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The linear stability of two-phase stratified flows through soft-gel-coated walls is studied in this work.

A consistent nonlinear neo-Hookean model describes the soft-gel. The base state is characterised by a

first normal stress difference in this model. This results in a significantly different effect on the stability

of two-phase flows as compared to when a linear viscoelastic model is used for the soft-gel. Both fluids

are assumed Newtonian and incompressible. We analyze the system in the absence and presence of

a soluble surfactant. A linear stability analysis is carried out to identify different instability modes in

the system. The linearised equations result in a generalised eigenvalue problem which is numerically

solved employing a Chebyshev collocation technique. Three distinct instabilities are identified in

the absence of a soluble surfactant. A long wave interfacial instability, a Tollmien-Schlichting wave

type instability, and a gel-liquid instability arise in the system. Two distinct additional instabilities

are identified in the presence of soluble surfactants in the system, a Marangoni driven long wave

instability and a liquid-liquid short wave mode. It is shown that all instabilities except the Tollmien-

Schlichting shear instability can be stabilised by the soft-gel layers for a suitable choice of parameters.

Insights into the physical mechanism driving the different instabilities are discussed. Published by

AIP Publishing. https://doi.org/10.1063/1.5045658

I. INTRODUCTION

Two-phase flows past soft-gel-coated walls at low

Reynolds numbers are important in several microfluidic appli-

cations1 where the micro-channels are made of soft materi-

als like PFA (perfluoroalkoxy),2–4 FEP (fluorinated ethylene-

propylene), and PDMS. It is also relevant in pulmonary fluid

mechanics.5,6 Experimental studies have established that two-

phase flows here can become unstable at much lower Reynolds

numbers as compared to flows through rigid walls.7–11 The

elastohydrodynamic coupling between the fluids and the soft-

gels plays a crucial role in determining the stability of the flow.

Understanding the physics behind these flows is necessary to

arrive at optimal designs of lab-on-chip devices.

Earlier studies have used a linear viscoelastic model to

describe the soft-gel. This is valid only for small deforma-

tions in the soft-gel.12–17 A neo-Hookean solid model on the

other hand can capture large deformations in soft-gels.18 Cou-

ette flows over a neo-Hookean soft-gel are characterised by

a first normal stress difference in the base displacement field.

Consequently the effect on stability can be significantly differ-

ent from that predicted by a linear viscoelastic model. In the

creeping flow limit, predictions from both the models agree

qualitatively when the ratio of gel to fluid thickness is greater

than unity.

Instabilities in gravity driven free-surface flows past a

deformable elastic solid were studied in Ref. 19. A neo-

Hookean solid model was considered to represent the elastic

solid. The instability is induced by the deformable solid-fluid

interface. The effect of finite Reynolds numbers on the stability

a)Author to whom correspondence should be addressed: spush@iitm.ac.in.
Telephone: +91-44-22574161. Fax: +91-44-22570509.

of gravity driven free surface flows past a deformable neo-

Hookean solid was analyzed in Ref. 20. The free surface insta-

bility which arises at the liquid-air interface was suppressed by

the deformable nature of the soft-gels. The stability of Couette

flow of a Newtonian fluid past an incompressible neo-Hookean

solid in the creeping flow limit was analyzed in Ref. 21. The

predictions of both linear viscoelastic and neo-Hookean mod-

els yielded results which are consistent with those in Ref. 18.

The neo-Hookean solid model presented in Ref. 18 did not

predict any instability of a Hagen-Poiseuille flow.22 A linear

viscoelastic model however predicted an instability for these

flows.

The stability of pressure driven creeping flows through

soft channels has been recently analyzed.23 Here the first nor-

mal stress difference in the base state at the soft-gel results in

a short wave (SW) instability. This was absent when consis-

tent boundary conditions were imposed at the gel-liquid (GL)

interface.24 A consistent Eulerian and Lagrangian formulation

for flows through neo-Hookean soft-gel lined tubes and chan-

nels was presented in Ref. 25 to resolve discrepancies reported

in the literature. The results obtained from both the formula-

tions for Couette flow and Hagen-Poiseuille flows through soft

walls were consistent. Manipulation of free surface instability

by deformable solid bilayers was studied in Ref. 26. The effec-

tive shear modulus of the bilayer determines the free-surface

stability.

Several experimental studies have analyzed different

instabilities that evolve in flows over a deformable soft-gel.

These were studied in the limit of low Reynolds numbers in

Ref. 7. The transition from laminar flow arising from an insta-

bility for soft walls was observed for much lower Reynolds

numbers compared to that in flow past rigid solids. A flow

induced instability in a tube with flexible walls was studied
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experimentally.8 Tubes of diameters varying from 0.8 to

1.2 mm were made using PDMS. The shear modulus of the

elastic tubes varied from 17 to 550 kPa. It was found out that

the laminar flow becomes unstable for Reynolds numbers as

low as 500. Fluid structure interactions in deformable micro-

channels were studied in Ref. 27. Experimental predictions of

thin layer deformations and pressure drop were found to be

in qualitative agreement with predictions of two- and three-

dimensional models. The quantitative agreement of experi-

mental and theoretical predictions for Couette flow through a

two-layer neo-Hookean gel was studied in Ref. 11. An experi-

mental and theoretical analysis of Poiseuille flow through tubes

lined with neo-Hookean soft-gels was presented in Ref. 9. The

Reynolds number obtained theoretically for the flow transition

matched with that found experimentally, when the deforma-

tions at the base state in the soft-gels were considered after

a pressure gradient was applied across the pipe. An experi-

mental analysis of the onset of instability of Hagen-Poiseuille

flow in a pipe lined with neo-Hookean soft-gels was carried

out in Ref. 28. The transition Reynolds number obtained from

the experiments however did not agree with the theoretical

predictions.

From the above analysis of the literature, it is clear that

two-phase stratified flows through soft walls are not well

understood. Besides, there are several contradictory reports

in the literature on the stability of these flows. In this work,

we focus on using a consistent Eulerian formulation of a neo-

Hookean model to represent the soft-gel.25 This formulation

gives insights into the effects of soft-gel layers on different

two-phase flow instabilities. The model helps highlight the

role of the first normal stress in the base state displacement

field of the soft-gels on stability.

The paper is structured as follows. The governing equa-

tions are presented in Sec. II. The base state velocity and

concentration profiles are presented in Sec. III. The linear

stability analysis and the linearised governing equations are

discussed in Sec. IV. The relevant boundary conditions at the

liquid-liquid interface both in the absence and presence of sol-

uble surfactants are discussed in the Appendix. A detailed

energy budget analysis is presented in the supplementary

material. Section V discusses the important results. First, the

scaling obtained from the linear stability theory is validated

with experiments for single phase flows in the literature. Then

the different instabilities that arise in the absence and pres-

ence of soluble surfactants for two-phase flows are discussed.

