative route to obtaining the traction that
obviates the need to solve for the fluid flow in the bulk [18–21]. Instead, it provides a direct linear integral relation
between quantities that are defined only at the boundaries, namely the traction and the velocity boundary condition.
The boundary integral formulation has been used extensively to describe the dynamics of passive colloidal particles
[22–26] and, more recently, of active colloidal particles [27–30].

Despite the large body of work on the integral equation approach to active particle dynamics, the simplest problem
of a single active sphere in an unbounded fluid has not been solved exactly. Apart from its intrinsic theoretical interest,
such a solution is of potential use in numerical solutions of the boundary integral equation for many particles, where
numerical iterations can be initialised with the exact one-particle solution. It is known that discretisations of boundary
integral equations for this class of problems leads to diagonally dominant linear systems and the one-particle solution
is the exact solution when hydrodynamic interactions are ignored. This suggests that iterations initialised at the
one-particle solution can converge rapidly to the diagonally-dominant numerical solutions [30].

In this paper we solve the direct boundary integral equation exactly for the traction on a spherical active particle
in an unbounded fluid. Expansion in a complete basis followed by the minimisation of the residual is a convenient
strategy for solving linear integral equations. In this so-called Ritz-Galerkin procedure [28, 31, 32], a basis that yields
a diagonal linear system is particularly useful as the system, then, is trivially soluble. The direct boundary integral
equation contains a pair of integral operators – the single-layer and double-layer operators – and it is not obvious that
a basis that diagonalises one operator will necessarily diagonalise the other. Here we show that the basis of tensorial
spherical harmonics (TSH) simultaneously diagonalises both the single-layer and double-layer integral operators and,
in this sense, provides the most appropriate choice of basis. The boundary integral equation is reduced, thereby, to
an infinite-dimensional diagonal linear system that can be solved trivially. We obtain compact, closed-form linear
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relations between the harmonic modes of the traction and the boundary velocity. The first two of these are the familiar
Stokes laws for the force and torque of a spherical particle of radius b in rigid body motion in an unbounded fluid of
dynamic viscosity η containing the scalar friction coefficients 6πηb and 8πηb3, respectively [10, 33].

In what follows, we present our solution and some implications thereof in detail. In Section II we discuss our main
findings – exact linear relations between the traction and the boundary velocity on an active particle in an imposed flow
in terms of scalar generalised friction coefficients. We refer to these relations as generalised Stokes laws and emphasise
that the friction coefficients due to imposed flow and activity are distinct. We then turn towards their derivation in
Section III. We briefly recall the boundary integral representation of Stokes flow for three distinct contributions to the
traction on the surface of an active particle in an imposed flow. These are (a) rigid body motion, (b) imposed flow,
and (c) active slip. Using spectral expansions and Ritz-Galerkin discretisation of the boundary integral equations we
derive an exact solution thereof in terms of matrix elements of the single- and double-layer integrals. These matrix
elements are found to diagonalise simultaneously in a basis of TSH. The resulting linear system of equations is thus
solved trivially to find the generalised Stokes laws. In Section IV we discuss a number of applications of our findings.
First, we derive an expression relating the expansion coefficients of the imposed flow, expanded in TSH on the surface
of the sphere, with its Taylor expansion about the centre of the particle, and thus relate our work to the generalised
Faxén relations [34]. We then discuss the symmetric-irreducible dipole on an active particle in an imposed straining
flow. In terms of the previously derived friction coefficients we then obtain an expression for the power dissipated by
an active particle. Finally, we present an explicit expression for the variance of the Brownian contributions to the
traction on an active colloid in a thermally fluctuating system. We conclude in Section V by summarising our results,
putting them into context with previous work, and suggesting directions for future research.

II. RESULTS

In this section we briefly outline our main results for the traction on an active colloidal particle due to the most
general form of surface velocity and arbitrary imposed flow v∞(r). We consider a spherical active particle of radius
b in an incompressible fluid of viscosity η. The boundary condition at the surface of the particle is

v(R+ ρ) = V +Ω× ρ+ vA(ρ) = vD(ρ) + vA(ρ). (1)

The rigid body motion vD is specified by the translational velocity V and angular velocity Ω of the particle. Here, R
is the centre of the colloid, ρ is its radius vector and vA is its active slip velocity. The only restriction on the active
slip is that it conserves mass in the fluid, ie

∫

ρ̂ · vA dS = 0, (2)

where S is the surface of the colloid and ρ̂ is the unit normal vector to the surface of the colloid, pointing into the
surrounding fluid.

It is convenient to express the traction on the particle as a sum of three distinct contributions

f = fD + f∞ + fA. (3)

Here, fD is the traction due to the colloid’s rigid body motion vD alone, f∞ represents the traction on a no-slip
particle when held stationary in an imposed flow v∞, and fA is the contribution from active surface slip vA, see
Appendix A.

In order to parametrise the surface fields on the boundary of the active particle, we expand the velocity and the

traction at the colloid’s surface in tensorial spherical harmonics (TSH) Y (l)(ρ̂) as

vλ(R+ ρ) =

∞
∑

l=1

wlV
λ(l) ⊙ Y (l−1)(ρ̂), fλ(R+ ρ) =

∞
∑

l=1

w̃lF
λ(l) ⊙ Y (l−1)(ρ̂), (4)

where λ ∈ {D,∞,A}, and

wl =
1

(l − 1)!(2l − 3)!!
, w̃l =

2l − 1

4πb2
. (5)
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The product ⊙ represents a maximal contraction of indices between two tensors. The TSH are defined as

Y (l)
α1...αl

(ρ̂) = (2l − 1)!!∆
(l)
α1...αl,β1...βl

ρ̂β1
. . . ρ̂βl

= (−1)l ρl+1 ∇α1
. . .∇αl

1

ρ
, (6)

with ρ = ‖ρ‖2, where ‖·‖2 is the Euclidean norm and ∆
(l) is a rank 2l tensor, which projects a tensor of rank l onto

its symmetric and traceless part. Excellent summaries of their properties and the identities they obey are available
in the literature [12, 13, 35].

