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Abstract

Solution of large order fluid structure interaction (FSI) systems with parametric uncertainties demand intensive computational

resources. The present study focusses on developing and implementing a novel stochastic reduced order model to resolve pressure

induced oscillations of a disc-like structure as a generic fluid structure interaction system. Such models have applications in various

heavy engineering systems, like turbo machinery industries. It is important to resolve the coupled dynamics, in order to avoid large

oscillations and instabilities. The stochastic reduced order model uses a modal reduction approach together with sparse grid based

polynomial chaos expansion (PCE) to truncate both the system degrees of freedom (dof) as well as the random modes. Further

reduction in computational time is achieved by parallelization. Interfacing algorithms have also been developed that enable finite

element (FE) modelling of the FSI system using commercial softwares and in-house developed codes.
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1. Introduction

The dynamic analysis of structural systems which have significant interactions with the surrounding fluid are

modelled as problems in fluid structure interaction (FSI). Depending on the mode of interactions, FSI problems can

be broadly classified in several categories. The present study focuses on the acoustic interaction effects, generally

referred to in the literature as acousto-elasticity. For systems with simple geometries, analytical solutions have been

developed in the literature for acousto-elastic problems [1–3]. However, systems with complicated geometries are

not conducive for analytical modelling, and one has to resort to numerical techniques for their analysis. Accurate

numerical modelling of the FSI systems not only require high fidelity finite element (FE) models for the structure, but

also for the fluid, and hence, the numerical models are characterised by a large number of degrees-of-freedom (dofs).

As a result, the dimension of the global system matrices obtained from discretization of the governing differential

equations become very large and the analysis of these FSI systems, even if they are linear, is computationally intensive.
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Here, it is important to note that the models for the fluid-structure interacting system are developed based on specific

assumptions about the structure, the fluid and their interactions. These assumptions though enable a simplification

of the model, do not reflect the reality and result in errors in predicting the system behavior. The effects of these

unknown errors in modelling can be incorporated into the analysis by treating some of these parameters as random

variables and investigating how the uncertainties in modelling these parameters propagate through the system into the

response. Unfortunately, treating the parameters as random variables increases the dimensionality of the FSI problem

further and significantly increases the computational complexities.

The focus of the present study is to develop reduced order models for FSI systems with parameter uncertainties.

The present study considers the interaction between structure and acoustic systems [1]. The interaction between the

structure and the acoustic systems arises either from the flow induced vibrations of the structure or from the structure

induced acoustic oscillations. It is essential to perform a coupled eigenvalue analysis because, this interaction, in turn

could change the dynamics of both the structure and the acoustic system [3]. The coupled eigenvalue analysis should

be carried out in the generalized coordinates. The parameter uncertainties are incorporated into the numerical analysis

by modelling them as random variables and the uncoupled system matrices are modelled using FE. Reduction in the

dimension of the FE matrices is obtained by reducing the size of the FE global uncoupled system matrices using

System Equivalent Reduction Expansion Process (SEREP) [5] by retaining the dominant dynamical modes and the

master dofs. The solution for the stochastic coupled eigenvalue problem can be obtained within the PCE framework

by projecting the uncertainties into the Hilbert space [6,7]. Reduction in the stochastic dimension is achieved by

retaining only the first few dominant stochastic modes. A sparse grid based stochastic collocation is used in PCE

implementation to estimate the projections along the stochastic basis functions. Further computational reduction is

achieved by parallelizing the developed codes using PETSc [8,9] in C platform. PETSc is an acronym for Portable

Extensible toolkit for Scientific Computation and is a package of data structures and routines to address mathematical

problems arising out of partial differential equations, can solve them in parallel over millions of nodes and produce

graphical outputs for users. The basic parallel communication routines for PETSc are derived from MPI. The linear

algebra routines are derived from the parent libraries such as BLAS and LAPACK. PETSc’s tailor made routines

are very useful in formulating problems of partial differential equations, time stepping, linear equations, matrix and

vector operations, eigenvalue problem solvers etc [10]. The problems under consideration in this project include

linear algebra operations, eigenvalue computations, numerical integration and interfacing with commercial software

like MATLAB. Interfacing algorithms are developed that enable FE modelling using commercial FE softwares and

importing the structure FE matrices and integrating them with the developed algorithms.