A summary of key conclusions obtained from the results is

given in Sec. VI.

II. GOVERNING EQUATIONS

We consider two-phase pressure driven stratified flows

through soft-gel-coated parallel plates, as shown in Fig. 1. The

fluids are assumed to be incompressible and Newtonian. The

soft-gel layers are represented by a neo-Hookean model. The

dimensionless continuity and Navier-Stokes equations which

govern the flow of the two phases are

∂xuj + ∂yvj = 0, (1)

Re1

µj1

(

∂tuj + uj∂xuj + ∂yujvj

)

= −∂xpj + ∇2uj, (2)

FIG. 1. Schematic of the flow configuration in the presence of soluble surfac-

tants. Two fluids “Fluids 1” and “Fluids 2” flow side by side. The base state

parabolic velocity profile is indicated by the red arrows. The perturbed liquid-

liquid interface is given by y = f (x, t). The perturbed top and bottom gel-liquid

interface is given by y = 1 + g(x, t), y = −n21 + h(x, t), respectively. n̂ and t̂

represent the normal and tangent to the perturbed bottom gel-liquid interface.

The top and bottom gel-liquid interfaces are maintained at a constant solute

concentration C10 and C20. The base state concentration profile is linear and

is also shown.

Re1

µj1

(

∂tvj + uj∂xvj + vj∂yvj

)

= −∂ypj + ∇2vj, (3)

where j = 1, 2 refer to the top and bottom fluids, ∂t is ∂
∂t

,

and ∂x, ∂y are similarly defined. The Laplacian is defined

as ∇2
= ∂2

x + ∂2
y . Two dimensional perturbations are intro-

duced in the flow direction (x) and the transverse direction (y),

and their evolution is analyzed. The flow fields are assumed

independent of the z-coordinate, as the system extends to infin-

ity in that direction. Here the Reynolds number is defined as

Re1 =
ρ1U0d1

µ1
, where d1, ρ1, and µ1 are the thickness, den-

sity, and viscosity of “Fluid 1.” U0 is the interfacial velocity

at the liquid-liquid interface. All the dimensionless variables

are defined in Table I.

The solute transport in the fluids is captured using the

dimensionless species balance equation

∂tcj + uj∂xcj + vj∂ycj =
Dj1

Pe
∇

2cj for j = 1, 2. (4)

Dj1 =
Dj

D1
represents the ratio of molecular diffusivity of the

solute in the “j-th fluid” to that in “Fluid 1” and Pe =
Uod1

D1

represents the Peclet number. The surface tension at the liquid-

liquid interface is assumed to be linearly dependent on the

concentration of the solute at the liquid-liquid interface,

σ = σ0(1 − βC10(c1 − cr)). (5)

Here σ0 is the surface tension at the liquid-liquid interface

when the solute concentration is equal to the reference value

C10cr and β = −(dσ/dc1)/σ0C10. This variation of surface

tension with concentration leads to Marangoni stresses, in the

tangential stress balance. This condition is given by

1
(

1 + (∂x f )2
)1/2

[
2∂x f µj1

(

vj,y − uj,x

)

+
(

1 − (∂x f )2
)

µj1

(

∂yuj + ∂xvj

)] j=1

j=2

−
Ma

Pe

(

∂xc1 + ∂x f ∂yc1

)

= 0, (6)

where Ma =
σ0βC10d1

D1µ1
is the modified Marangoni number and

y = f (x, t) represents the perturbed liquid-liquid interface.
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TABLE I. Definitions for the dimensionless parameters.

Definition Dimensionless parameter

n21 =
d2

d1
, n31 =

d3

d1
, n41 =

d4

d1

The thickness ratio of Fluid 2, top gel, and bottom gel

with respect to “Fluid 1”

ρ21 =
ρ2

ρ1
Ratio of density of “Fluid 2” to “Fluid 1”

µ21 =
µ2

µ1
, µ31 =

µ3

µ1
, µ41 =

µ4

µ1

Viscosity ratio of “Fluid 2,” top gel, and bottom gel

to “Fluid 1”

Ca21 =
µ1U10

σ21
, Ca31 =

µ1U10

σ31
, Ca41 =

µ1U10

σ41

Capillary number corresponding to the liquid-liquid (Ca21),

top (Ca31), and bottom gel-liquid (Ca41) interfaces

Wi3 =
µ3U0

G3d1
, Wi4 =

µ4U0

G4d1

Weissenberg number corresponding to the top (Wi3)

and bottom soft-gel layers (Wi4)

Re1 =
ρ1U0d1

µ1
Reynolds number corresponding to “Fluid 1”

Pe =
Uod1

D1
Peclet number

γ =
C20

C10

Concentration of the soluble surfactant at the bottom

gel-liquid interface to the top gel-liquid interface

K Distribution coefficient

Ma =
σ0βC10d1

D1µ1
Modified Marangoni number

We adopt the Eulerian formulation outlined in Refs. 25

and 29 to represent the neo-Hookean soft-gel-coatings. The

position of a particle in the deformed (xj) and undeformed

(X j) configurations is related by

xj = Xj + ug,j(x). (7)

Here j = 3, 4 represent the top and bottom neo-Hookean soft-

gel layers. The deformation gradient tensor in this formulation

is given by

fj =
∂Xj

∂xj

for j = 3, 4. (8)

The incompressibility condition for a neo-Hookean layer is

det( fj) = 1 for j = 3, 4. (9)

The Cauchy stress tensor for the neo-Hookean material is given

by

τj = −pg,jI + Gj

(

f T
j · fj

)−1
+ µg,j

(

Lj + LT
j

)

for j = 3, 4, (10)

where Lj =

(

ḟ −1
j
· fj

)

, Gj is the shear modulus, and µg,j is

the viscosity of the soft-gel layers. We use this to obtain the

momentum balance equations for the soft-gel layers,

∇x · τj = 0 for j = 3, 4. (11)

The relation between the velocity in the solid V
g

j
and the

displacement field ug,j is given by

V
g

j
=

∂ug,j

∂t
+ V

g

j
·
∂ug,j

∂x
for j = 3, 4. (12)

The boundary conditions continuity of velocity, continuity of

tangential stresses and normal stresses are applied at the two

gel-liquid interfaces.

III. BASE STATE

The base state velocity profile in the fluids is parabolic.