By definition, F λ(l) and V λ(l) are symmetric-irreducible in their last l−1 indices, and thus can each be expressed as

the sum of three irreducible tensors, F λ(lσ) and V λ(lσ), with the index σ ∈ {s, a, t} labelling the symmetric-irreducible
(rank l), the antisymmetric (rank l − 1), and the trace (rank l − 2) parts of the reducible tensors, respectively [35].
This decomposition and the projection of the expansion coefficients onto their irreducible subspaces are given by

F λ(l) = D(lσ) ⊙ F λ(lσ), F λ(lσ) = P (lσ) ⊙ F λ(l), (7)

respectively, with analogous expressions for the velocity coefficients. Repeated mode indices (lσ) are summed over

implicitly for the decomposition operators D(lσ). Both the decomposition operators and the projection operators are
explicitly defined in Section III C.

As derived in Sections III B and III C, the generalised Stokes laws for an isolated active particle in an unbounded
domain are

FD(lσ) = −γlσ V
D(lσ), F∞(lσ) = γlσ V

∞(lσ), FA(lσ) = −γ̂lσ V
A(lσ), (8)

for which we can give the scalar generalised friction coefficients exactly to arbitrary order in l as

γls =
4πηb (2l + 1)

(l + 1) (l − 1)! (2l − 3)!!
, γla =

4πηb

(l − 1)! (2l − 3)!!
, γlt =

4πηb

(l − 2) (l − 1)! (2l − 5)!!
,

γ̂ls =
4πηb

(

2l2 + 1
)

(l + 1) (l − 1)! (2l − 1)!!
, γ̂la =

4πηb (l + 1)

(l − 1)! (2l − 1)!!
, γ̂lt =

8πηb l

(l − 1)! (2l − 1)!!
. (9)

It should be noted that while the friction coefficients due to imposed fluid flow (γlσ) and those due to active surface
slip (γ̂lσ) are equivalent for the modes of rigid body motion, see Section IV, they are in general distinct. The difference
is due to the double-layer integral in the boundary integral equations (13). The friction coefficients γ1s, γ2s, and γ2a
are available in the literature in terms of a Taylor expansion of the imposed flow about the centre of the particle and
referred to as the Faxén relations [36–38]. On the other hand, our results have been obtained in terms of expansion
coefficients of the imposed flow for arbitrary (lσ). We derive a relation between these two approaches in Section
IV A. More generally, analogous expressions to γlσ for arbitrary modes (lσ) have been obtained by various authors
[12, 13, 23, 24, 26]; see Table I.

It is intuitive that in the unbounded domain the generalised Stokes laws, expressing the linear relations between the
irreducible modes of the traction and the corresponding modes of the boundary velocity, must be scalar relations due
to symmetry considerations. A visualisation of this in terms of the active slip velocity and the resulting hydrodynamic
traction due to a given (lσ) mode is shown in Figure 1.

III. DERIVATION

This section is dedicated to the derivation of the generalised Stokes laws, Eq. (8). We revisit the boundary
integral formulation of the Stokes equation and define the linearly independent boundary integral equations for the
contributions to the force per unit area (traction) on the particle due to (a) rigid body motion, (b) imposed flow, and
(c) active slip. We then solve these boundary integral equations exactly, using spectral expansions and Ritz-Galerkin
discretisation. The matrix elements of the resulting linear system of equations are solved for in Fourier space, and
found to diagonalise simultaneously in a basis of tensorial spherical harmonics. This diagonalisation results directly
in the generalised Stokes laws.

A. Boundary integral formulation of the Stokes equation

We recall the boundary integral equation for a particle with boundary conditions given by Eq. (1) in an imposed
flow v∞(r). Incompressibility of the fluid implies ∇ · v = 0. At the colloidal scale, the fluid satisfies the Stokes
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vA(2s) fA(2s) vA(3t) fA(3t)

vA(3a) fA(3a) vA(4a) fA(4a)

Figure 1. Panels denoted by vA(lσ) (fA(lσ)) show the vector field plots of the slip (traction) due to an isolated (lσ) mode of
the expansion (4). Here, the irreducible tensors V λ(lσ) are naturally parametrised in terms of the TSH as follows: V

λ(ls) =

V
0,λ
ls Y

(l)(e), Vλ(la) = V
0,λ
la Y

(l−1)(e), and V
λ(lt) = V

0,λ
lt Y

(l−2)(e), where the uniaxial parameterisations are defined in terms
of the orientation vector e of the active particle and V

0,λ
lσ are the scalar strengths of the modes. From this parametrisation, it

follows that the V
λ(lσ) are either even (apolar) or odd (polar) under inversion symmetry e → −e with respect to the orientation

of the particle. The figure shows the vector fields vA and fA due to the leading modes of apolar (2s), polar (3t), achiral (3a),
and chiral (4a) symmetry. The fields have been plotted on the surface of the particle with orientation e along the north pole.
For clarity, we have lifted the vector field off the surface slightly, while its magnitude has been overlaid on the surface. It
follows directly from the scalar friction coefficients of the generalised Stokes laws (8) that both slip and traction exhibit the
same symmetry.

