Header menu link for other important links
X
Spike estimation from fluorescence signals using high-resolution property of group delay
, Jilt Sebastian, Mari Ganesh Kumar, Venkata Subramanian Viraraghavan, Mriganka Sur
Published in Institute of Electrical and Electronics Engineers Inc.
2019
Volume: 67
   
Issue: 11
Pages: 2923 - 2936
Abstract
Spike estimation from calcium (Ca2+) fluorescence signals is a fundamental and challenging problem in neuroscience. Several models and algorithms have been proposed for this task over the past decade. Nevertheless, it is still hard to achieve accurate spike positions from the Ca2+ fluorescence signals. While existing methods rely on data-driven methods and the physiology of neurons for modeling the spiking process, this paper exploits the nature of the fluorescence responses to spikes using signal processing. We first motivate the problem by a novel analysis of the high-resolution property of minimum-phase group delay (GD) functions for multi-pole resonators. The resonators could be connected either in series or in parallel. The Ca2+ indicator responds to a spike with a sudden rise, that is followed by an exponential decay. We interpret the Ca2+ signal as the response of an impulse train to the change in Ca2+ concentration, where the Ca2+ response corresponds to a resonator. We perform minimum-phase GD-based filtering of the Ca2+ signal for resolving spike locations. The performance of the proposed algorithm is evaluated on nine datasets spanning various indicators, sampling rates, and mouse brain regions. The proposed approach, GDspike, is compared with other spike estimation methods, including MLspike, Vogelstein de-convolution algorithm, and data-driven spike-triggered mixture model. The performance of GDspike is superior to that of the Vogelstein algorithm and is comparable to that of MLspike. It can also be used to post-process the output of MLspike, which further enhances the performance. © 1991-2012 IEEE.
About the journal
JournalData powered by TypesetIEEE Transactions on Signal Processing
PublisherData powered by TypesetInstitute of Electrical and Electronics Engineers Inc.
ISSN1053587X
Open AccessNo
Concepts (14)
  •  related image
    Brain
  •  related image
    Group delay
  •  related image
    Poles
  •  related image
    Resonators
  •  related image
    Signal processing
  •  related image
    Data-driven methods
  •  related image
    ESTIMATION METHODS
  •  related image
    EXPONENTIAL DECAYS
  •  related image
    Fluorescence signals
  •  related image
    High resolution
  •  related image
    Minimum phase
  •  related image
    MODELS AND ALGORITHMS
  •  related image
    Sampling rates
  •  related image
    Fluorescence