2. Methodology

In the present study, the FSI system that has been considered consists of an annular plate with cavities on both

sides. The dynamical model consists of a thin plate immersed in a compressible fluid filled enclosure. The geometry

and the corresponding system parameters are given in Fig. 1 and Table. 1. respectively. The theoretical formulation

follows the analytical theory developed by Dowell et al.[1], which combines the rigid wall acoustic cavity modes

and the in vacuo structural modes by means of suitable boundary conditions. The two field equations are combined

and converted into a set of gyroscopically coupled ODEs by using the discretization technique given in Dowell et
al.[1]. The discretized field equations governing the coupled behaviour of the stochastic FSI system with the random

parameter (θ) can be expressed as [4],
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0
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where, ρ f (θ) is the density of fluid, Mm(θ), Mk(θ) and Ωm(θ), ωk(θ) are the modal masses and uncoupled natural

frequencies of the mth acoustic normal mode, and the kth structural mode respectively. The plate-cavity coupling
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Fig. 1. A schematic of the considered FSI model.

Table 1. System parameters

Outer radius, b 205 mm

Inner radius, a 70 mm

Disc thickness, h 22 mm

Disc density, ρd 7700 kg/m3

Fluid density, ρ f 1.2 kg/m3

Young’s modulus, E 190 GPa

Poisson’s ratio, ν 0.33

Speed of sound, c 343m/s

Cavity depth, la = lb 10 mm

coefficient sub-matrix Lmk is given by, Lmk =
1

Ad

∫
Ad

Fmψk dA, where, Fm and ψk are the rigid wall normal modes and

in vacuo plate modes respectively. In matrix form, the discretized field equations for m cavity modes and k structural

modes can be written as,
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The structure and the cavity have been modelled in COMSOL [11] and the uncoupled system matrices have been

exported from the software platform. First, the uncoupled random eigenvalue analysis has been carried out for the

structure and the fluid to get the dominant structural and acoustic modes. Subsequently, coupling effects have been

introduced by considering the dominant acoustic and the structural modes, through the boundary degrees of freedom.

In order to make the calculation of the coupling coefficients simple, the meshing for the structure and the fluid have

been carried out in such a way that the nodes of the fluid region coincide with those of the structure at the interface.

Next, the coupled random eigenvalue problem is solved to estimate the coupled frequencies for the full FSI system.

Dimension reduction in the FSI system in Equation (4) has been achieved using PCE based SEREP with the retained

dofs and dominant structural and acoustic modes. SEREP is used to find a low dimension subspace T(x j) ∈ �N×m

with m << N in order to approximate the state vector X(t, x j) in a reduced subspace as,

X(t, x j) =

{
Xa(t, x j)

Xd(t, x j)

}
=

{
Φa(t, x j)

Φd(t, x j)

}
Φ

g
a(t, x j)Xa(t, x j) = T(x j)Xa(t, x j) (5)

Here, Xa is the reduced state vector,Φ is the eigenmatrix consists of the uncoupled acoustic and structural modes,

Φ
g
a is the generalized inverse of Φa and T is the tranformation matrix. The subscript a and b denote the active and

deleted dofs. The reduced subspace Xa(t, x j) is chosen such that it contains all the master dofs and the dominant

modes. The state vector consists of the structural response and the acoustic wave oscillations in the time domain.

Here, x j’s represent the collocation points. Projecting Equation (4) on this subspace leads to a set of reduced order

differential equations of the form,
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The parameter uncertainties are represented by PCE using deterministic coefficients and random basis functions.

For example, the structural response in the modal domain, qk(t, θ), can be expressed in PCE as,

qk(t, θ) =
k∑

i=0

qi
k(t)ψi(θ), (7)

where, qi
k(t) are the deterministic coefficients and ψi(θ) are polynomials of random variable θ and constitute the random

orthogonal basis functions. The deterministic coefficients are evaluated using a stochastic collocation approach [12,
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Fig. 2. A flowchart outlining the overall methodology for stochastic coupled eigenvalue problem.

13]. This involves solving the forward problem a large number of times corresponding to the tensorial grid points

used in collocation. The number of such evaluations is reduced by adopting a sparse grid based approach [14]. The

computational efficiency is further enhanced, by parallelizing the numerical codes using PETSc [8,9] formulation in

C. The flowchart shown in the Fig. 2 explains the implementation of above described methodology.

3. Results and discussions

Preliminary numerical results are presented in order to validate the proposed methodology with the full system.

In this preliminary study, the uncoupled eigenvalue problem for both disc and cavity are first considered. The un-
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coupled disc and cavity are modelled in COMSOL with appropriate boundary conditions. The disc and the cavity

are discretized into 296 edge elements, 640 hexahedral (bricks) elements, 1, 424 quadrilateral elements and 16 vertex

elements with total dof of 23, 616 and 7, 872 respectively. For the solid element, the dof at each node correspond

to the displacements along the Cartesian coordinates and denoted by u, v,w, while for the cavity, modelled as fluid

medium, the dof at each node represents the pressure and is denoted byp. The meshed geometries of the cavity and

the disc are shown in Fig. 3.