equation, ∇ ·σ = 0, with the Cauchy stress tensor σαβ = −pδαβ +η (∇αvβ +∇βvα), where p is the fluid pressure and
δ is the Kronecker-delta. The boundary integral representation of the Stokes equation is then used to write the flow
produced by an active particle in an imposed velocity field v∞(r) [18–22, 25, 28, 42–44], using the Einstein summation
convention for repeated Cartesian indices,

vα(r) = v∞α (r)−
∫

Gαβ(r, r
′)fβ(r

′) dS +

∫

Kβαν(r
′, r)ρ̂′νvβ(r

′) dS, r ∈ V, r′ = R+ ρ′ ∈ S. (10)

An outline of the derivation of this classical result is presented in Appendix A in the notation of this paper. In the
above, V indicates the volume of the surrounding fluid. The integral kernels for the fluid velocity are the Green’s
function G of Stokes flow and the stress tensor K associated with it. Together with the pressure field P they satisfy
[43]

∇αGαβ(r, r
′) = 0, −∇αPβ(r, r

′) + η∇2Gαβ(r, r
′) = −δ(r − r′)δαβ ,

Kαβν(r, r
′) = −δανPβ(r, r

′) + η [∇νGαβ(r, r
′) +∇αGνβ(r, r

′)] , (11)

where the derivatives are taken with respect to the first argument; here ∇ = ∇r. Furthermore, the Green’s function
satisfies the symmetry Gαβ(r, r

′) = Gβα(r
′, r). By analogy with potential theory, the terms in (13) containing the

Green’s function G and the stress tensor K are referred to as “single-layer” integral and “double-layer” integral,
respectively [45]. The traction f is the normal component of the Cauchy stress tensor evaluated at the surface of the
colloid. For r = R+ρ ∈ S being evaluated on the surface of the colloid, and thus evaluating the double-layer integral
as a principal value, we have [18–22, 25, 28, 42–44]

1
2vα(r) = v∞α (r)−

∫

Gαβ(r, r
′)fβ(r

′) dS +

∫

Kβαν(r
′, r)ρ̂′νvβ(r

′) dS, r, r′ ∈ S. (12)

This is a Fredholm integral equation of the first kind for the unknown traction f , defined in Eq. (3). By linearity of
Stokes flow, the three distinct contributions to the traction satisfy independent boundary integral equations. These
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Boundary condition Expansion basis Methodology

Stokes [10] No-slip (passive)

Lighthill [7] and
Blake [8]

Axisymmetric slip
(active)

Scalar harmonics Lamb’s general solution and scalar harmonic
expansion of boundary condition to obtain
coefficients of the expansion

Felderhof and
Schmitz [23, 24, 26]

Mixed slip-stick
(passive) in imposed
flow

Vector spherical
harmonics (VSH)

BIE for a passive no-slip sphere. Single-layer
diagonalises under VSH (Antenna
theorems), obtained γ

Brunn [12, 13] Mixed slip-stick
(passive) in imposed
flow

Tensor spherical
harmonics (TSH)

Lamb’s general solution in terms of
multipole potentials, using boundary
conditions to find coefficients, obtained γ

Ghose and Adhikari
[27]

General slip TSH Indirect formulation of the BIE. Friction
tensors for the first few modes.

Pak and Lauga [14],
Pedley et al [15, 16]

General slip Scalar harmonics Extend Lighthill and Blake’s calculation to
include azimuthal slip using Lamb’s general
solution

This paper General slip TSH Direct formulation of the BIE, introduced in
[28, 30]. Friction tensors for all modes due to
slip and imposed flow.

Table I. Chronology of analytical results for the traction on a single spherical particle in an unbounded Stokes flow. Here
“active” implies a sphere with active surface slip, while “passive” implies a sphere with no-slip, or alternatively a slip-stick
boundary condition. In the latter, passive case, slip must be interpreted as a passive feature, comparable to the slippage at a
boundary of the fluid domain [39–41]. The two main approaches to obtain higher order friction coefficients are (a) using Lamb’s
general solution to obtain the flow field around a particle, from which the stress tensor and thus the traction can be derived,
and (b) solving the boundary integral equation (BIE) to obtain the traction directly.

are

vDα (r) = −
∫

Gαβ(r, r
′)fD

β (r′) dS, (rigid body),

v∞α (r) =

∫

Gαβ(r, r
′)f∞

β (r′) dS, (imposed flow),

1
2v

A
α (r) = −

∫

[

Gαβ(r, r
′)fA

β (r′)−Kβαν(r
′, r)ρ̂′νv

A
β (r′)

]

dS, (active slip). (13)

In writing the rigid body part of Eq. (13), we have used the well-known result that rigid body motion is an eigen-
function of the double-layer integral operator with eigenvalue −1/2 [46] [see Eqs. (32) for a proof]. In the following,
we shall solve these integral equations to find the exact solution for the Stokes traction on an active particle in an
arbitrary imposed flow given in (8).

B. Exact solution of the boundary integral equation

To solve the integral equations (13) for the unknown surface tractions, we parametrise the surface fields in terms
of TSH as prescribed in (4). We can use the orthogonality of the basis functions,

∫

Y
(l)
Y

(l′)dS = δll′
1

wl+1w̃l+1
∆

(l), (14)

to obtain the expansion coefficients

V λ(l) = w̃l

∫

vλ(R+ ρ)Y (l−1)(ρ̂)dS, F λ(l) = wl

∫

fλ(R+ ρ)Y (l−1)(ρ̂)dS. (15)

Having expanded the boundary fields in (13) in an orthogonal basis, we use the Ritz-Galerkin method of minimising
the residual to obtain a self-adjoint linear system for the expansion coefficients [28, 30]. By multiplying the boundary
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integral equation by Y (l−1)(ρ̂), and integrating it over the surface of the colloid we obtain the linear system of
equations for the velocity and traction coefficients