This is non-dimensionalized by the interfacial velocity U0.15,30

The resultant dimensionless profiles are given by

U1 = 1 + a1y + b1y2, (13)

U2 = 1 + a2y + b2y2, (14)

where

a1 =
µ21 − n2

21

n2
21

+ n21

, b1 = −
µ21 + n21

n2
21

+ n21

, (15)

a2 =
a1

µ21

, b2 =
b1

µ21

. (16)

The base state concentration profiles are linear in each fluid

and are nondimensionalized using C10,

Cj = sjy + tj, (17)

s1 =
D21(1 − γK)

D21 + Kn21

, t1 =
K(n21 + D21γ)

D21 + Kn21

, (18)

s2 =
s1

D21

, t2 =
t1

K
. (19)

The concentration profile is a function of diffusivity ratio

(D21), thickness ratio (n21), distribution coefficient (K), and

concentration ratio (γ =
C20

C10
). The direction of mass transfer

is dictated by γ. γ < 1/K (γ > 1/K) implies that the mass trans-

fer is from the top (bottom) gel-liquid interface to the bottom

(top) gel-liquid interface. γ = 1/K implies that the gel-liquid

interfaces are at equilibrium and there is no net mass transfer

in the system. Marangoni stresses are absent in the base state

as the concentration of the solute at the liquid-liquid interface

is uniform in the flow direction.

The base state displacement fields Ug,3 and Ug,4 of the

soft-gels are given, respectively, by
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Ug,3 =
(y − n31)Wi3(n21(−4 + y + n31 + n21(−3 + y + n31)) − µ21)

n21(1 + n21)
, (20)

Ug,4 =
(y + n41)Wi4(n2

21
+ (1 + n21(2 + y + n21(2 + y + 2n21 − n41) − n41))µ21)

n21(1 + n21)µ21

. (21)

Here Wij =
µjU0

Gjd1
is the Weissenberg number which is a mea-

sure of deformable nature of the soft-gel layers. The shear

modulus Gj and viscosity µj are of the soft-gel layer under

consideration. A higher Weissenberg number implies a highly

deformable soft-gel layer. When the Weissenberg number

tends to zero, the soft-gel layers behave like rigid solids. Here

n31 =
d3

d1
(n41 =

d4

d1
) is the thickness ratio of top (bottom) neo-

Hookean gel to “Fluid 1.” The base state displacement fields

in the gels are obtained by imposing no displacement at the

rigid walls and continuity of tangential stresses at the top and

bottom gel-liquid interfaces. From the base state deformations

and pressure, we obtain the Cauchy stress tensor in the base

state,

Γj =



1 +

(

dUg,j

dy

)2

− Pg,j

dUg,j

dy

dUg,j

dy
1 − Pg,j


. (22)

The first normal stress difference is given by

(

Γj

)

xx
−

(

Γj

)

yy
=

(

dUg,j

dy

)2

. (23)

This difference in the first normal stress can have a significant

effect on the system stability.

IV. LINEAR STABILITY ANALYSIS

We carry out a temporal linear stability analysis to

study the stability of the base state. Infinitesimal disturbances

(denoted by ˆ) are imposed on the base flow, which are given

by


uj

vj

pj


=



uss
j + εûj

vss
j + εv̂j

pss
j + εp̂j


where j = 1, 2 (24)

and


xj

yj

pg,j


=


Xj + Ug,j + εûg,j

Yj + εv̂g,j

pss
g,j + εp̂g,j


where j = 3, 4. (25)

The perturbation for the axial component of velocity uj, for

example, is of the form

ûj = ūj(y) exp[ik(x − ct)]. (26)

Here k is real and represents the wave number and c is a com-

plex wave speed. ūi is the amplitude of the disturbance and is

obtained as the eigenfunction of a linearised eigen-value prob-

lem. The complex wave speed is given by c = cR + icI . Here

cR and cI represent the phase velocity and the growth rate of

the perturbations. The base state becomes temporally unstable

when kcI > 0.

The linearised governing equations (1)–(3) for the two

fluids j = 1, 2 are

ikuj +
dvj

dy
= 0, (27)

Re1ρj1

µj1

[
−ikcuj + Ujikuj +

dUj

dy
vj

]
= −ikpj +


d2uj

dy2
− k2uj

 ,

(28)

Re1ρj1

µj1

[
−ikcvj + Ujikvj

]
= −

dpj

dy
+


d2vj

dy2
− k2vj

 . (29)

The linearised species transport equation j = 1, 2 is given by[
ikccj + Ujikcj +

dCj0

dy
vj

]
=

Dj1

Pe


d2cj

dy2
− k2cj

 . (30)

The linearised equations for the soft-gel layers j = 3, 4 are

ikug,j +
dvg,j

dy
+

dUg,j

dy

(

ikvg,j

)

= 0, (31)

−ikpg,j +
1

Wij


d2ug,j

dy2
− k2ug,j −

d2Ug,j

dy2

(

ikug,j

)

+
dUg,j

dy

(

ik
dug,j

dy

)

+
dUg,j

dy

(

−k2vg,j

)

]

+ (−ikc)


d2ug,j

dy2
− k2ug,j +

dUg,j

dy
*,

d2vg,j

dy2
− k2vg,j

+-
+

d2Ug,j

dy2

dvg,j

dy

 = 0, (32)

−
dpg,j

dy
+

1

Wij


d2vg,j

dy2
− k2vg,j +

dUg,j

dy

(

ik
dvg,j

dy

)

+
d2Ug,j

dy2

(

ikvg,j

)

−
dUg,j

dy

(

k2ug,j

)


+ (−ikc)


d2vg,j

dy2
− k2vg,j −

d2Ug,j

dy2

(

ikvg,j

)

 = 0. (33)

The boundary conditions at the liquid-liquid interface15,31,32

are described in the Appendix. The linearised boundary condi-

tions, continuity of velocities and stresses at the top gel-liquid

interface, are

u1 +
dU1

dy
vg,1 = −ikcug,3 +

[
ikcvs,3

dUg,3

dy

]
, (34)

v1 = −ikcvg,3, (35)
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1

µ31

[
du1

dy
+ ikv1

]
=

1

Wi3

[
dug,3

dy
+ ikvg,3 −

dUg,3

dy

(

ikug,3

)

]

+ (−ikc)

[
dug,3

dy
+

dUg,3

dy

(

dvg,3

dy

)

+ ikvg,3

]
,

(36)

(

−µ31pg,3

)

+ p1 +
2µ31

Wi3

[
dvg,3

dy
+

dUg,3

dy

(

ikvg,3

)

]

+ µ31

[
(−ikc)

2dvg,3

dy

]
−

2dv1

dy
=

1

Ca31

k2vg,3. (37)

Similar boundary conditions are imposed at the bottom gel-

liquid interface.

