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Abstract. The present paper investigates the effects of noisy flow fluctuations on the fluid-structure interaction
(FSI) behaviour of a span-wise flexible wing modelled as a two degree-of-freedom elastically mounted flapping
airfoil. In the sterile flow conditions, the system undergoes a Hopf bifurcation as the free-stream velocity
exceeds a critical limit resulting in a stable limit-cycle oscillation (LCO) from a fixed point response. On
the other hand, the qualitative dynamics changes from a stochastic fixed point to a random LCO through an
intermittent state in the presence of irregular flow fluctuations. The probability density function depicts the
most probable system state in the phase space. A phenomenological bifurcation (P-bifurcation) analysis based
on the transition in the topology associated with the structure of the joint probability density function (pdf) of
the response variables has been carried out. The joint pdf corresponding to the stochastic fixed point possesses
a Dirac delta function like structure with a sharp single peak around zero. As the mean flow speed crosses the
critical value, the joint pdf bifurcates to a crater-like structure indicating the occurrence of a P-bifurcation. The
intermittent state is characterized by the co-existence of the unimodal as well as the crater like structure.

1 Introduction

Fluid-structure interaction (FSI) is known to lead to unde-
sirable phenomena like aero-elastic flutter which is usually
detrimental for engineering systems. On the contrary, bi-
ological flyers take the advantage of FSI to augment their
propulsive efficiency by exploiting the coupling between
the flexible wings and the surrounding unsteady flow-field.
A proper understanding of the role of FSI in natural flights
may directly benefit biologically-inspired design of Micro
Aerial Vehicles (MAVs) [1]. Moreover, the performance
of very light weight flapping wing MAVs is significantly
altered in the presence of gusty flow-field.

Flapping wing MAVs have received significant re-
search attention in recent years due to their potential appli-
cation in surveillance and environmental monitoring [2, 3].
Extensive experimental and computational studies have
been carried out to understand the unsteady aerodynamics
of flapping wings [4–6]. However, in most of these studies,
the effects of flow fluctuations on the flapping flight are ig-
nored by considering a uniform flow condition. However,
MAVs often need to operate in severe weather conditions.
Therefore, the consideration of realistic flow fluctuations
is crucial to investigate the performance of flapping wing
MAVs.

There are substantial literature available regarding the
effect of wind gust on the dynamical behaviour and struc-
tural safety of aircrafts at high Reynolds number regime
[7–9]. However, MAVs are more susceptible to gusty
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flows due to their low inertia and low flight speed. The
studies investigating the effect of realistic flow fluctuations
in flapping wing aerodynamics are limited. Lian and Shyy
[10] observed that a flapping airfoil can significantly al-
leviate the impact of wind gust as compared to fixed air-
foil thus potentially benefiting the MAV design. Shyy et
al. [11] compared the aerodynamic performance of rigid
and flexible airfoils subjected to gusty flows by carrying
out numerical simulations as well as experiments and ob-
served that a flexible airfoil is able to maintain high lift
to drag ratio as compared to a rigid airfoil. Thus, flexi-
bility can make the flapping flight gust tolerant. Watkins
et al. [12] reported that the wind gust made up of small
scale eddies produce uneven lift distribution over a flap-
ping wing, causing a rolling motion. On the other hand,
gusts having large scale eddy motion cause pitch motion.
Lian and Shyy [13] observed that both the lift and drag co-
efficients are altered significantly under gust environment.
Wind tunnel tests are also carried out to study the impact
of gusty flows on MAVs [14, 15].

However, it is to be noted that most of these stud-
ies have been carried out based on rigid wing assump-
tion, where wing flexibility is ignored. The inclusion of
flow fluctuations in the flapping wing aerodynamic mod-
els poses several computational challenges as the differ-
ence in the gust frequency and the flapping frequency leads
to a multi-scale problem [10]. The different time scales
present in the problem increases the computational cost.
The fluid-elastic coupling adds to the difficulty level. Al-
though, wind gusts encompass a broad range of frequen-
cies and amplitudes, majority of the available studies con-
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sider a simplified model of harmonic gust with a single fre-
quency [10, 16]. The aerodynamic performance of flexible
airfoils under irregular flow-fluctuations is still not well
understood. Therefore, a stochastic bifurcation analysis is
essential to carry out to understand the effects of irregular
fluctuations in the flow on the dynamical stability char-
acteristics of the coupled system. The present study is fo-
cussed to investigate the behaviour of flexible wing section
under irregular gust. A two degrees of freedom model with
pitch-plunge flexibility has been considered to investigate
the dynamical behaviour. The irregular gust is modelled
as stochastic input and the wing output behaviour is exam-
ined qualitatively through a Phenomenological bifurcation
(P-bifurcation) analysis [17]. P-bifurcation behaviour is
indicative of stochastic bifurcation.

