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1. Introduction

Let G be a compact, Hausdorff, topological group, acting on a Hausdorff topological space X. In most 

cases G is a Lie group acting on a compact manifold X. The equivariant LS-category of X, denoted by 

catG(X) was introduced by Marzantowicz in [17], as a generalization of classical category of a space [16], 

which is called Lusternik–Schnirelmann category [15]. Marzantowicz showed that for a compact Lie group G, 

classical cat of orbit space is a lower bound for catG,

cat(X/G) ≤ catG(X).

Colman studied the catG(X) for finite group G in [5] and gave an upper bound in terms of the dimension of 

orbit space and catG of the singular set for the action. In [14], Hurder and Töben proved that for a manifold 

M with a proper G-action, where G is a Lie group, the number of components of the fixed point set is 

a lower bound for catG(M). Later catG(X) is studied by Colman and Grant [6], for a compact Hausdorff 

topological group G, acting continuously on a Hausdorff space X.
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Similar to definition of classical cat, catG(X) is defined to be the least number of open subsets of X, 

which form a covering for X and each open subset is equivariantly contractible to an orbit, rather than a 

point (see Definition 2.2).

In this paper we study LS-cat and equivariant LS-cat. We compute these two invariants for locally 

standard torus manifolds, which are even dimensional smooth manifolds with locally standard action by 

half-dimensional compact torus (see Definition 3.2). In Section 2, we study catG(X) in terms of fixed point 

set XG and catG(XG), and some lower and upper bounds for catG(X) are given. Also we study the upper 

bound for equivariant LS-cat of product space. In Section 3, some results on locally standard torus manifolds 

as well as simply connectedness of torus manifolds are discussed. In Section 4, the classical cat of quasitoric 

manifolds are computed. We show that the equivariant connected sum of quasitoric manifolds does not 

affect the value of classical cat, i.e. for 2n-dimensional quasitoric manifolds M1 and M2,

cat(M1#Tk M2) = cat(M1) = cat(M2) = n + 1 ,

for any k, n except k = n = 1, 2. Besides we examine the situations that for 4-dimensional locally stan-

dard torus manifold M , the equality holds, meaning cat(M) = 3, see Theorem 4.6. Moreover the explicit 

construction of categorical covering for M is also given. The special technique which is used for the con-

struction leads us to generalize the idea for computing LS-cat of locally standard torus manifold in case 

there exists a triangulation of the orbit space. In Section 5, catTn of quasitoric manifolds, as well as their 

equivariant connected sum are computed. We also prove the inequality for equivariant LS-cat of product 

space. Moreover a lower and upper bounds for catTn of 4-dimensional locally standard torus manifold are 

given where lower bound is sharp, see Theorem 5.7. Section 6 is dedicated to computation of equivariant 

LS-cat. There are two counterexamples relevant to the work of Colman and Grant [6] in the following way. 

In their paper there are two statements on catG of product, one with diagonal action, Theorem 3.15, and 

another with product action, Theorem 3.16. However there the hypotheses are not sufficient and lead to the 

counterexamples (but the subsequent results in [6], in particular Corollary 5.8, are unaffected). Finally the 

equivariant LS-category of lens spaces is computed.

2. Equivariant LS-category

In this section we prove a number of results for catG(X) in terms of the fixed point set XG. We begin 

by recalling some definitions and fixing some notations. Let G be a compact Hausdorff topological group, 

acting continuously on a Hausdorff topological space X. In this case X is called a G-space. For each x ∈ X, 

the set

O(x) = {g.x : g ∈ G}

is called the orbit of x, and

Gx = {g ∈ G : g.x = x}

is called the isotropy group or stabilizer of x. The set X/G of all equivalence classes determined by the 

action, and equipped with the quotient topology is called the orbit space. The set

XG =

{
x ∈ X : ∀g ∈ G, g.x = x

}

is called the fixed point set of X. Here XG is endowed with subspace topology. We denote the closed interval 

[0, 1] in R by I and I0 = (0, 1).
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Definition 2.1. Let X be a topological space, and G be a topological group acting on X.

(1) An open subset U of X, is called G-open set (or G-invariant) if U is stable under G-action; i.e. GU ⊆ U .