The growth rate of the perturbations imposed depends on

the parameters n21, n31, n41, ρ21, µ21, µ31, µ41, Ca21, Ca31,

Ca41, Wi3, Wi4, Re1, Pe, K , γ, Ma, and k for our system.

The definitions of these dimensionless parameters are given in

Table I.

The linearised equations result in a generalised eigenvalue

problem [Eq. (38)] for the growth rate kcI ,

Ax = cBx (38)

These are solved numerically using a Chebyshev spectral

analysis33 based on collocation. The variables are expressed

as Chebyshev polynomials. These expansions are substituted

in the governing equations and are evaluated in the interior

Gauss-Lobatto points and solved using Mathematica➤. An

energy budget analysis is carried out to get physical insights

into different instabilities. The total energy in the perturbed

state is obtained by taking the inner product of the vectorial

form of Navier-Stokes equations with the velocity vector. A

detailed derivation of the energy budget analysis is given in

the supplementary material.

V. RESULTS

In this section, we focus on different instability modes

predicted by our model for two-phase stratified flows through

micro-channels made of soft materials represented by the neo-

Hookean model. Experimental studies in the literature have

focused on understanding the elastohydrodynamic coupling

between the fluid and microchannels made of PDMS. First

we analyze our model for single phase flows. The deforma-

tions of the PDMS microchannels when water is pumped have

been captured experimentally.8 This is used to validate results

obtained from our model.

A. Validation of results obtained from linear
stability theory with experimental results
for high Weissenberg numbers

We first compare the scaling laws obtained from the linear

stability analysis with experiments in the literature for single

phase flows through soft-PDMS tubes.8 The Reynolds number

for which the laminar flow becomes unstable was determined

experimentally.8 A Tollmien-Schlichting (TS) wave type insta-

bility arises in the flow due to shear generated in the bulk fluids

at higher Reynolds numbers. The PDMS had a shear modulus

of 104 Pa. The diameter of the micro-channels varied from 10

to 1000 µm. The average velocity of the fluid varied from 0.08

FIG. 2. Comparison of scaling of critical Re1 with Wi3 of experiments (solid

line) and linear stability analysis (dashed line) based on the neo-Hookean

model. The experiments predicted a scaling Re1 ∼ Wi
−5/8
3

for single phase

flow through pipes made of PDMS. This scaling is used to fit the data obtained

from linear stability analysis. Other parameters are as follows: n21 = 1,

n31 = 1.5, n41 = 1.5, µ21 = 1, µ31 = µ41 = 10, Ca21 = 0.001, Ca31 = Ca41

= 0.001, Wi4 = 1.

to 0.8 m/s. The viscosity of the soft-gel ranged from 0.01 to

1 kg/m s. Under these conditions, Wi3 and Wi4 were in the

range from 0.8 to 8. The experiments reveal that the critical

Re1 at the onset of stability scaled according to Re1 ∼ Wi
−5/8

3
.

The predictions of the critical Re1 for Wi3 ranging from 4 to 5

follow this scaling, as shown in Fig. 2.

Our model also captures the scaling relationship in the

limit of low Wi3 numbers and high Re1, as seen in Fig. 3.

B. Instabilities identified in the flow configuration

In this section, we discuss different instabilities each with

distinct energy signatures that evolve in two-phase stratified

flows. The analysis presented in this work considers two-phase

flows where both phases are liquids. In pulmonary flows, we

have a gas-liquid system with a high viscosity contrast. The

results are presented in the form of dispersion curves and are

interpreted physically using energy budget analysis. We con-

sider an organic and an aqueous phase in our study. A typical

soft-material could be PFA. Typical soluble surfactants could

be SDS and SPAN80. Two-phase stratified flows in microchan-

nels are generally observed for water (aqueous phase) and

toluene/kerosene (organic phase). The typical physical proper-

ties of two-phase stratified flows of an organic and an aqueous

phase are mentioned in Table IX. The ranges of dimensionless

parameters obtained from the physical properties are given in

Table X.

FIG. 3. Scaling analysis from experiments (dashed line) and linear stability

analysis theory based on the neo-Hookean solid model (solid line) and linear

viscoelastic model (dotted-dashed line).15 Other parameters are as follows:

n21 = 1, n31 = 1.5, n41 = 1.5, µ21 = 1, µ31 = µ41 = 10, Ca21 = 0.001, Ca31 =

Ca41 = 0.001, Wi4 = 0.1.
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FIG. 4. Dispersion curves portraying the effect of neo-Hookean soft-gel lay-

ers on the liquid-liquid interfacial long wave instability (LW mode). Increasing

Wi3 first destabilizes and then stabilises the system. Other parameters are as

follows: n21 = 1.76, n31 = 2, n41 = 2, µ21 = 1.64, µ31 = µ41 = 10, Re1 = 0,

Ca21 = 0.01, Ca31 = 0.001, Ca41 = 0.001, Wi4 = 0.5.

1. Instabilities in the absence of a soluble surfactant

We identify three important instabilities in the absence

of soluble surfactants. An interfacial long wave (LW) insta-

bility arises in the flow due to the viscosity difference of

the fluids at the liquid-liquid interface. We call this insta-

bility “LW” long wave instability. A Tollmien-Schlichting

wave instability evolves in the flow due to shear generated

in the bulk flow at high Reynolds numbers. This instability

is referred as “TS” mode. An additional gel-liquid instability

arises in the flow at the gel-liquid interface and is referred as

“GL” mode.

a. LW instability. We first discuss the effect of the soft-gel

layers on the liquid-liquid long wave (LW) interfacial insta-

bility. This instability arises in two-phase flows through rigid

plates. To suppress TS mode which arises at high Re1, we con-

sider the creeping flow limit. The parameters used correspond

to a typical organic-aqueous two-phase system. When a neo-

Hookean solid model is used, the maximum growth rate first

increases and then decreases with Wi3, as shown in Fig. 4. This

confirms the stabilizing influence of soft-gel layers for high

Wi3. To understand the dominant cause of the instability, an

energy budget analysis is carried out. The results summarised

in Table II show that the tangential stresses at the liquid-liquid

interface dominate and cause this instability. This instability is

attributed to a jump in the slope of the base state fluid velocities

at the liquid-liquid interface. The streamline contour plots for

this instability mode are shown in Fig. 5. These are denser at

the liquid-liquid interface, confirming that the instability arises

there. Our extensive numerical analysis for different parame-

ters confirms that the soft-gel layers stabilize the LW mode for

high Wi3.

FIG. 5. Streamline contours for the LW mode. The perturbed interface is

shown as the dashed line. Other parameters (Wi3 = 20) are the same as in

Fig. 4.

