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Abstract – We demonstrate the specific non-Boussinesq roles played by various fluid properties in
thermal convection by allowing each of them to possess, one at a time, a temperature dependence
that could be either positive or negative. The negative temperature dependence of the coefficient
of thermal expansion hinders effective thermal convection and reduces the Nusselt number, whereas
the negative dependence of fluid density enhances the Nusselt number. Viscosity merely smears
plume generation and has a marginal effect on heat transport, whether it increases or decreases
with temperature. At the moderate Rayleigh number examined here, the specific heat capacity
shows no appreciable effect. On the other hand, the conductivity of the fluid near the hot surface
controls the heat transport from the hot plate to the fluid, which suggests that a less conducting
fluid near the bottom surface will reduce the Nusselt number and the bulk temperature.

Copyright c© EPLA, 2009

Introduction. – The flow generated by the buoyancy
force in a fluid column between two horizontal plates
maintained at different temperatures has been a topic of
intense research [1,2]. An important control parameter for
the problem is the Rayleigh number Ra≡ α∆TgH3/νκ,
where α is the isobaric thermal expansion coefficient of
the fluid; ∆T , the temperature difference between the top
and bottom plates separated by a vertical height H; g,
the acceleration due to gravity; ν, the kinematic viscosity;
and κ, the thermal diffusivity of the fluid. It is also known
that the flow characteristics depend on the geometry and
the Prandtl number Pr= ν/κ.
If the temperature difference ∆T is small so that the

resulting density differences in the flow are small as well,
it is traditional to account for the effects of density
variations only through the gravitational body force and
to assume, in so far as all other effects are concerned,
that constant density is a good approximation. This is
the Boussinesq approximation. If this approximation is
invalid, one has to account for the temperature variations
of all fluid properties. A comprehensive account of the non-
Boussinesq effects near the onset of the primary instability
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of the flow can be found in [3,4], but our understanding of
their precise role in the turbulent regime, which began
with ref. [5] and explored more recently [6–13], is still
inadequate.
Reference [9] attempts to understand the effect of the

non-Boussinesq effects in water and glycerol experimen-
tally. The temperature dependence of kinematic viscosity
and thermal diffusion coefficient were found to have a
dominant influence on center temperature. However,
they did not isolate the role of individual physical
properties in determining the heat transport or center
temperature. Reference [10] uses ethane gas and notes
that the center temperature decreases for gases and the
Nusselt number increases for large non-Boussinesq values
at Rayleigh numbers that are higher than that reported
in this paper. For gases, it is noted that the center
temperature is less than the algebraic mean of the top
and bottom temperatures, as obtained in [10,11,13], but a
physical reason is not elucidated. Two-dimensional DNS
in refs. [11,12] of Rayleigh-Bénard convection with prop-
erties of glycerol and ethane, respectively, tries to dwell
into the non-Boussinesq effects on the center temperature
at low Rayleigh numbers, and again falls short of giving
a physical picture of the role of fluid properties.
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The experimental part in ref. [11] chooses a temperature
difference on either side of critical point thus enabling the
experimentalists to get a positive or negative variation
of fluid properties with temperature. Ahlers et al. note
that for ethane, the variations of expansivity and specific
heat capacity were larger than those of other properties,
and attribute the change in the center temperature from
the Boussinesq value to these two properties. For gas-
like variations (negative α and Cp) they find a decrease
in the center temperature and vice versa for liquid-like
variations, and suggest a combined effect of α and Cp,
with nonlinear effects from other property variations. It
will be shown that the present computation matches well
with these results qualitatively, even though the non-
Boussinesq effects found in the experiments were for
higher Rayleigh number. The Nusselt number effects are,
however, found to increase irrespective of liquid-like or
gas-like variation in [11], unlike the results shown here.
We stress that, results shown here isolate the role of
each property and hence a direct comparison with [11] is
not completely possible, especially for the lower Rayleigh
number considered here. In addition to the response of
bulk temperature and Nu to various properties, we also
provide a physical picture of a likely mechanism in thermal
convection.
In this paper we attempt to understand these effects