In this present study, the large deformation of a span-
wise flexible wing has been modelled by incorporating cu-
bic nonlinearity in the rotational spring along the pitch
(torsion) degree of freedom. The nonlinear structural
model has been coupled with an inviscid flow solver us-
ing a weak coupling strategy to build the FSI framework.
The equations related to flow are solved by unsteady vor-
tex lattice method (UVLM). A stochastic bifurcation anal-
ysis has been carried out for the two degree-of-freedom
pitch-plunge airfoil subjected to noisy flow fluctuations in
inviscid condition, with the mean speed of the flow taken
to be the bifurcation parameter.

The remainder of the paper consists of the following
sections: Section 2 describes the FSI framework and the
gust model; P-bifurcation results are presented in Section
3. The paper ends with the concluding remarks at Section
4.

2 Computational methodology

In the present FSI framework, the 2-DOF pitch-plunge
flexible flapping system has been coupled (using a parti-
tioned approach based ‘weak coupling’ strategy) with a
potential flow solver where both flow and structure solvers
exchange information explicitly at each time step.

2.1 Pitch-plunge flexible flapping model

The nonlinear structural model consists of a rigid NACA
0012 airfoil elastically supported by a cubic nonlinear ro-
tational spring and a translational spring along pitch and
plunge degrees of freedom (see Fig. 1). The structural
model takes limited mode spanwise flexibility into account
along the translational plunge (y) and rotational pitch (α)
direction. The elastic center where the axis system is lo-
cated is at a distance 0.25b towards the foil leading edge
from the mid-chord with the chord length being c = 2b.
The center of mass (c.m.) is located at a distance xαb from
the elastic axis toward the foil trailing edge. The direction
of positive lift (L) and moment (M) is indicated in Fig.
1. The nondimensionalized structural equations of motion
are given as [18],

h′′ + xαα′′ + 2 ζh (
ω̄

U∗
) h′ + (

ω̄

U∗
)2 h =

1
πµ

Cl, (1)

Figure 1. Schematic of airfoil in pitch and plunge degrees of
freedom.

xα
rα2 h′′ +α′′ + 2 (

ζα
U∗

) α′ + (
1

U∗
)2 (α+βαα3) =

2
πµrα2 Cm.

(2)
The non-dimensional variables are defined as follows: h =
y/b; xα = S/mb; rα =

√
I/mb2; U∗ = v∞/bωα; τ =

v∞t/b; ω̄ = ωξ/ωα; µ = m/πρb2. Here, b is the semi-
chord, rαb is the radius of gyration, xαb is the distance be-
tween the center of mass and elastic center; ωξ and ωα are
the uncoupled natural frequencies of plunge and pitch re-
spectively; cubic nonlinear co-efficient βα determines the
extent of non-linearity in the spring stiffness along the
pitch degree of freedom; v∞ is the free-stream; Cl and
Cm are the unsteady lift and moment coefficients about the
aerodynamic center of the airfoil and are computed at each
time step using an unsteady vortex lattice method (UVLM)
based potential flow solver. The unsteady potential solver
details are given in the next subsection. The structural re-
sponses are obtained by numerically integrating Eq. 1-2
using an explicit fourth-order Runge-Kutta method. The
time step for integrating structural equations of motion is
taken to be equal to that of the flow solver.

2.2 Flow solver

An 2D unsteady vortex lattice method (UVLM) based po-
tential flow solver is implemented following the Hess and
Smith approach to estimate the aerodynamic loads in the
coupled system governing equations [19, 20]. The flow
solver assumes the flow to be inviscid, incompressible and
irrotational and is governed by the Euler equation,

∂�u
∂t
+ �u.∇�u = −∆p

ρ
, (3)

where �u is the flow velocity, p is the pressure and ρ is
the fluid density. A schematic of the UVLM approach has
been presented in Fig. 2.