FIG. 6. Variation of normalised relative velocity of Fluid 1 with respect to

Fluid 2 and the tangential stresses as a function of x. They are normalised with

the maximum of their absolute values. Other parameters (Wi3 = 20) are the

same as in Fig. 4.

Figure 6 shows the relative interfacial velocity of Fluid 1

with respect to Fluid 2 and the interfacial tangential stresses

as a function of x. These are in phase at the liquid-liquid inter-

face. This indicates that the tangential stresses at the crest

pull the interface upward, and at the trough, the stresses pull

the interface downward leading to an amplification of LW

instability.

The LW instability evolved in the presence of soft-gel-

layers is physically visualised by plotting the eigenfunctions

of the axial component of velocity at x = 2π/k and 3π/k, as

shown in Fig. 7. The gel-liquid and liquid-liquid interface

deformation is also shown. The liquid-liquid interface defor-

mation is amplified by the perturbed velocity in the fluids. The

less viscous Fluid 1 is pushed away from the crest, and the

more viscous Fluid 2 moves toward the crest at x = 200. This

motion of the fluids pulls the liquid-liquid interface upward

leading to destabilization of the LW instability. This velocity

field physically explains the evolution of LW instability in the

system.

TABLE II. Summary of the energy budget analysis for LW instability. The tangential stresses at the liquid-liquid

interface are the dominant cause. Other parameters are the same as in Fig. 4. The boldface values represent the

dominant cause of instability.

Wi3/k
2
∑

j=1
EKE,j

2
∑

j=1
EREY ,j ETAN ,1 ETAN ,2 ETAN ,3 ENOR ,1 ENOR ,2 ENOR ,3

4
∑

j=1
EDIS,j

5/0.029 0 0 0.986 0.011 0 0 0.001 0 ☞1

10/0.027 0 0 0.981 0.017 0 0 0.001 0 ☞1

20/0.03 0 0 0.979 0.02 0 0 0.001 0 ☞1

30/0.013 0 0 0.979 0.021 0 0 0 0 ☞1
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FIG. 7. Axial velocity field and interface position of the deformed state in

LW mode. Other parameters are as follows: n21 = 3, n31 = 3, n41 = 4, µ21

= 1.64, µ31 = µ41 = 10, Re1 = 0, Ca21 = 0.01, Ca31 = 0.001, Ca41 = 0.001,

Wi4 = 0.5, Wi3 = 5. The solid lines indicate the perturbed axial components

of velocity in “Fluid 1” and “Fluid 2.” The arrows indicate the direction of

motion of the fluids. The liquid-liquid, top, and bottom gel-liquid interface

deformations are given by the dashed line.

FIG. 8. Dispersion curves portraying the effect of Wi3 on the shear instability.

Other parameters are as follows: n21 = 1, n31 = 1.5, n41 = 1.5, µ21 = 1.64, µ31

= µ41 = 10, Re1 = 1000, Ca21 = 0.01, Ca31 = 0.001, Ca41 = 0.001, Wi4 = 1.

b. TS instability. TS instability is caused by the shear gen-

erated in the bulk fluids at high Reynolds numbers. At lower

Reynolds numbers, this instability is not seen. In Fig. 8, we

show the dispersion curves of TS instability for two-phase

flows through soft-gel coated walls. With an increase in Wi3,

the maximum growth rate of the perturbation increases and

becomes positive. This indicates a destabilizing effect of soft-

gels on the TS mode. This instability is physically explained

by the dominant Reynolds stress term in the energy bud-

get analysis in Table III. When we increase Wi3 from 3 to

4, the energy contributions from tangential stresses change

from negative to positive. To summarise, the top soft-gel layer

has a destabilizing effect on the TS mode. To get a better

physical understanding of this instability, the stream function

contour plots are obtained from the eigenfunctions correspond-

ing to the maximum growth rate. In Fig. 9, the contours are

denser in the bulk of the less viscous fluid confirming that

this instability arises in this fluid due to high shear gener-

ated at large Reynolds numbers. The axial velocity line plots

along the transverse direction in Fig. 10 show that the veloc-

ity is maximum in the less viscous Fluid 1. These perturbed

axial components are obtained from the eigenfunctions corre-

sponding to the maximum growth rate. The eigenfunctions

are obtained by solving the generalised eigenvalue numer-

ically. The TS mode evolves in the bulk of the fluids at

higher Reynolds numbers due to shear generated in the flu-

ids. So the perturbed velocity is maximum in the bulk of

the less viscous fluid. This confirms the dominant role of the

shear generated in the bulk of Fluid 1 in the evolution of TS

instability.

The neutral stability curves of the system are shown in

Fig. 11. Disturbances with Weissenberg numbers less than the

critical Weissenberg decay and the TS instability are stabilized

in the flow. Disturbances with Weissenberg numbers more than

the critical value lead to the evolution of TS instability in the

flow.

c. GL instability. A GL instability arises at the gel-

liquid interface due to the deformable nature of the soft-gel.

TABLE III. Energy budget analysis for TS instability shown in Fig. 8. Reynolds stresses dominate in the energy

budget analysis. The boldface values represent the dominant cause of instability.

Wi3/k EKE EREY ETAN ,1 ETAN ,2 ETAN ,3 ENOR ,1 ENOR ,2 ENOR ,3

4
∑

j=1
EDIS,j

3/1.45 0.17 1.15 0.005 ☞0.003 ☞0.017 ☞0.018 0 ☞0.005 ☞1

4/1.5 0.375 1.335 0.004 0.093 ☞0.012 ☞0.041 0.003 ☞0.004 ☞1

FIG. 9. Stream contour plot for the TS

mode shown in Fig. 8. The contours are

denser in the bulk of Fluid 1 which is less

viscous. Other parameters are the same,

as shown in Fig. 8. The plot is at fixed

time. At different times, the qualitative

trends are preserved.
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FIG. 10. Variation of the axial component of velocity at the liquid-liquid

interface along the transverse direction. Other parameters are the same, as

shown in Fig. 8.

FIG. 11. Neutral stability curves for TS mode depicted in Fig. 8 showing

stable and unstable regions. Other parameters are the same, as shown in Fig. 8.

FIG. 12. Dispersion curves for the gel-liquid instability. Arrow points in the

direction of increasing Wi3. Other parameters are as follows: n21 = 1, n31 =

n41 = 4, µ21 = 1.09, µ31 = µ41 = 10, Re1 = 1, Ca21 = 0.001, Ca31 = Ca41 =

0.001, Wi4 = 0.001.