by varying each fluid property separately while keeping
all the others fixed. We do this by resorting to direct
numerical simulations of the full equations of motion,
including non-Boussinesq effects. Five fluid properties
affect Rayleigh-Bénard convection: 1) dynamic viscosity,
µ; 2) density, ρ; 3) coefficient of thermal expansion,
or the expansivity, α; 4) thermal conductivity, λ; and
5) specific heat at constant pressure, Cp. These properties
may increase or decrease with temperature depending
on whether the fluid is a liquid or a gas, or is in an
anomalous state—as in the case of water at 4 ◦C. Here,
we consider all these properties to vary as functions
of temperature, as described in the next section. The
computational set-up and numerical methods are detailed
in [13,14]. The aspect ratio, defined as Γ=D/H, where D
is the diameter, is chosen to be 1/2 to make contact with
a number of experiments. The Rayleigh number (based
on the conditions of the mean temperature) is fixed to be
2× 108. The Prandtl number, also based on the conditions
of the mean temperature, is 0.7.
The particular motivation for the paper is the depen-

dence on Ra of the Nusselt number, Nu, which is the
ratio of the measured heat transport to that by pure
conduction for the same ∆T . This dependence has been a
topic of much experimental and theoretical work, summa-
rized most recently in [15,16]. The traditional expectation
is of the form Nu=ARaβ [17], perhaps with logarithmic
corrections [18], but the numerical value of β is under
some debate. Dimensional arguments yield a value of
1/3, whereas a somewhat more detailed analysis [18]
suggests that the exponent is 1/2 at very high Ra. While

recent experimental and numerical work points to the
likelihood that β ≈ 1/3, at least for Ra< 1017 [19], the
situation appears to be somewhat uncertain because the
low-temperature helium gas data given in [20] differ from
those given in [19] for Ra> 1013. It has been proposed [21]
that one possible reason for this discrepancy may be the
non-Boussinesq effects. Indeed, non-Boussinesq effects
are often significant in water experiments even for much
lower Rayleigh numbers. Thus, a knowledge of the effect
of the property gradients on heat transport is essential
to understand flow physics and, particularly, to resolve
the differences between the two sets of helium experi-
ments mentioned above. With this in mind, the present
paper considers the dependence of all properties with
temperature, one at a time.

Governing equations and numerical set-up. – The
governing equations for low Mach number conditions are
given in [13,14], and are repeated here for completeness:

∂ρ

∂t
+∇· (ρV ) = 0, (1)

∂ρV

∂t
+∇· (ρV V ) = −∇p+αT ẑ

+

(
Pr

Ra

)1/2
∇·
(
2µS− 2

3
µ(∇·V )I

)
,

(2)

∂T

∂t
+∇· (TV ) =

(
1

PrRa

)1/2
1

ρCp
∇· (λ∇T ). (3)

Here, S is the symmetric part of velocity gradient tensor;
V is the velocity normalized by the free-fall value U (see
below), ẑ is the unit vector in the vertical direction and I
is the identity tensor; V is not divergence free. As already
mentioned, the physical properties appearing in the non-
Boussinesq equations are temperature dependent and non-
dimensionalized by their respective values at the mean
temperature, T = Tm = 0.5, T being the non-dimensional
temperature, equal to 1 for the bottom plate and to 0
for the top plate. The free-fall velocity, U =

√
gα∆TH, is

computed at Tm. The sidewall is assumed to be adiabatic.
The temperature dependence of each physical property

is chosen to represent a typical behaviour. We illustrate
two property variations in fig. 1: one with a positive
dependence on temperature and the other with a negative
dependence. In both cases, the property ratio is unity at
Tm. These particular forms of variations are arbitrary,
but apply to most fluids if the numerical coefficients
are adjusted suitably. The curves shown in fig. 1 are of
the form P = b+ ae(cT ), where constants a, b and c are
appropriately chosen and P is scaled by the value at
T = 0.5. Results from a linear expression will not differ
qualitatively from those of the present paper. The quantity
ΠP , defined as

ΠP ≡ Ph−Pc
(Ph+Pc)/2

, (4)