Unlike the classical analytical approach (Theodorsen’s
Method [21]), in this method, the unsteady wake is not as-
sumed to be rigid and is free to evolve with its own local
velocities. Hence, the actual shape of the wake is captured.
The wake consists of discretized wake elements. Further-
more, the actual shape of the airfoil is considered to com-
pute the flow-field variables. The airfoil surface is divided
into ‘N’ number of small segments called panels. In the
present study, the number of panels (N) is chosen to be
400 based on a panel convergence study. Each panel is rep-
resented using two types of singularity elements, sources
and vortices. The source singularity strength is considered
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Figure 2. Schematic representation of UVLM.

to be constant over a particular panel (q j, j = 1, 2, ...,N)
and the vorticity strength is considered to be constant over
all the panels (τ). For unsteady flows, the time dependent
source strengths and the time dependent vorticity strength
are denoted as (q j)k and τk respectively for the time step
index k. The velocity at any point (x,y) in the flow-field is
the vector sum of velocities of the undisturbed flow (free-
stream) and the disturbance field due to the presence of
the oscillating body and also the wake behind the body.
The boundary condition that the surface of the body is a
streamline is satisfied by taking the summation of veloci-
ties induced by body bound singularities, free-stream and
wake vortices to be equal to zero in the direction normal to
the surface at each discretized body element or panel as,

N∑
j=1

An
i j(q j)k + τk

N∑
j=1

Bn
i j + (�vstr.ni)k + (τw)k(Bn

i,n+1)k+

k−1∑
m=1

(Cn
im)k(Γm−1 − Γm) = 0, i = 1, 2, ...,N.

(4)
Here, An

i j and Bn
i j are the influence co-efficients at the ith

panel control point by a unit strength source distribution
and unit strength vorticity distribution on the jth panel re-
spectively. �vstr denotes the unsteady stream velocity at
body fixed co-ordinate system including airfoil motion.
(τw)k is the uniform vorticity distribution over the wake
panel attached to the trailing edge at tk. (Bn

i,n+1)k and (Cn
im)k

are the normal velocity induced at the ith panel control
point by unit strength vorticity distribution on the shed
wake panel and unit strength mth wake vortex at time-step
tk respectively. Γm and Γm−1 are the overall circulation on
the airfoil surface at time-steps tm and tm−1 respectively.
The control point is situated at the mid point of each panel
where the zero normal flow boundary condition is satis-
fied. The unknown body bound vortex strength, unknown
source strengths and the immediately shed wake vortex at
the current time step are computed using the no-normal
boundary condition along with the additional condition of
Kelvin’s circulation theorem given by,

Γk + ∆k(τw)k = Γk−1, (5)

where ∆k is the length of the wake panel attached to the
trailing edge at tk. Kelvin’s theorem states that the total
circulation in the flow-field must be preserved and that any
changes in the circulation about the body are balanced by

an equal and opposite circulation added in the wake in the
form of new vortices. These vortices influence the local
velocity field significantly, and as a result the forces on the
airfoil at any instant become a function of the past motion
of the airfoil. All the wake vortices, shed from the trailing
edge of the airfoil, are carried downstream by their local
velocities induced by the free-stream, body bound vortices
and the other shed vortices. In unsteady potential flow, the
calculation of pressure at any point on the body is done
by using unsteady Bernoulli’s equation [20]. The pressure
coefficients at the ith panel control point at time-step tk can
be written as,

[(Cp)i]k =
[(vstr)i]2

k

v2∞
−

[(vt)i]2
k

v2∞
− 2
v2∞

(φi)k − (φi)k−1

tk − tk−1
, (6)

where vt is the tangential velocity induced at the ith panel;
(φi)k and (φi)k−1 are the velocity potential of the ith panel
at time-steps tk and tk−1 respectively.

The small effective angle of attack of the system justi-
fies the use of the potential flow solver in the present study.
The present UVLM based potential flow solver has been
quantitatively validated by comparing the peak lift coef-
ficients with the Navier-Stokes (N-S) results reported by
Young [22] as well as with lumped vortex method (LVM)
results computed by an inhouse code (see Fig. 3). LVM is
a similar panel method based potential flow solver [23]. In
LVM, each panel has a lumped vortex at the control point
situated at one-fourth of its length. The zero normal flow
boundary condition is satisfied at the collocation point sit-
uated at three-fourth of its length. It can be seen that the
present results show an excellent match with the LVM re-
sults and are also in close agreement with the N-S results
especially at low κh values.
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Figure 3. Comparison of peak lift coefficients, estimated using
UVLM (present method), LVM (inhouse code) and from Navier-
Stokes simulation presented in [22].