In Fig. 12, with an increase in Wi3, first a destabilization and

then a stabilization of GL instability which originates from

the top gel-liquid interface are observed. The viscosity ratio

is chosen close to 1 and the Reynolds number is chosen low

to suppress the LW and TS instabilities. This instability arises

from the difference in the first normal stresses in the base state

displacement field of the soft-gel when a neo-Hookean model

is used. The energy budget analysis shown in Table IV reveals

that the tangential stresses at the top gel-liquid interface make a

dominant contribution to instability. To obtain further insights

into the physical mechanism that causes the GL instability,

stream function contours are shown in Fig. 13. The stream-

lines are denser at the top gel indicating that this instability

emanates from there. To summarise, the GL instability is sta-

bilised by the deformable nature of the neo-Hookean soft-gel

layers.

To get a better understanding on the stability of the GL

mode, the neutral stability curve in the Wi3-k plane is deter-

mined and depicted in Fig. 14. Disturbances become unstable,

when Wi3 lies between (Wi3)min and (Wi3)max. For low Wi3,

the soft-gel layers act like a rigid solid and the GL mode is

stable. With an increase in Wi3, the top gel-liquid interface

deforms and gives rise to the GL mode. For very high Wi3,

the GL mode is stabilised by the deformable nature of the

soft-gel.

2. Liquid-liquid interfacial instabilities
in the presence of soluble surfactants

We now analyze the role of Marangoni stresses induced by

the presence of soluble surfactants on the stability of stratified

flows. We identify three important instabilities in the pres-

ence of soluble surfactants. An interfacial instability arises in

the flow due to the viscosity difference at the liquid-liquid

interface. This is similar to the “LW” long wave instability

observed in Sec. V B 1. Another interfacial instability arises

in the flow due to Marangoni effects and is called “MLW”

Marangoni long wave instability. A liquid-liquid short wave

instability evolves in the flow due to the presence of soluble sur-

factants. We refer to this instability as “SW” mode. The focus

of this section is on the evolution of interfacial instabilities

due to surfactants. Here we do not investigate the instabilities

that arise due to shear in the bulk fluids and at the gel-liquid

interface.

a. LW and MLW instability modes. The long wave “LW”

instability mode seen in the presence of a soluble surfactant is

similar to that shown in Sec. V B 1. The energy signatures, the

physical cause, and the effect of soft-gel-layers on the insta-

bility are also identical as in the case of no surfactant. This is

seen for low Marangoni numbers.

Another long wave mode arises due to gradients in the

y-direction in the base state concentration field. This results in

non-uniform surface tension when the liquid-liquid interface

is perturbed. This creates Marangoni effects at the liquid-

liquid interface which leads to the evolution of this instability.

When the direction of mass transfer is from the less viscous

TABLE IV. Energy budget analysis for GL instability shown in Fig. 12. Tangential stresses at the top gel-liquid

interface dominate the energy balance equation. The boldface values represent the dominant cause of instability.

Wi3/k
2
∑

j=1
EKE,j

2
∑

j=1
EREY ,j ETAN ,1 ETAN ,2 ETAN ,3 ENOR ,1 ENOR ,2 ENOR ,3

4
∑

j=1
EDIS,j

20/0.1 0 0 0.004 1.052 0 0 ☞0.054 0 ☞1

40/0.06 0 0 0 1.042 0 0 ☞0.047 0 ☞1
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FIG. 13. Streamline plot for GL insta-

bility shown in Fig. 12. The contours

are denser near the top gel-liquid inter-

face indicating that the GL instability

evolves at this interface. Other parame-

ters (Wi3 = 40) are the same, as shown

in Fig. 12.

FIG. 14. Neutral stability curve for the gel-liquid instability shown in Fig. 12.

Other parameters the same as in Fig. 12.

FIG. 15. Dispersion curves for the MLW mode. Other parameters are as fol-

lows: n21 = 1.5, n31 = 2, n41 = 2, µ21 = 1.64, µ31 = µ41 = 10, γ = 0.5, K =

0.5, D21 = 0.5, Re1 = 0, Pe = 2000, Ca21 = 100, Ca31 = 0.001, Ca41 = 0.001,

Wi4 = 0.2, Ma = 12 000.

“Fluid 1” to more viscous “Fluid 2,” the LW mode transforms

into an MLW instability mode. The stabilizing effect of soft-

gel-layers on the MLW instability is shown in Fig. 15. When

Wi4 increases from 0.2 to 2, the MLW mode is stabilized by the

deformable nature of the soft-gel. The energy budget analysis

shown in Table V confirms the dominance of first Marangoni

stresses as the primary cause of this instability. The stabi-

lization of MLW mode is attributed to the reduction in the

magnitude of tangential stresses with the deformable nature

of the soft-gel layers. To summarise, the direction of mass

transfer plays a crucial role in dictating whether the insta-

bility is LW or MLW. For γ > 1/K tangential stresses and

for γ < 1/K, first Marangoni stresses primarily contribute to

the LW and MLW mode observed. When the mass transfer

is from the more viscous fluid to the less viscous fluid, LW

instability arises in the system. When the direction of mass

transfer is from the less viscous fluid to the more viscous fluid,

MLW instability evolves in the system. The neo-Hookean

soft-gel layers stabilise both the modes as the deformability

increases.

Figure 16 shows the interface deformation and the first

Marangoni stresses at the liquid-liquid interface. The first

Marangoni stresses are a primary cause of instability and are in

phase with the interface deformation. These stresses arise due

to base state concentration gradients in the transverse direction.

These stresses and displacement are maximum (minimum) at

x = 13 (x = 16). The first Marangoni stresses are positive at the

crest and negative at the trough causing an amplified interface

resulting in an MLW instability.

b. SW instability mode. The Marangoni effects at the

liquid-liquid interface lead to the evolution of a SW instability.

This instability evolves at low Re1 and high Ma. The per-

turbed concentration gradients along the flow direction result

in different concentrations of the solute at the crest and trough

TABLE V. Energy budget analysis for the MLW instability shown in Fig. 15. First Marangoni stresses at the

liquid-liquid dominate the energy budget analysis. Other parameters are the same, as shown in Fig. 15. The

boldface values represent the dominant cause of instability.

Wi3/k EMAS ,I EMAS ,F ETAN ,1 ETAN ,2 ETAN ,3 ENOR ,1 ENOR ,2 ENOR ,3

4
∑

j=1
EDIS,j

0.2/1.29 2.823 ☞1.935 0.111 0.001 0.002 ☞0.001 0 ☞0.001 ☞1

2/1.33 2.879 ☞2 0.122 ☞0.002 0.002 ☞0.001 0 0 ☞1
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FIG. 16. Variation of normalised first Marangoni stresses and normalised gra-

dients of the interface deformation in the axial direction. They are normalised

with the maximum of their absolute values. Other parameters (Wi4 = 2) are

the same, as shown in Fig. 15.