V D(l) = −G
(l,l′) ⊙ F

D(l′), (rigid body),

V ∞(l) = G
(l,l′) ⊙ F

∞(l′), (imposed flow),

1
2V

A(l) = −G
(l,l′) ⊙ F

A(l′) +K
(l,l′) ⊙ V A(l′), (active slip), (16)

where the matrix elements G
(l,l′) and K

(l,l′) are due to the single-layer and double-layer, respectively. These matrix
elements can be evaluated exactly for a spherical colloid in an unbounded fluid. The two key identities necessary for
this are the expansion of the reducible symmetric tensor ρ̂α1

. . . ρ̂αl
in the TSH basis [35, 47, 48]

ρ̂α1
. . . ρ̂αl−1

=
Y

(l−1)
α1...αl−1

(2l − 3)!!
+

1

2l − 3

∑

jk pairs

δαjαk

Y
(l−3)
α1...αj−1αj+1...αk−1αk+1...αl−1

(2l − 7)!!
+O

(

Y (l−5)
)

, (17)

where the big O notation stands for terms involving components of TSH of rank ≤ l − 5, and the expansion of the
plane wave in the TSH basis

eik·ρ = 4πb2
∞
∑

m=1

im−1wmw̃mjm−1(kρ)Y
(m−1)(k̂)⊙ Y (m−1)(ρ̂), (18)

where jm(kρ) are spherical Bessel functions, ρ = ‖ρ‖2 = b, and i =
√
−1 is the imaginary unit. For the one-body

problem, both the single- and double-layer integrals exhibit singular kernels and thus the boundary integral equations
cannot simply be Taylor expanded as in [28, 30, 49, 50]. However, exploiting translational invariance, we can solve
them in Fourier space. For this, we use the following Fourier representation of fields ϕ(r),

ϕ(s) =

∫

ϕ̂(k)eik·s
dk

(2π)
3 , ϕ̂(k) =

∫

ϕ(s)e−ik·sds. (19)

We now turn to the evaluation of the matrix elements.

1. Single-layer matrix element

The single-layer matrix element of Eq. (16) is given by

G
(l,l′) = w̃lw̃l′

∫

Y (l−1)(ρ̂)G(r, r′)Y (l′−1)(ρ̂′)dSdS ′, r, r′ ∈ S. (20)

In an unbounded fluid we have for the Green’s function of Stokes flow and its Fourier transform [43]

G(s) =
1

8πη

1

s
(δ + ŝŝ) , Ĝ(k) =

1

ηk2

(

δ − k̂k̂
)

=
1

3ηk2

(

2δ − Y (2)(k̂)
)

, (21)

where s = ρ− ρ′, and we have used Eq. (17). Using the Fourier transform, together with the plane wave expansion
(18) in the matrix element (20), we obtain

G(l,l′)
αν1...νl−1βκ1...κl′−1

=

∞
∑

m,m′=1

τGll′mm′

∫

dS Y (l−1)
ν1...νl−1

(ρ̂)Y (m−1)
µ1...µm−1

(ρ̂)

∫

dk jm−1(kb)jm′−1(kb)

×
∫

dS ′ Y (l′−1)
κ1...κl′−1

(ρ̂′)Y (m′
−1)

η1...ηm′
−1
(ρ̂′)

∫

dΩk Y
(m−1)
µ1...µm−1

(k̂)k2Ĝαβ(k)Y
(m′

−1)
η1...ηm′

−1
(k̂), (22)

where
∫

dS implies the integral over the surface of a sphere with radius b,
∫

dΩ the integral over the surface of a
unit-sphere, and

∫

dk a scalar definite integral from 0 to ∞, and with

τGll′mm′ =
2ηb4

π
im+3m′

w̃lw̃l′wmwm′w̃mw̃m′ .
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The integral over the pair of spherical Bessel functions can be found in [51]. With this, the results for surface integrals
over outer products of multiple TSH in [13], and the properties of the isotropic tensor ∆ [12, 13, 35], we eventually
obtain the result for the single-layer matrix element

G(l,l′)
αν1...νl−1βκ1...κl′−1

= δll′G(l)
0

[

δαβ∆
(l−1)
ν1...νl−1,κ1...κl−1

− l (2l − 1)

2 (l − 1) (2l + 1)
Λ
(l)
αν1...νl−1βκ1...κl−1

]

. (23)

Here, G(l)
0 = (l − 1)2/(2πηbwl−1) and Λ

(l)
αν1...νl−1βκ1...κl−1

= ∆
(l)
ν1...νl−1α,βκ1...κl−1

+ ∆
(l)
ν1...νl−1β,ακ1...κl−1

.

2. Double-layer matrix element

The double-layer matrix element of Eq. (16) is given by

K
(l,l′) = w̃lwl′

∫

Y (l−1)(ρ̂)K(r′, r) · ρ̂′Y (l′−1)(ρ̂′)dSdS ′, r, r′ ∈ S. (24)

In the unbounded domain the stress tensor corresponding to the Green’s function (21) and its Fourier transform are
[43]

K(s) = − 3

4π

1

s2
ŝŝŝ, K̂(k) =

2i

k

[

3
(

k̂δ
)sym

− k̂k̂k̂
]

=
2i

5k

[

9
(

Y (1)(k̂)δ
)sym

− 1

3
Y (3)(k̂)

]

, (25)

where s = ρ−ρ′, and the notation (. . . )
sym

implies a projection onto the symmetric part of the tensor, eg
(

ρ̂αρ̂
′
β

)sym

=

1
2

(

ρ̂αρ̂
′
β + ρ̂β ρ̂

′
α

)

. We have once again used Eq. (17). Using this Fourier transform and the plane wave expansion

(18) in the matrix element (24) the expression for the double-layer matrix element becomes

K
(l,l′)
αν1...νl−1βκ1...κl′−1

=

∞
∑

m,m′=1

τKll′mm′

∫

dS Y (l−1)
ν1...νl−1

(ρ̂)Y (m−1)
µ1...µm−1

(ρ̂)

∫

dk kjm−1(kb)jm′−1(kb)

×
∫

dS ′ ρ̂′ηY
(l′−1)
κ1...κl′−1

(ρ̂′)Y (m′
−1)

η1...ηm′
−1
(ρ̂′)

∫

dΩk Y
(m−1)
µ1...µm−1

(k̂)kK̂βαη(k)Y
(m′

−1)
η1...ηm′

−1
(k̂) (26)

with

τKll′mm′ =
2b4

π
im

′+3mw̃lwl′wmwm′w̃mw̃m′ .