(2) Let U be a G-invariant subset of X, the homotopy H : U × I → X is called G-homotopy, if for every 

g ∈ G, x ∈ U , and t ∈ I,

gH(x, t) = H(gx, t).

(3) Let U be a G-invariant subset of X, then U is called G-categorical if there exists a G-homotopy 

H : U × I → X such that H(x, 0) = x for each x ∈ U , and H(U, 1) is a subset of an orbit.

Definition 2.2. A G-categorical covering for a G-space X is a finite number of G-categorical subsets {Ui}
n
i=1

that form a covering for X. The least value of n for which such a covering exists, is called the equivariant 

category of X, denoted catG(X). If no such covering exists, we write catG(X) = ∞.

Lemma 2.3. Let U be a G-categorical subset of G-space X, which contains a fixed point x0 ∈ XG. Then U

is equivariantly contractible to x0. In this case U is called G-contractible, and denoted by U ≃G x0.

Proof. Let H : U × I → X be a G-homotopy, where H(x, 0) = x, H(x, 1) ∈ O(z) for some z ∈ X. 

Since gH(x0, t) = H(gx0, t) = H(x0, t), it is easy to see that for all t ∈ I, H(x0, t) ∈ XG. Therefore 

H(x0, 1) ∈ XG, which implies O(z) = {H(x0, 1)}. Define H ′ : U × I → X, by

H ′(x, t) =

{
H(x, 2t) : 0 ≤ t ≤ 1

2

H(x0, 2 − 2t) : 1
2 ≤ t ≤ 1.

Clearly H ′ is a G-homotopy. The lemma follows. ✷

Note that for a G-categorical set U , which contains a fixed point x0, there exists a path Φ : I → XG, 

defined by Φ(t) = H(x0, t).

Definition 2.4. x0 ∈ XG is called an isolated fixed point if there exists a neighborhood U of x0 that does 

not contain any other fixed points.

Lemma 2.5. Let X be a Hausdorff space, and U be a G-categorical subset that contains an isolated fixed 

point x0. Then the G-homotopy H : U × I → X fixes x0, and x0 is the only fixed point of U .

Proof. Let V be an open neighborhood of x0 that does not contain any other fixed points, and Φ : I → XG

where Φ(t) = H(x0, t). The set {x0} = V ∩ XG is open in XG, and also closed (since XG is Hausdorff). 

Therefore the set {x0} is a path-connected component of XG. Thus for all t ∈ I, Φ(t) = x0 and hence H

fixes x0. ✷

Corollary 2.6. If XG 
= ∅ and catG(X) = 1, then X is G-contractible to a point.

Note that in general case if catG(X) = 1, X may not be necessarily contractible. As for G = S1, which 

acts on X = S1, by product, catG(X) = 1, while X is not contractible.

Lemma 2.7. Let (X, x0) and (Y, y0) be pointed G-spaces. By pointed G-space, it means a G-space with base 

point such that the base point is fixed by G. Then

catG(X ∨ Y ) ≤ catG(X) + catG(Y ) − 1.
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Proof. Let {Ui}
n
i=1 and {Vj}m

j=1 be G-categorical covering for X and Y respectively. Let x0 ∈ Ui and y0 ∈ Vj

for some i and j. By Lemma 2.3 Ui ≃G x0 and Vj ≃G y0. By identifying x0 = y0, one can show that Ui ∪ Vj

is G-contractible to x0 in X ∨ Y . ✷

Lemma 2.8. Let U be a G-categorical subset in X. If U ′ = U ∩ XG 
= ∅, then U ′ is a G-categorical subset 

in XG.

Proof. It is clear that U ′ is G-invariant. Since U ′ 
= ∅, it contains a fixed point α and by Lemma 2.3 there 

exits a G-homotopy H : U × I → X, such that for all x ∈ U we have H(x, 0) = x and H(x, 1) = α. Take 

the restriction of H to U ′

H

∣∣∣∣
U ′

= H ′ : U ′ × I −→ XG, H ′(x, t) = H(x, t).