FIG. 17. Dispersion curves showing the stabilization of the SW mode with

an increase in Wi4. The arrow points in the direction of increasing Wi4. Other

parameters are as follows: n21 = 0.9, n31 = 2, n41 = 3, µ21 = 1.64, µ31 = µ41

= 10, γ = 0.5, K = 0.5, D21 = 0.5, Re1 = 0, Pe = 2000, Ca21 = 100, Ca31 =

0.001, Ca41 = 0.001, Wi3 = 0.2, Ma = 12 000.

of the deformed interface. This leads to gradients of surface

tension at the liquid–liquid interface which causes a SW insta-

bility. In Fig. 17, we show that with an increase in Wi4, the

growth rate of the perturbation decreases. The energy anal-

ysis shown in Table VI confirms that the second Marangoni

stress term dominates the energy balance. The stabilization of

SW mode with an increase in the deformable nature of the gel

is physically explained using energy budget analysis. Energy

budget analysis reveals that, for the SW mode, the second

Marangoni stresses dominate. The stabilization of this mode

is attributed to the reduction in the magnitude of the second

Marangoni stress energy term with an increase in Wi4 from

0.2 to 10. This is explained by physically visualising the per-

turbed axial components of velocity of the fluids at x = 2π
k

and

x = 3π
k

, as shown in Fig. 18. The less viscous Fluid 1 is driven

toward the crest of the liquid-liquid interface and the more vis-

cous Fluid 2 is driven away from the crest of the liquid-liquid

interface. This motion of the fluids results in suppressing the

deformation of the liquid-liquid interface and the stabilization

of MLW instability.

FIG. 18. Axial velocity field and interface position of the deformed state in

SW mode. The perturbed axial component of velocity of the fluids is shown as

the solid line. Deformations of the liquid-liquid interface and top and bottom

gel-liquid interfaces are shown as the dashed line. The deformation of the

liquid-liquid interface and bottom gel-liquid interface show phase lag. Other

parameters are (Wi4 = 10) the same, as shown in Fig. 17.

FIG. 19. Variation of normalised second Marangoni stresses and normalised

Fluid 2 velocity in the axial direction. They are normalised by the maximum

of their absolute values. Other parameters are (Wi4 = 10) the same, as shown

in Fig. 17.

FIG. 20. Transition of the SW mode to LW mode with an increase in the

thickness ratio n21 is shown. Arrow points in the direction of increasing n21.

Other parameters are as follows: n31 = 2, n41 = 3, µ21 = 1.64, µ31 = µ41 = 10,

γ = 0.5, K = 0.5, D21 = 0.5, Re1 = 0, Pe = 2000, Ca21 = 100, Ca31 = 0.001,

Ca41 = 0.001, Wi3 = 0.2, Wi4 = 10, Ma = 12 000.

To physically understand the evolution of SW instabil-

ity, we plot the normalised second Marangoni stresses and

Fluid 2 velocity at the liquid-liquid interface along the axial

TABLE VI. Energy budget analysis for SW mode shown in Fig. 17. Second Marangoni stresses dominate the

energy balance. Other parameters are the same, as shown in Fig. 17. The boldface values represent the dominant

cause of instability.

Wi4/k EMAS ,I EMAS ,F ETAN ,1 ETAN ,2 ETAN ,3 ENOR ,1 ENOR ,2 ENOR ,3

4
∑

j=1
EDIS,j

0.2/0.23 ☞0.277 1.186 0.089 0 0.002 0 0 0 ☞1

10/2.49 ☞0.076 1.15 ☞0.064 0 ☞0.01 0 0 0 ☞1
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TABLE VII. Energy budget analysis for SW to MLW transition shown in Fig. 20. Energy signature changes from

second Marangoni stresses to first Marangoni stresses dominating the energy budget with an increase in n21. Other

parameters are the same, as shown in Fig. 20. The boldface values represent the dominant cause of instability.

n21/k EMAS ,I EMAS ,F ETAN ,1 ETAN ,2 ETAN ,3 ENOR ,1 ENOR ,2 ENOR ,3

4
∑

j=1
EDIS,j

0.9/0.23 ☞0.277 1.186 0.089 0 0.002 0 0 0 ☞1

1.5/1.21 2.821 ☞1.934 0.111 0.001 0.002 ☞0.001 0 0 ☞1

direction in Fig. 19. The second Marangoni stresses the pri-

mary cause of the instability are in phase with the Fluid 2

velocity, indicating that they drag the fluid up near the crests

and down near the troughs. This motion of the fluid results

in an amplified deformation of the liquid-liquid interface and

evolution of SW instability.

The SW mode shows a transition to MLW mode with an

increase in the thickness ratio of the fluids n21. This is shown

in Fig. 20. For n21 = 0.9, SW mode of instability prevails in the

flow, and for n21 = 1.5, MLW mode becomes unstable. This

transition is physically analyzed using energy budget analysis

shown in Table VII. The energy signature changes from sec-

ond Marangoni stresses dominating for SW to first Marangoni

stresses dominating for MLW with an increase in n21. The SW

mode changes to MLW mode with an increase in the thickness

ratio of the fluids n21.

VI. CONCLUSIONS

This work focuses on the importance of using a neo-

Hookean model to represent the soft material. We use the

Eulerian formulation proposed in Ref. 25. This formula-

tion changes the dynamics of elastohydrodynamic coupling

between the soft-gel-layers and the fluids. In this model, there

is a difference in the first normal stresses in the base state dis-

placement field of the neo-Hookean soft-gel. This leads to an

instability behavior which is significantly different from that

predicted by a linear viscoelastic model.15,32 In Sec. V B 1

of the paper, we looked into the effect of neo-Hookean soft-

gel layers on different instabilities that arise in the flow. In

Sec. V B 2, the focus is on analyzing the combined effect of

neo-Hookean soft-gel layers and soluble surfactants on dif-

ferent instabilities that evolve in the flow. Insights into the

physical mechanism driving different instabilities are obtained

by carrying out an energy budget analysis of the perturbed flow.

We first validated the model with single phase experi-

ments. We then analyzed numerically two types of two-phase

stratified flow configurations (a) in the absence of a soluble

surfactant and (b) in the presence of soluble surfactants. We

identified three crucial instabilities LW, TS, and GL modes in

the absence of soluble surfactants. The LW mode evolves in

the flow due the viscosity differences of the fluids at the liquid-

liquid interface. To our surprise, from our extensive numerical

analysis, we observe that this mode is always stabilised by the

presence of neo-Hookean soft-gel layers for high Weissenberg

numbers. An energy budget analysis indicates that the tangen-

tial stresses at the liquid-liquid interface dominate and cause

the instability.