Again, the relevant integral over spherical Bessel functions can be found in [51]. Using the results for integrals over
multiple TSH obtained by Brunn [13], and the properties of the ∆-tensor, we find the double-layer matrix element
after lengthy manipulation,

K(l,l′)
αν1...νl−1βκ1...κl′−1

= δll′K(l)
0

[

δαβ∆
(l−1)
ν1...νl−1,κ1...κl−1

− 2l

2l + 1
Λ
(l)
αν1...νl−1βκ1...κl−1

]

, (27)

where K(l)
0 = 3/ (4l − 6).

C. Diagonalisation of the linear system of equations

In the following, we explicitly define the irreducible representation of the coefficients of the boundary velocity and
traction in (7). We then use this to project the linear system (16) onto its irreducible subspaces. By doing so, the
linear system diagonalises and thus can be solved trivially. This results directly in the generalised Stokes laws in Eq.
(8).
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As is evident from the single-layer, Eq. (23), and double-layer, Eq. (27), matrix elements, the linear system (31)
naturally diagonalises in the modes (l) of the expansion coefficients. We will now show that it is in fact diagonal in
all its irreducible subspaces. First, we define the decomposition operators used in Eq. (7) as

[

D(ls) ⊙ F λ(ls)
]

αν1...νl−1

= ∆
(l)
αν1...νl−1,βκ1...κl−1,

F
λ(ls)
βκ1...κl−1

,

[

D(la) ⊙ F λ(la)
]

αν1...νl−1

= − l−1
l
∆(l−1)

ν1...νl−1,κ1...κl−1
ǫακ1βF

λ(la)
βκ2...κl−1

,

[

D(lt) ⊙ F λ(lt)
]

αν1...νl−1

= 2l−3
2l−1∆

(l−1)
ν1...νl−1,κ1...κl−1

δακ1
Fλ(lt)
κ2...κl−1

, (28)

with the corresponding projection operators P (lσ)

[

P (ls) ⊙ F λ(l)
]

βκ1···κl−1

= ∆
(l)
βκ1···κl−1,σµ1...µl−1

Fλ(l)
σµ1...µl−1

,

[

P (la) ⊙ F λ(l)
]

λκ2...κl−1

= ∆
(l−1)
λκ2...κl−1,µη2...ηl−1

ǫµβαF
λ(l)
αβη2...ηl−1

,

[

P (lt) ⊙ F λ(l)
]

κ2...κl−1

= δµλF
λ(l)
µλκ2...κl−1

. (29)

Here, ǫ is the Levi-Civita tensor and δ is the Kronecker delta. With this we can define what we call the “irreducible
matrix elements”

G
(lσ,l′σ′) = P (lσ) ⊙ G

(l,l′) ⊙D(l′σ′), K
(lσ,l′σ′) = P (lσ) ⊙K

(l,l′) ⊙D(l′σ′). (30)

Using these in the linear system (16), the result is a self-adjoint linear system in the irreducible expansion coefficients,

V D(lσ) = −G
(lσ,l′σ′) ⊙ F

D(l′σ′), (rigid body)

V ∞(lσ) = G
(lσ,l′σ′) ⊙ F

∞(l′σ′), (imposed flow)

1
2V

A(lσ) = −G
(lσ,l′σ′) ⊙ F

A(l′σ′) +K
(lσ,l′σ′) ⊙ V A(l′σ′). (active slip) (31)

Inserting the matrix elements (23) and (27), together with the definitions of the decomposition (28) and projection
(29) operators, into Eq. (30), it is straightforward to show that

G
(lσ,l′σ′) ⊙ F λ(l′σ′) = δll′δσσ′ glσF

λ(lσ), K
(lσ,l′σ′) ⊙ V λ(l′σ′) = δll′δσσ′ klσV

λ(lσ) (32)

Here, the scalar l-dependent coefficients glσ and klσ are

gls =
l + 1

2l + 1
gla, gla =

1

4πηbwl

, glt =
l − 2

2l − 3
gla,

kls =
1

2l + 1
kla, kla = − 3

2(2l − 1)
, klt = − 1

2l − 3
kla. (33)

It is worth noting that both single- and double-layer irreducible matrix elements vanish identically for non-diagonal
combinations of modes (lσ, l′σ′), i.e., when lσ 6= l′σ′, apart from (lσ, l′σ′) = (lt, la). However, upon contraction with

an irreducible tensor these too vanish, i.e., G(lt,la) ⊙F (la) = 0 and K
(lt,la) ⊙V (la) = 0. Thus the linear system arising

from (13) is diagonal not only in (l), but also in all its irreducible subspaces labelled by (lσ).
Using this diagonal solution for the linear system (31), we can straightforwardly write down the generalised Stokes

laws in (8) for an isolated active particle in an unbounded domain. To summarise, we have derived exact expressions
for the friction coefficients γlσ and γ̂lσ due to imposed flow and active surface slip, obtained using the direct formulation
of the boundary integral equation.