14006-p2



Rayleigh-Bénard flow

0 0.2 0.4 0.6 0.8 1
T

1

1.5

2

2.5

3

P
/P

m

P
neg

P
pos

Fig. 1: Two sample functions of properties, one positively and
the other negatively dependent on the temperature. These
functions are arbitrary but representative of a fairly large vari-
ety of fluids. Pm corresponds to the property value at Tm
and the difference between the values at T = 0 and T = 1
indicates the sensitivity of the property to temperature
variations.

measures the sensitivity of the property P to variations in
T . Here, Ph and Pc correspond to hot and cold surfaces,
respectively. A positive (negative) value of ΠP indicates
a positive (negative) dependence of property P on T .
The Boussinesq case corresponds to ΠP = 0. Here, we
calculate the Nusselt number variations against ΠP for
each of the fluid properties by computing heat transport
for ΠP =−0.97, −0.37, 0, +0.37, +0.97 (except for the
density, see below). It may be noted that a Πρ (which is
ΠP for density) ≈−1 and Πλ (which is ΠP for the thermal
conductivity) ≈ 0.5 correspond to strong non-Boussinesq
regimes in helium at comparable Rayleigh numbers, as
discussed in [14].
The numerical grid size is 97× 49× 193. This grid

resolves the dynamics of the problem adequately, as
discussed in refs. [14,22]. The heat transport is computed
as the average of the heat flux at the hot and cold plates,
Nu= λ∂T/∂z|w, where |w represents the derivative at the
wall and the overbar represents the average over time and
plate surface.

Results and discussions. – We now present for all
cases the bulk temperature (i.e., the temperature averaged
over the entire volume and time) in fig. 2, the global
heat transport in figs. 3 and 4, and the buoyancy force
generated at the top and bottom thermal boundary layers
in fig. 5. The ratio of the top-to-bottom buoyancy flux,
defined as 〈gα∆Ttbl〉 (the average being taken within the
volume of the thermal boundary layer as well as time;
the subscript denotes the thermal boundary layer), is a
measure of the asymmetry created by the temperature-
dependent properties. ∆Ttbl represents the temperature
difference inside the thermal boundary layer. Figure 5
shows the top-bottom ratio of the buoyancy flux (FB)
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Fig. 2: Bulk temperature for different cases of ΠP . The temper-
ature is averaged over space and time. A negative value of
ΠP indicates a negative dependence on the temperature. Filled
circle represents the case when only conductivity is tempera-
ture dependent, all other fluid properties being constant. Other
symbols represent conditions when only one of the following
properties is allowed to vary: square, P =Cp; diamond, P = α;
up-triangle, P = µ; down-triangle, P = ρ. As described in the
text, Πρ does not extend to positive values. The error bars
in this and other figures correspond to standard deviations
computed from the data, as described in ref. [22].
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Fig. 3: The heat transport variation with respect to different
values of ΠP .

against ΠP for each property P . The ratio of buoyancy
flux may be written as

FB =
〈gα∆Ttbl〉c
〈gα∆Ttbl〉h , (5)

where c and h refer to cold and hot boundary layers,
respectively: the larger the deviation of this ratio from
unity, the larger the asymmetry due to property gradients.
If FB > 1, the hot surface produces less buoyancy than the
negative buoyancy produced by the cold surface.
In the following section we discuss the inferences that

can be drawn from the above figures on how each of
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Fig. 4: The Nussel number is scaled with the value at ΠP = 0
(Nu0 represents the Nu at ΠP = 0). The increase or decrease
of heat transport is more evident in this picture.
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Fig. 5: The buoyancy force ratio computed within the thermal
boundary layer. The buoyancy force at the top thermal bound-
ary layer is smaller than that at the bottom if the ratio is less
that unity. Deviations from unity reflect measures of asymme-
try created by non-Boussinesq effect.

the properties affects the Nusselt number and the bulk
temperature.