Next we analyzed the effect of neo-Hookean soft-gel-

layers on the TS mode. This work shows destabilization of

TS mode when a neo-Hookean model is used. Energy bud-

get analysis indicates that this mode arises in the flow due to

Reynolds stresses generated in the bulk fluids. The destabi-

lization of this mode is attributed to the tangential stresses at

the gel-liquid interface.

A new GL instability arises at the gel-liquid interface due

to the deformable nature of the soft-gel. This instability arises

in the flow due to a sudden jump in the shear modulus of the

soft-gels at the gel-liquid interface. This is indicated by the

dominance of the tangential stresses at the gel-liquid interface

in the energy budget analysis. The stabilization of GL instabil-

ity is attributed to the reduction in the magnitude of tangential

stresses at the gel-liquid interface as the deformable nature of

the soft-gel increases.

We further investigate the flow configuration in the pres-

ence of soluble surfactants. Here three distinct instabilities

are identified, LW, MLW, and SW modes. When the direc-

tion of mass transfer is from the bottom to top gel-liquid

interface, LW mode arises. This mode is stabilised by the

neo-Hookean soft-gel layers for large Weissenberg numbers.

When the direction of mass transfer is from the top to bot-

tom gel-liquid interface, LW mode evolves as MLW mode.

Our extensive numerical analysis indicates that MLW mode

is stabilised by the deformable nature of neo-Hookean soft-

gel layers. This instability mode is physically explained by

the dominance of first Marangoni stresses at the liquid-liquid

TABLE VIII. Conditions for the occurrence of different instabilities that arise in two-phase flows through soft-gel-coated walls.

Effect of increasing

Type of instability Weissenberg number Reynolds number Marangoni number Dominant cause

LW mode Stabilization Low Low Viscosity difference

TS mode Destabilization High Low Shear generated in the bulk of the fluids

GL mode Stabilization Low Low Deformability of the soft-gel

MLW mode Stabilization Low High Changes in surface tension due to the presence of soluble surfactants

SW mode Stabilization Low High Changes in surface tension due to the presence of soluble surfactants
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interface in the energy budget analysis. This is caused by the

gradients in the base state concentration field in the transverse

direction. This causes concentration and surface tension gradi-

ents along the deformed interface. This leads to an evolution of

SW mode. This mode changes into MLW mode by decreasing

the fluid thickness ratio. Energy analysis indicates that the SW

mode arises due to the domination of the second Marangoni

stress term. Conditions under which different instabilities are

observed are given in Table VIII.

To summarise, in most cases, stabilization is achieved

by the deformable nature of neo-Hookean soft-gel layers,

as shown in Table VIII. An important task for the future

is to include the dependency of the perturbations in the

z-direction34 and to perform a non-modal analysis for the

stability.35

SUPPLEMENTARY MATERIAL

A detailed derivation of the energy budget analysis is given

in the supplementary material. The total energy in the per-

turbed state is obtained by taking the inner product of the

vectorial form of Navier-Stokes equations with the velocity

vector.

APPENDIX: BOUNDARY CONDITIONS
AND PHYSICAL PARAMETERS

1. Boundary conditions at the liquid-liquid interface

The boundary conditions at the perturbed liquid-liquid

interface in the absence of soluble surfactant

y = f (x, t) = εδ exp[ik(x − ct)] (A1)

are obtained using domain perturbation. Here δ is the ampli-

tude of the perturbed liquid-liquid interface. The continuity of

velocity yields

u1 +
dU1

dy
δ = u2 +

dU2

dy
δ, (A2)

v1 = v2. (A3)

The continuity of shear stress gives

du1

dy
+ ikv1 = µ21

(

du2

dy
+ ikv2

)

. (A4)

The normal stress boundary condition yields

(µ21p2 − p1) + 2
dv1

dy
− 2µ21

dv2

dy
=

1

Ca21

k2δ, (A5)

where Ca21 =
µ1U10

σ0
. The kinematic boundary condition yields

δ(ikc − U1ik) + v1 = 0. (A6)

Boundary conditions at the liquid-liquid interface in the

presence of soluble surfactants are given by

c1 = 1 at y = 1 + g(x, t), (A7)

c2 =
C20

C10

= γ at y = −n21 + h(x, t), (A8)

c1 = K c2 at y = f (x, t), (A9)

−∂x f ∂xc1 + ∂yc1 = D21

(

−∂x f ∂xc2 + ∂yc2

)

at y = f (x, t),

(A10)

µ21p2 − p1 −

(

2µ21

∂v2

∂y

)

+ 2
∂v1

∂y
=

−1

Ca21

∂2f

∂x2
. (A11)

2. Parameters for the two-phase systems considered in this work

TABLE IX. The range of physical properties of organic-aqueous two-phase stratified flows prevailing in

microchannel experiments.

S. No Physical property Range

1 Density of aqueous phase 1000 kg/m3

2 Density of organic phase 800–900 kg/m3

3 Viscosity of aqueous phase 0.001 kg/m s

4 Viscosity of organic phase 0.0005–0.002 kg/m s

5 Viscosity of PFA 0.02–1 kg/m sec

6 Dimensions of the micro-channel 100 µm × 100 µm

7 Flowrate of aqueous phase 1200 µl/h

8 Shear modulus of PFA 10–600 kPa

9 Surface tension between the organic-aqueous interface in the presence of SDS 10–40 mN/m

10 Surface tension between the aqueous phase-PFA interface 19.1 mN/m

11 Surface tension between the organic phase-PFA interface 20–40 mN/m

12 Diffusivity of SDS in aqueous phase 0.06 × 10☞10 m2/s

13 Diffusivity of SDS in organic phase 0.06–1.2 × 10☞11 m2/s

14 Variation of interfacial tension with concentration (σ0β) O(10☞6) Nm2/mol
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TABLE X. Dimensionless quantities for organic-aqueous two-phase stratified flows in microchannel experiments.

S. No Dimensionless quantity Range

1 Viscosity ratio of organic to aqueous phase 0.5–2

2 Viscosity ratio of PFA to aqueous phase 20–300

3 Density ratio of organic phase to aqueous phase 0.81

4 Reynolds number 0–3

5 Weissenberg number of PFA 0.028–100

6 Capillary number at the organic-aqueous phase interface 0.0015 O(10☞3)

7 Capillary number at the PFA-aqueous phase interface O(10☞3)

8 Capillary number at the PFA-organic phase interface O(10☞3)

9 Marangoni number for the organic-aqueous phase interface O(103)–O(104)
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