IV. APPLICATIONS

In this section we briefly discuss some applications of the above results. First, the connection of our results with
the generalised Faxén relations are made explicit. Subsequently, we express the irreducible expansion coefficients

V λ(lσ) and F λ(lσ) in terms of standard physical quantities. In doing so, we make the observation that the symmetric-
irreducible dipole on the particle depends on whether it is strained by its active surface slip or by an imposed shear



9

flow. We then obtain a simple expression for the power dissipation of an active colloid in an imposed flow in terms of

the generalised friction coefficients in (9) and the modes V λ(lσ). Finally, we consider thermal fluctuations in the fluid
and the associated traction modes acting on the particle. Using the diagonalisation of the matrix elements in a basis
of TSH (32) and the results in [29] on fluctuating hydrodynamics, we give an explicit expression for the variance of
the fluctuation traction modes.

A. Generalised Faxén relations

Here, we derive the relation between a Taylor expansion of the imposed flow about the centre of the particle and its
expansion coefficients. The derivation for a similar relation regarding the boundary integral of the Green’s function

can be found in [28]. The expansion coefficients V ∞(l) are defined in (15). The Taylor expansion of the imposed flow
about the centre of the sphere is given as

v∞(R+ ρ) =

∞
∑

l=1

1

(l − 1)!
(ρ ·∇)

(l−1)
v∞(R+ ρ)|ρ=0

,

where we have defined

(ρ ·∇)
(l−1)

= ρα1
ρα2

. . . ραl−1
∇α1

∇α2
. . .∇αl−1

.

Using (17) we can write this in terms of TSH

(ρ ·∇)
(l−1)

= bl−1





Y (l−1) ⊙∇
(l−1)

(2l − 3)!!
+

1

2l − 3

∑

jk pairs

Y (l−3) ⊙∇
(l−3)∇2

(2l − 7)!!
+O

(

Y (l−5) ⊙∇
(l−5)

)



 .

Due to orthogonality of the TSH, only two terms remain upon integration over the surface of the sphere in the
definition of the expansion coefficients (15). In the irreducible subspaces, therefore, a Taylor expansion of the imposed
flow and its expansion coefficients are related as

V ∞(lσ) = P (lσ) ⊙
[

bl−1
∆

(l−1)

(

1 +
b2

4l + 2
∇2

)

∇
(l−1)v∞

]

R

. (34)

Here [. . . ]R denotes that the function inside the bracket is evaluated at the centre R of the particle. In this paper,
we have used the approach to expand the boundary fields in TSH for both imposed flow and active surface slip. It
should be noted that a corresponding Taylor expansion about the centre of the particle is not possible for the active
slip which is only defined at the surface of the particle. Using a different method, Brunn [34] has obtained relations
analogous to (34) and termed them Faxén relations.

B. Symmetric-irreducible dipole and stresslet

With (15) and (7) the irreducible expansion coefficients are readily expressed in terms of commonly used physical

quantities. The rigid body motion velocity expansion coefficients V D(lσ) only have two non-vanishing modes, corre-

sponding to translational velocity V = V D(1s) and rotational velocity Ω = V D(2a)/2b, with V D(lσ) = 0∀ lσ /∈ {1s, 2a}.
Similarly, the first two modes of the imposed flow are V ∞(1s) = V ∞ and V ∞(2a) = 2bΩ∞, while the first two modes

of activity are V A(1s) = −V A and V A(2a) = −2bΩA. Here, the active translational velocity V A and the active
angular velocity Ω

A of a spherical active particle [27, 52, 53] are given by

V A = − 1

4πb2

∫

vA(ρ)dS, Ω
A = − 3

8πb4

∫

ρ× vA(ρ)dS. (35)

We also define the rate of strain dyadic Eλ = V λ(2s)/b, due to activity or imposed flow, as

Eλ
αβ =

3

8πb

∫

(

ρ̂αv
λ
β + vλαρ̂β

)

dS. (36)
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Analogously, we identify the most commonly used traction tensors produced by the corresponding velocity fields

F λ(1s) = F λ, F λ(2a) =
1

b
T λ, F λ(2s) =

1

b
Sλ, (37)

where F , T and S are the familiar hydrodynamic force and torque and the symmetric-irreducible second moment of
the traction, the symmetric-irreducible dipole. The latter is

Sλ
αβ =

∫

[

1
2

(

fλ
αρβ + fλ

β ρα
)

− δαβ

3 fλ
ν ρν

]

dS. (38)

We note that this is different from the combination of traction and velocity (2s) mode, first introduced by Landau
and Lifshitz [11], and subsequently called the stresslet by Batchelor [54] and derived by various authors since, where
more recent derivations include [49, 50, 55, 56]. While Batchelor’s stresslet is defined as the contribution of a particle

to the bulk stress, the above, Sλ, describes the hydrodynamic stress experienced by the particle itself, either due to
its active surface slip or due to an imposed shear flow. In particular, we want to draw the attention of the reader
to the differing symmetric-irreducible dipoles acting on the colloid, depending on whether an imposed straining flow
E∞ or a straining flow due to the active surface slip EA is applied:

S∞ =
20πηb3

3
E∞, SA = −4πηb3EA. (39)

This result is readily explained by the contribution of the double-layer integral in (13) for the active surface slip
velocity. Using the above correspondences between the irreducible modes and the velocity (angular velocity) and the
force (torque) in the generalised Stokes laws (9) we correctly recover Stokes law for the translation (rotation) of a
spherical object in a viscous fluid with a friction coefficient of 6πηb (8πηb3).