Expansivity. Both negative and positive dependences
of expansivity on temperature show dramatic impact on
heat transport. Figure 2 shows that the bulk tempera-
ture is lower than that for Boussinesq conditions (Πα = 0)
when α is negatively dependent on temperature (a gas-
like variation as described in [11]). This is easily under-
stood looking at fig. 5 showing the top-to-bottom ratio of
the fluid expansivity gα∆T ; in fact for negative values of
Πα, the cold fluid sinks more efficiently than the hot fluid
rises, and the overall effect is to decrease the bulk temper-
ature. The opposite behaviour is observed for Πα > 0
since buoyancy supports the uprising hot fluid more than
the downcoming counterpart. It is noted that the shifts of
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Fig. 6: Vertical temperature profile for different Πρ values,
when density alone is varying with temperature. The driving
force in Rayleigh-Bénard convection is the unstable density
stratification due to ∆T . Larger negative values of Πρ introduce
a large density difference and thus more heat transport.

the bulk temperature resemble those of ethane close to the
critical point as described in [11] even if the heat trans-
fer follows a different dynamics. In fact, while in [11] Nu
increases with respect to the Boussinesq value both in the
gas-like (Πα < 0) and in the liquid-like (Πα > 0) phases,
for the present case Nu increases monotonically with Πα
(see figs. 3 and 4). The reason for this discrepancy is not
fully understood; however, it can be argued that while
in the present case only α was allowed to depend on T ,
in the experiments of [11] all the fluid properties varied
simultaneously and the nonlinear interplay of several non-
Boussinesq effects produced a different behaviour. The
Rayleigh number range in [11] is also higher than that
in the present study, and hence a direct comparison is not
exactly possible.

Density. The density of most fluids decreases with an
increase in temperature, and thus in a Rayleigh-Bènard
configuration the higher-density fluid is always on the top
of a lower-density fluid layer. The driving force in such a
configuration is indeed the density difference. When the
density depends positively on the temperature—that is,
the hot fluid is heavier than the cold fluid—no convec-
tion can occur, and the heat transport is mainly due to
conduction. Nevertheless, one can have transient convec-
tion for long periods of time if one starts from Boussinesq
conditions (as we did). For large negative dependence on
temperature, the driving force for convection is large and
the Nusselt number is enhanced as shown in fig. 3. This is
supported by the data in fig. 5, where the buoyancy force
at the bottom is larger than that at the top, thus enhanc-
ing the convective heat transport. The heavier cold fluid
moves down more readily and leads to a greater reduction
in the bulk temperature, as can be seen from fig. 6. The
temperature here is averaged over the radial distance r
and the azimuthal angle θ, as well as over time.
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Fig. 7: Temperature isosurface for Πµ =−0.97 (left) and 0.97
(right). The top figures are for the isosurface corresponding to
T = 0.2 and the bottom for T = 0.8. For positive values of Πµ,
the viscosity near the bottom surface is larger than that at the
top surface, thus smearing the hot plume generation, as seen
in the lower right figure. If Πµ is negative, viscosity is large near
the top surface, smearing the cold plumes (left top figure).

Viscosity. In [14], we reported that the role of viscos-
ity is restricted to the smearing of plume generation, and
it does not have a direct role on heat transport. The
present results establish this fact further by showing the
effects for negative and positive temperature variations.
The accepted mechanism of fluid motion in Rayleigh-

Bénard convection is through hot plumes generated at
the bottom surface and cold plumes at the top surface.
A higher viscosity at the top or the bottom surface smears
the respective plumes. Irrespective of whether the viscosity
increases or decreases with temperature, the effect on con-
vection is the same because the plumes are smeared at the
top and bottom. However, if cold plumes are smeared, hot
plumes increase the bulk temperature, as it happens for
a negative temperature dependence of viscosity, and vice
versa. Figure 2 (filled up-triangle) demonstrates this effect.
The smearing of plumes is evident from figs. 7, where the

temperature isosurfaces are plotted for the top and bottom
surfaces. The isosurfaces correspond to 0.2 (top row) and
0.8 (bottom row). The left and right columns represent
Πµ =−0.97 and 0.97. For positive values of Πµ, right
column, the high viscosity near the hot surface smears
the plumes that are generated, thus decreasing the bulk
temperature and slightly lowering the thermal convection.
Negative values of Πµ have similar consequences near the
top surface, the only difference being an increase in the
bulk temperature, since cold plumes are smeared out.