2.3 Noisy flow fluctuations

The fluctuating flow field is defined in the present study
as,

U∗(τ) = U∗mean + u(τ); (7)
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where u(τ) is the irregular flow fluctuation modelled as
Ornstein-Uhlenbeck (O-U) process [24, 25]. The O-U is
a stationary Gauss-Markov process and is defined by the
following stochastic differential equation:

du(τ) = −∆ωu(τ) dτ +
√
∆ωq dW(τ); (8)

where W(τ) is a Wiener process, ∆ω and q are noise pa-
rameters. The correlation function of the O-U process is
given by,

ρ(τ) =< u(τ)u(0) >= q exp(−∆ω|τ|). (9)

The O-U process is simulated by numerically integrat-
ing the stochastic differential equation using the Euler-
Maruyama method [26]. It is to be noted that ∆ω is in-
dependently varied keeping q fixed to vary the correlation
of the O-U noise. The variation of the correlation function
of the O-U noise with different values of ∆ω for q = 1
is presented in Fig. 4. It can be seen that as the ∆ω is
increased to 5 from 1, the correlation length of the pro-
cess is decreased significantly. Thus, this noise model al-
lows us to control the time-scale present in the fluctuations
by changing ∆ω of the process. The time histories of the
noisy inflow with different noise correlation (∆ω = 1 and
5) have been presented in Fig. 5. It is observed that the
time-scales present in the noisy inflow drastically change
as the correlation length of the noise is varied. A long
time-scale gusty inflow is obtained at ∆ω =1; it becomes a
short time-scale gusty inflow at ∆ω = 5 as the correlation
of the O-U noise is decreased.
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Figure 4. Variation of the correlation function of the O-U noise
for (a) ∆ω = 1, (b) ∆ω = 5.

3 Results and discussions

3.1 Bifurcation in uniform flow

The bifurcation behaviour of a pitch-plunge flexible flap-
ping system in the presence of uniform flow is well in-
vestigated in the literature. The bifurcation diagram of
the pitch response of the coupled system is presented in
Fig. 6 considering the non-dimensional free-stream veloc-
ity (U∗) to be the control parameter. It is seen that the
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Figure 5. Time histories of the noisy inflow with different noise
correlation: (a) ∆ω = 1, (b) ∆ω = 5.

coupled system response damps down to a fixed equilib-
rium point (h = 0) below a critical value of the control
parameter U∗. The system undergoes a supercritical Hopf
bifurcation at U∗ = U∗cr and stable limit-cycle oscillations
(LCO) emerge at U∗ > U∗cr. The Hopf bifurcation point
(U∗cr) is observed to be 3.75 from Fig. 6. For U∗ > U∗cr
LCOs persists and the amplitude of LCOs increase with U.
The pitch response at U∗ = 5 has been presented in Fig.
7 which shows a typical LCO in the post Hopf-bifurcation
regime.
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Figure 6. Bifurcation diagram of pitch response for uniform flow
condition.

3.2 Bifurcation in fluctuating flow

This section presents the results of the bifurcation analysis
of the flexible flapping system in the presence of irreg-
ular flow fluctuations. Typical atmospheric wind-spectra
modelled using Dryden or von Kármán spectra are known
to capture the long time scales. Hence, a long time-scale
gust (O-U noise with ∆ω = 1, q = 1) has been imposed
on the present system. The mean of the fluctuating flow
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Figure 7. Pitch response at U∗ = 5: LCO in the post Hopf
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speed (U∗mean) has been taken to be the bifurcation param-
eter. The pitch time histories are presented at different
U∗mean values in Fig. 8. It can be seen that the coupled
system response does not transition from a damped os-
cillatory state to well developed limit cycle oscillations
abruptly beyond a particular critical mean flow velocity.
Instead, the system response gradually transforms from a
stochastic fixed point (at U∗mean =2) to a randomly mod-
ulated LCO (at U∗mean =6) through irregular alternations
between two qualitatively different dynamics as the bifur-
cation parameter is increased. In the dynamical systems
theories, this kind of transitional dynamics is known as
intermittency. In the presence of long time-scale fluctua-
tions, an ‘on-off’ type intermittency phenomenon [27, 28]
has been observed where the system response is seen to
irregularly alter between an ‘off’ state (very low ampli-
tude aperiodic fluctuations) and an ‘on’ state (high ampli-
tude periodic bursts) at U∗mean = 4.0 and 4.5. As the mean
flow speed is gradually increased, the segments of periodic
bursts are seen to be more pronounced. Eventually the pe-
riodic oscillations completely dominate the time history as
random LCOs on further increasing the mean flow speed
to U∗mean = 6.