(a) Disc (b) Cavity

Fig. 3. Meshed geometries of disc and cavity: The nodes at the interface coincide for the cavity and the disc. The radial, the circumferential and

the axial direction are consisting of 41, 64 and 3 nodes respectively.

The system matrices of the full model (deterministic) are extracted separately for the disc and the cavity from

COMSOL using interfacing algorithms and are used to perform the uncoupled eigenvalue analysis. Fig. 4 compares

the uncoupled natural frequencies of the reduced model with the full model for the chosen modes. An inspection of

these figures reveals an excellent agreement between the reduced model and the full model.

(a) Disc modes (b) Cavity modes

Fig. 4. Comparison of uncoupled natural frequencies of SEREP model with full model.

The cavity and disc mode shapes are in general expressed as (k1, k2, k3) and (k4, k5) respectively. Here, k1, k4

represent the number of nodal diameters, k2, k5 represent the number of nodal circles and k3 represents the z directional

node number. Fig. 5 shows the uncoupled mode shapes of the (1, 0, 0) cavity mode and the (1, 0) disc mode. The

uncoupled disc mode will couple only with uncoupled fluid mode of same nodal diameter [3]. As a consequence of

this coupling rule, the full coupled eigenvalue problem can be recast into a large number of individual nodal diameter

eigenvalue problems. This reduces the computational time significantly. SEREP technique is applied to this problem

in order to reduce the computational time further.

In the uncoupled disc eigenvalue problem, the size of the global system matrices of the full system by excluding

the boundary dofs is 23, 040 × 23, 040. At the interface, for each θ along the radial direction there are 40 dofs in the z
direction for both the disc and the cavity and they are chosen as the master dofs in the SEREP model. In this study, the

number of dominant modes are chosen same as that of the master dofs. Hence the size of the reduced system matrices

become 40 × 40. On a desktop computer, the computational time taken to extract the 40 dominant modes in the full
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(a) Full model (1,0,0) mode shape of the cavity (b) Full model (1,0) mode shape of the disc

Fig. 5. Uncoupled mode shapes of the cavity and the disc.

model is around 13.47 seconds. The computational time for the SEREP problem comes down to just 1.283 seconds

compared to the full model, without compromising on the accuracy.

In order to identify the dominant modes, it is essential to carry out an eigenvalue analysis of the full problem,

which can be computationally expensive. By parallelizing the solution of the full eigenvalue problem using PETSc,

the computational time is significantly reduced. The computational time taken by PETSc has been compared with

that of MATLAB. Depending on whether one is interested only in a few eigenvalues or all the eigenvalues of the

system, one uses different solvers. The EPS solver from SLEPc and eigs solver of MATLAB is efficient when only

few eigenvalues are required for the analysis. On the other hand, if one is interested in computing the full spectrum

of eigenvalues, one needs to use the LAPACK solver from PETSc or the eig solver from MATLAB. A comparison

of the computational costs in estimating the eigenvalues using these solvers is shown in Fig. 6. Fig. 6(a) shows that

MATLAB’s eigs routine solves the system faster than EPS. This is expected as parallelization of the eigensolver

used by SLEPc shows performance improvements when the size of the matrices is of the order 105 or higher. From

Fig. 6(b), we see a huge difference between time consumed by PETSc solver and the time consumed by MATLAB

solver for full spectrum eigenvalues. Though both the computational individual times are quite high, we see 80%

enhancement in the performance by using PETSc based LAPACK solver for full spectrum eigenvalues.

(a) Few eigenvalues (b) Full spectrum of eigenvalues

Fig. 6. Comparison of computational time taken by MATLAB and PETSc.

4. Conclusion

A PCE based SEREP reduction strategy has been used to develop a reduced order model for the analysis of FSI

system with parametric uncertainties. By means of the interfacing algorithms, the FE modelling of the uncoupled

systems has been carried out using COMSOL. Subsequently, the FE system matrices of the system have been imported

from the commercial software environment to carry out the stochastic coupled eigenvalue analysis. The computational

complexities associated with the full eigenvalue problem have been reduced by parallelising the codes using PETSc.
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There is a significant reduction in computational costs using SEREP model when compared to the full system model.

Such a reduction in computational complexities is of significance in case of real FSI systems, and is necessary for

carrying out further numerical investigations.
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