Thermal conductivity. Consider first the negative
temperature dependence of conductivity, with the lesser
conducting fluid at the bottom. Figures 2 and 3 show that
Tbulk and Nu are smaller for negative Πλ than for the
Boussinesq case. These decreases may be expected: when
conductivity is small near the hot surface, there is less
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Fig. 8: Effects of temperature-dependent conductivity. Large
negative Πλ values suggest that the high-temperature region
is more spread out near the hot surface, thus diminishing the
heat transport from the hot surface to the bulk.

heat available for convection. It should be stressed that
the heat transport from the hot plate to the nearby fluid
is due to conduction and a lower value in conductivity
means a reduction of heat transport from the plate. In
short, both the Nusselt number and the bulk temperature
are lower than the Boussinesq values. The fluid near the
top surface, however, has larger conductivity, which will
cool the fluid by conductive heat transfer. The buoyancy
force at the top boundary layer may thus be expected to be
smaller than that at the bottom boundary layer. Figure 5
confirms the behaviour that negative Πλ produces smaller
top-bottom buoyancy ratio. From fig. 8, we see that there
is a large temperature drop at the bottom boundary layer,
which also contributes to the small buoyancy ratio for
negative Πλ. It is straightforward to expect the opposite
effect when conductivity increases with temperature, as is
evident from figs. 2 and 3.

Specific heat. For the Rayleigh number considered
here, the specific heat capacity at constant pressure, Cp,
does not affect the heat transport much. This negligible
dependence suggests that the system can adapt to the
local value of Cp in such a way that always the same
amount of heat is carried by a fluid particle; however,
the implication of this mechanism would be warm and
cold fluid structures of different sizes over which viscosity
and diffusivity would act selectively and therefore the
effect of Cp cannot be separated from that of µ and λ.
Concerning the bulk temperature, a small monotonic
increase with ΠCp can be observed which can be explained
with the increased heat capacity (per unit volume) of the
fluid that tends to carry more heat from the hot plate in
the bulk.

Conclusions. – In this paper we have attempted to
understand the roles of different properties in Rayleigh-
Bénard convection. We analyze the heat transport and the
variation of the bulk temperature due to the gradients of
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these properties. The influence of each of the properties is
isolated by varying only that property and holding others
constant. The Rayleigh number for all the computations

is fixed at 2× 108, and so we cannot address the Rayleigh
number dependence. Nevertheless, the results show that
the Nusselt number is lowered by a fluid with negative
dependence of the thermal conductivity, λ, and the expan-
sion coefficient, α. A negative dependence of density intro-
duces a larger driving force and increases the Nusselt
number. Conversely, λ and α with positive dependences
increase the Nusselt number. Positive temperature depen-
dence of the density lowers the heat transport dramatically
during a long transient, leading eventually to a stable state
of the fluid column.
When the fluid experiences an increase in expansivity,

as it happens if the latter has a large negative temper-
ature dependence, the rising plumes block themselves
and lower the bulk temperature: the heat transfer from
the source (hot surface) is reduced due to reduction in
convection. The negative temperature dependence of the
density enhances the driving force, which means that
more heat is transported; correspondingly, more cold fluid
occupies larger portion of the cell, thus decreasing the
bulk temperature. The role of viscosity is to smear the
plume generation; cold plumes are smeared when Πµ is

negative and hot plumes are smeared when Πµ is positive.

Due to the smearing of hot and cold plumes, the fluid
temperatures of the bottom and top walls are prevented
from reaching the center portion of the convection
apparatus, thus raising the temperature for a negative
dependence and lowering it for a positive dependence. In
any case, the effect of viscosity gradients is marginal.
The above results should hold qualitatively for real

fluids even though the property functions described in this
paper do not pertain to any particular fluid. We have not
made any distinction between liquids and gases, within
the assumption of low Mach number. It is a reasonable
conjecture that a combination of all these effects occurs
to varying degrees in a real fluid undergoing thermal
convection, depending on the sensitivity of each property
to the temperature.
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