C. Power dissipation

The power dissipation in the volume of the fluid is Ė =
∫

σ : (∇v) dV [11]. Using the divergence theorem to rewrite
this as an integral over the surface of the sphere, we obtain for the power dissipation due to an active colloid in an
imposed flow

Ė =
∑

λ,λ′

(

γλ
ls V λ(ls) ⊙ V λ′(ls) + 2

2l−3

(

l−1
l

)2
γλ
la V λ(la) ⊙ V λ′(la) + 2l−3

2l−1 γ
λ
lt V

λ(lt) ⊙ V λ′(lt)
)

,

where γλ
lσ =

{

γlσ, for λ ∈ {D,∞} ,
γ̂lσ, for λ = A.

(40)

Here, we sum over both, λ, λ′ ∈ {D,∞,A}, while the sum over the existing modes (lσ) is left implicit. In obtaining

this result, we have used the generalised Stokes laws (8). It correctly follows that Ė ≥ 0, i.e., the power dissipation is
always positive definite. It is readily checked that we recover the correct result for the power dissipation due to rigid
body motion, ĖD = 6πηbV ·V + 8πηb3 Ω ·Ω. In Appendix B we simplify the result for the power dissipation due to
active slip only, ĖA, further by making use of the uniaxial parametrisation introduced in the caption of Figure 1.

D. Fluctuating hydrodynamics

So far, we have ignored the role of thermal fluctuations in the fluid. At a non-zero temperature kBT , considering
thermal fluctuations of the surrounding fluid, we must rewrite Eq. (3) as

f = fD + f∞ + fA + fB, (41)

where the term fB now captures the fluctuating contribution to the traction [57–61]. By linearity of Stokes flow, this
contribution can be solved for independently. The Brownian traction is a zero-mean Gaussian random variable and so
it is of particular interest to find an explicit expression for its variance. Using the fluctuation-dissipation relation, and
an expansion of fB in TSH analogous to (4), [29] have found a formal expression for the variance of the irreducible

fluctuating traction modes F B(lσ) by “projecting out” the fluid using the boundary-domain integral representation of
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Stokes flow. We can now use the results of Section III C to write the variance of these zero-mean Gaussian random
modes explicitly for an active colloid in an unbounded thermally fluctuating system. The explicit form of the variance
for the fluctuating traction is then

〈

F B(lσ)(t)F B(l′σ′)(t′)
〉

= δll′δσσ′ 2kBT δ(t− t′)















γls ∆
(l), for σ = s,

2l−3
2

(

l
l−1

)2

γla ∆
(l−1), for σ = a,

2l−1
2l−3 γlt ∆

(l−2), for σ = t,

(42)

where γlσ are the scalar friction coefficients in (9). With this we readily recover the well-known variances for the
Brownian force and torque [61, 62]. Canonically denoting the moments of the fluctuating traction by the superscript
λ = B, we obtain

〈

FB
α (t)FB

β (t′)
〉

= 2kBT 6πηb δαβδ(t− t′),

〈

TB
α (t)TB

β (t′)
〉

= 2kBT 8πηb3 δαβδ(t− t′).

Furthermore, we give the variance of the fluctuating symmetric-irreducible dipole

〈

SB
αβ(t)S

B
γκ(t

′)
〉

= 2kBT
10πηb3

3

(

δαγδβκ + δακδβγ − 2
3δαβδγκ

)

δ(t− t′).

V. CONCLUSION AND OUTLOOK

We used the direct boundary integral formulation of the Stokes equation and Ritz-Galerkin discretisation in a basis
of tensorial spherical harmonics to simultaneously diagonalise the single-layer and double-layer integral operators and,
thereby, obtain an exact solution for the traction on a spherical active particle in an unbounded fluid. The central
result of this paper, Eq. (8), are expressions for the linear response of an arbitrary traction mode to a forcing by the
corresponding mode of the active slip and the imposed flow. We call these linear relations generalised Stokes laws.

The boundary integral formulation of Stokes flow, spectral expansion of the surface fields in a basis of polynomials,
scalar or vector spherical harmonics, and Ritz-Galerkin discretisation are classical methods in computing the slow
viscous flows of colloidal particles [22–26, 63–65]. It is then worthwhile to compare our main results in Sections III B
and III C to related work in the literature. In Table I we have listed some important contributions in chronological
order that have (a) analytically obtained the traction on a single spherical particle in unbounded Stokes flow or (b),
alternatively, obtained the flow field around such a particle, from which the stress tensor and thus the traction can
be derived. This list by no means is exhaustive and is meant as a chronological overview, rather than a collection of
every relevant contribution to the field. The present paper fits into the context of other related previous work by some
of the authors [28, 30] as follows. Despite the treatment of rather general problems, such as many-body problems in
arbitrary confining geometries, the simplest possible system of a single active colloid in an unbounded and arbitrary
imposed flow was not solved. In particular, it was not known whether the single- and double-layer integral operators
could be diagonalised simultaneously in a basis of TSH. The present work completes these developments that follow
from [28, 30].

In future work, we will extend our calculations to obtain explicit results for the traction on an active particle near
surfaces such as an infinite plane no-slip wall or fluid-fluid interface [23, 24, 29, 64, 66–73]. The exact one-body
solution presented here will be particularly useful in obtaining efficient iterative numerical solutions of the boundary
integral equation for many particles [25, 28, 49, 50, 71, 74–77]. In this case, the one-body solution can be used to
initialise iterations that converge to the diagonally dominant numerical solutions [30]. The complete set of modes of
the traction derived here can also be used to study the rheology of active suspensions [12, 54, 78]. In a many-body
setting, using TSH as a basis for expansion of the surface fields has the additional advantage of the basis functions
and the expansion coefficients being irreducible with respect to rotations [79, 80]. This allows for the simplified use
of the rotation based fast multipole method (FMM) in summing long-ranged harmonics [81–84]. So far, our approach
is limited to spherical particles. There exist a number of papers that have extended related analyses to close-to-
spherical [13], ellipsoidal [55], and arbitrarily shaped particles [22, 53, 56, 85], the latter of which tend to use either
the reciprocal theorem to obtain quite general results, or numerics. In future work, we will aim to extend our results
of arbitrary order to more complex particle shapes. All of these directions present exciting avenues for future work
on the mechanics and statistical mechanics of active colloidal suspensions.
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Appendix A: Derivation of the boundary integral representation in an imposed flow