H ′ is well-defined because for every x ∈ U ′ = U ∩ XG, we have

g.H ′(x, t) = g.H(x, t) = H(g.x, t) = H(x, t) = H ′(x, t)

for all g ∈ G and t ∈ I. Therefore the inclusion of U ′ in XG is G-contractible to O(α) = {α}. ✷

Corollary 2.9. Suppose {Ui}
n
i=1 is a G-categorical covering of X. Then {Ui ∩ XG}n

i=1 is a G-categorical 

covering of XG and therefore

∣∣∣π0(XG)
∣∣∣ ≤ cat(XG) = catG(XG) ≤ catG(X).

Note that the previous corollary also follows from [14].

Lemma 2.10. If |XG| < ∞, then every G-categorical set contains at most one fixed point. So all fixed points 

are isolated fixed points and we have |XG| = catG(XG) = cat(XG).

Proof. Since X is Hausdorff and |XG| < ∞, every x ∈ XG is an isolated fixed point. Thus the statement 

follows from Lemma 2.5. ✷

Lemma 2.11. Let α and β be two distinct fixed points belong to a path-component of XG. If U and W are 

two disjoint subsets of X which are G-contractible to α and β respectively, then U ∪ W is G-contractible 

to α.

Definition 2.12. Let G be a topological group acting on a topological space X. The sequence

∅ = A0 � A1 � A2 � · · · � An = X

of open sets in X is called G-categorical sequence or simply G-cat sequence of length n if

• each Ai is G-invariant, and

• for each 1 ≤ i ≤ n, there exists a G-categorical subset Ui of X, such that

Ai − Ai−1 ⊂ Ui.

A G-cat sequence of length n is called minimal if there exists no G-cat sequence with smaller length in X.
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Lemma 2.13. Let G be a topological group acting on a topological space X. Then there exists a minimal 

G-cat sequence of length n in X, if and only if

catG(X) = n.

Proof. This is analogous to the proof for classical cat [7, Lemma 1.36]. ✷

Definition 2.14. A G-path from an orbit O(x) to an orbit O(y) is a G-homotopy H : O(x) × I → X such 

that the following hold:

(1) H0 is the inclusion of O(x) in X.

(2) H1(O(x)) ⊆ O(y).

Lemma 2.15. ([14, Lemma 3.2]) Let H : O(x) × I → X be a G-path in X and xt = H(x, t). Then Gx ⊆ Gxt

for all 0 ≤ t ≤ 1.

Lemma 2.16. Let O(x) and O(y) be two distinct orbits in a G-space X. If O(x) and O(y) both sit inside 

a G-categorical subset, then there exists an orbit O(z) such that there are G-paths from O(x) to O(z) and 

O(y) to O(z).

Proof. It is clear from the definition of G-categorical open subset. ✷

Definition 2.17. A G-space X is called G-connected if for every closed subgroup H of G, XH is path-

connected.

Lemma 2.18. ([6, Lemma 3.14]) Let X be G-connected, and let x, y ∈ X such that Gx ⊂ Gy. Then there 

exists a G-path from O(x) to O(y).

Lemma 2.19. Let X and Y be G-connected. Then X × Y with diagonal action is G-connected.

Proof. If H is a closed subgroup of G, then (X × Y )H = XH × Y H . ✷

Lemma 2.20. Let X be a G-connected space with α ∈ XG 
= ∅. Then every G-categorical subset U in X is 

equivariantly contractible to α.

Proof. Let F : U × I → X be a G-homotopy such that F (x, 0) = x and F (x, 1) ∈ O(z), for some z ∈ X. 

Since Gz is a subset of Gα = G, and X is G-connected, by Lemma 2.18, there exists a G-homotopy 

E : O(z) × I → X so that E(y, 0) = y and E(y, 1) = α. Define the desired G-homotopy H : U × I → X by

H(x, t) =

{
F (x, 2t), 0 ≤ t ≤ 1

2

E(F (x, 1), 2t − 1), 1
2 ≤ t ≤ 1

and the lemma follows. ✷

By using Lemma 2.20 one can show that if X is a G-connected space with α ∈ XG 
= ∅, then for every 

two disjoint G-categorical subset U and W in X, U ∪ W is equivariantly contractible to α. Also for every 

G-categorical subset V in Y , where Y is another G-connected space with β ∈ Y G 
= ∅, U ×V is equivariantly 

contractible to (α, β).
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Definition 2.21.