To obtain a better insight into the system dynamics,
a P-bifurcation analysis is carried out considering U∗mean
as the control parameter. Conventionally, P-bifurcation is
defined by the qualitative changes in the structure of the
stationary joint-pdf of the response variables and their in-
stantaneous time derivatives, as the bifurcation parameter
is varied [17, 29, 30]. Figure 9 shows the typical joint pdfs
p(α, α̇) for the pitch response and its instantaneous time
derivatives for some representative values of U∗mean. It can
be clearly seen that at U∗mean = 2.0, the joint p(α, α̇) ap-
pears to have a unimodal structure centered about the ori-
gin; see Fig. 9(a). Figure 9(b) shows the j-pdf structure for
U∗mean = 4.5. It is observed that while a peak at the origin
still exists, a ring like structure appears to form around the
peak at the origin. It is observed that the amplitude of the
peak at the origin has decreased from what is observed in
Fig. 9(a). It is quite obvious that the strength of the attrac-
tor associated with the annular ring is significantly weaker
than the one at the origin. As U∗mean is increased to 5, it can
be observed from Fig. 9(c) that the ring like structure has
become more prominent and the peak at the center has be-
come smaller. Finally, at U∗mean = 6.0, it can be seen from
Fig. 9(d) that the joint pdf resembles a crater like struc-
ture with the peak at the origin having completely disap-
peared. Clearly, one can see that there have been topolog-
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Figure 8. Pitch time histories at different U∗mean values: ‘On-Off’
intermittent transition

ical changes associated with the joint pdf p(α, α̇) as U∗mean
is increased. Similar qualitative changes can be observed
with the joint pdf associated with the plunging response
and its instantaneous time derivatives; these figures have
not been included in the paper for the sake of brevity.
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Figure 9. Stationary joint probability density function of pitch
response and its instantaneous derivative p(α, α̇) for (a) U∗mean =

2, (b) U∗mean = 4.5, (c) U∗mean = 5, (d) U∗mean = 6.

The underlying physics associated with these joint
pdfs can be better appreciated from an inspection of the
contour plots of the joint pdfs and shown in Fig. 10. Note
that these pdf contours provide a measure of the time spent
by the trajectories in a volume element of the state space
which is indicative of different stochastic attractors. The
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contour plots of p(α, α̇) for U∗mean = 2.0 reveal a circular
structure about the origin with very small radius (Figure
10(a)) as the trajectories spend most of the time around
the zero state. At U∗mean = 4.5, the contours shown in Fig.
10(b) reveal that the radius of the attractor at the origin
has increased due to the presence of periodic bursts denot-
ing the wider base of the corresponding jpdf. As U∗mean
is increased to 5, two attractors- one at the origin and an-
other the annular ring are seen to co-exist characterizing
the ‘off’ and the ‘on’ states respectively in the intermittent
phase; see Fig. 10(c). However, as the annular ring like
attractor emerges reflecting prominent periodic bursts, the
contour level values of the existing attractor at the origin
gets reduced. It signifies the fact that the probability of the
trajectories spending time in the zero state becomes lower.
Finally, Fig. 10(d) shows that at U∗mean = 6.0, the attrac-
tor at the origin has disappeared and only the annular ring
like attractor exists characterizing the random limit-cycle
oscillations.
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Figure 10. Contour plots of p(α, α̇) representing the stochastic
attractors in the phase space for (a) U∗mean = 2, (b) U∗mean = 4.5,
(c) U∗mean = 5, (d) U∗mean = 6.

4 Concluding remarks

A stochastic bifurcation analysis has been carried out for
a two degree-of-freedom pitch-plunge airfoil subjected to
long time-scale noisy flow fluctuations, with the mean
speed of the flow taken to be the bifurcation parameter.
A P-bifurcation analysis based on studying the changes in
the topology associated with the structure of the joint pdf
of the response variables has been presented. The presence
of long time-scale fluctuations in the flow result in an ‘on-
off’ type intermittency phenomenon in flow regimes prior
to Hopf bifurcation. The system exhibits intermittency at
flow regimes where the phase space is characterized by
two co-existing attractors. This is evidently reflected in
the joint pdf of response variables. The effect of correla-
tion on the noise induced intermittency is currently being
investigated by the authors.
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