Starting from the well-known integral representation of the Stokes equation in the absence of any background flow
[20]

v′α(r) = −
∫

Gαβ(r, r
′)fβ(r

′) dS +

∫

Kβαν(r
′, r)ρ̂′νv

′
β(r

′) dS, r ∈ V, r′ = R+ ρ′ ∈ S, (A1)

we follow the derivations in [43, 44] for a situation involving an undisturbed imposed velocity field v∞(r). In this
case, v′ can be interpreted as a disturbance field due to the colloid being present in the fluid. We can thus write
v′ = v − v∞, with v now being the true velocity field. We can use the Lorentz reciprocal theorem [18]

∇ · (v∗ · σ∞ − v∞ · σ∗) = 0, (A2)

for the regular imposed flow v∞ and an arbitrary regular flow v∗, with associated stress tensors σ∞ and σ∗, respec-
tively, to further simplify the result. Choosing v∗ to be the flow due to a Stokeslet of strength g located at r we have
the fundamental solution of the Stokes equation

v∗(r′) = G(r′, r) · g, σ∗(r′) = K(r′, r) · g.

Using this in the reciprocal theorem gives

∇ · (G(r, r′) · σ∞ − v∞ ·K(r′, r)) = 0. (A3)

Choosing r to lie outside the (arbitrary) fluid domain V and noting that the above expression in brackets is then
regular in V, we can integrate this over V and use the divergence theorem to convert it into a surface integral over
the bounding surface of the chosen fluid domain, which in our case is the surface of the colloid, to obtain

∫

(G(r, r′) · σ∞ − v∞ ·K(r′, r)) · ρ̂′ dS = 0.

Writing f∞ = ρ̂ · σ∞ on the surface of the sphere, we have the identity
∫

(

G(r, r′) · f∞ − v∞ ·K(r′, r) · ρ̂′
)

dS = 0.

This yields the boundary integral representation (10),

vα(r) = v∞α (r)−
∫

Gαβ(r, r
′)fβ(r

′) dS +

∫

Kβαν(r
′, r)ρ̂′νvβ(r

′) dS, r ∈ V, r′ = R+ ρ′ ∈ S. (A4)

Here, we can also define the three contributions to the traction in Eq. (3) as follows. Consider the boundary integral
equation, Eq. (12), for a rigid body with boundary condition v(R + ρ) = V + Ω × ρ = vD(ρ). We use that rigid
body motion is an eigenfunction of the double-layer integral operator with eigenvalue −1/2 [46] to obtain

vD(r) = v∞(r)−
∫

G(r, r′) · f(r′) dS,

If the rigid body is held stationary, i.e., vD = 0, in the imposed flow we have

v∞(r) =

∫

G(r, r′) · f∞(r′) dS,
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which defines f∞ as the traction necessary to keep a rigid body stationary when exposed to an imposed flow v∞(r).
Using the linearity of Stokes flow, we can write for a non-stationary rigid particle

vD(r) = v∞(r)−
∫

G(r, r′) ·
(

fD(r′) + f∞(r′)
)

dS.

Let us now look at an active particle with boundary condition given by (1). Following the same steps as above we
obtain

vD(r) + 1
2v

A(r) = v∞(r)−
∫

G(r, r′) ·
(

fD(r′) + f∞(r′) + fA(r′)
)

dS +

∫

vA(r′) ·K(r′, r) · ρ̂′ dS,

with fA the traction caused by the active slip. By linearity, this equation contains the three independent boundary
integral equations (12). As can be seen from this derivation, the boundary integral equations for the imposed back-
ground flow v∞ and activity vA, with the present definitions of the three distinct contributions to the traction as in
(3), cannot be written in equivalent form. This possibly unintuitive result has been noted before in [30], although
without derivation.

Appendix B: Power dissipation for uniaxial slip flow

With the uniaxial parametrisation introduced in the caption of Figure 1 we can rewrite the power dissipation due
to activity ĖA in the following way. We have

V A(ls) ⊙ V A(ls) =
(

V 0,A
ls

)2

Y (l)(e)⊙ Y (l)(e), (B1a)

V A(la) ⊙ V A(la) =
(

V 0,A
la

)2

Y (l−1)(e)⊙ Y (l−1)(e), (B1b)

V A(lt) ⊙ V A(lt) =
(

V 0,A
lt

)2

Y (l−2)(e)⊙ Y (l−2)(e), (B1c)

and with the orthogonality relation of TSH (14) and the identity ∆
(l)
µ1...µl,µ1...µl = 2l + 1 [12] one can show that

Y (l)(e)⊙ Y (l)(e) =
1

wl+1
. (B2)

Thus the power dissipation in terms of the friction coefficients and the strengths of the slip modes is

ĖA =
γ̂ls
wl+1

(

V 0,A
ls

)2

+
2

2l − 3

(

l − 1

l

)2
γ̂la
wl

(

V 0,A
la

)2

+
2l − 3

2l − 1

γ̂lt
wl−1

(

V 0,A
lt

)2

(B3)

implicitly summing over all slip modes that are present. With this we can compute the power dissipated by any
isolated mode of slip, which is potentially useful in optimisation problems such as the question for the most efficient
way to swim for a certain microorganism [7, 88, 89].
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