• A topological space X is called completely normal if for every two subsets A and B of X with

A ∩ B = ∅ , A ∩ B = ∅,

there exist two disjoint open subsets containing A and B.

• A G-space X is called G-completely normal if for every two G-invariant subsets A and B of X with

A ∩ B = ∅ , A ∩ B = ∅

there exist two disjoint G-invariant subsets containing A and B.

Note that every metric space is completely normal.

Lemma 2.22. ([6, Lemma 3.12]) If X is a completely normal G-space, then X is G-completely normal.

Theorem 2.23. Let X and Y be G-connected such that X × Y is completely normal. If XG 
= ∅ and Y G 
= ∅, 

then

catG(X × Y ) ≤ catG(X) + catG(Y ) − 1,

where X × Y is given the diagonal G-action.

Proof. The idea of proof is similar to the proof for classical cat, [7, Theorem 1.37]. Let α ∈ XG, β ∈ Y G, 

catG(X) = n, and catG(Y ) = m. So by Lemma 2.13 there exist G-cat sequences of length n and m:

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = X ,

∅ = B0 ⊂ B1 ⊂ · · · ⊂ Bm = Y.

Denote the G-categorical subsets containing the differences by

Ai − Ai−1 ⊂ Ui and Bj − Bj−1 ⊂ Wj .

Define subsets of X × Y by

C0 = ∅ , C1 = A1 × B1 , Ck =
k⋃

i=1

Ai × Bk+1−i , Cn+m−1 = An × Bm = X × Y,

where Ai = ∅ if i > n, and Bj = ∅ if j > m. Note that Ck is G-invariant and

Ck − Ck−1 =
k⋃

t=1

(At − At−1) × (Bk+1−t − Bk−t).

Also for any k and t,

(At − At−1) × (Bk+1−t − Bk−t) ⊂ Ut × Wk+1−t,
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where Ut × Wk+1−t is a G-categorical subset of X × Y contracting to (α, β). Although for a fixed k and 

varying t there may be intersections among these sets, but this issue can be resolved by using the assumption 

that X × Y is G-completely normal. Denote

Σi = (Ai − Ai−1) × (Bk+1−i − Bk−i).

Since for i 
= j we have

Σi ∩ Σj = ∅ and Σi ∩ Σj = ∅,

and X × Y is G-completely normal, there exist disjoint G-invariant neighborhoods about Σi and Σj . By 

taking the intersection of those disjoint neighborhoods with Ui × Wk+1−i and Uj × Wk+1−j , we obtain 

disjoint G-categorical neighborhoods of Σi and Σj , for i 
= j. So each Ck − Ck−1 sits inside a G-categorical 

subset of X × Y , and therefore

∅ = C0 ⊂ C1 ⊂ · · · ⊂ Cm+n−1 = X × Y

is a G-cat sequence for X × Y . Thus

catG(X × Y ) ≤ n + m − 1. ✷

We remark that in [6] the authors have a similar statement (Theorem 3.15), however there the assumption 

on fixed point set is not enough and leads to counterexamples (see Example 6.4).

3. Locally standard torus manifolds

Following [8] we recall the definition of nice manifold with corners. An n-dimensional manifold with 

corners is a Hausdorff second-countable topological space together with a maximal atlas of local charts onto 

open subsets of Rn
≥0 such that the overlap maps are homeomorphisms which preserve codimension function. 

Codimension function c at the point

x = (x1, · · · , xn) ∈ Rn
≥0,

is the number of xi which are zero. That means the codimension function is a well defined map from manifold 

with corners P to non-negative integers. A connected component of c−1(m) is called an open face of P . 

The closure of an open face is called a face. Note that we can talk about the dimension of faces of P . For 

example the dimension of c−1(m) is n − m. A 0-dimensional face is called a vertex and a codimension one 

face is called a facet of P .

The manifold with corners P is called nice if for every p ∈ P with c(p) = 2, the number of codimension 

one face of P which contains p is also 2. Therefore a codimension-k face of the nice manifold with corners 

P is a connected component of the intersection of unique collection of k many codimension one faces of P . 

An example of manifold with corner which is not nice can be found in Section 6 of [8]. The boundary of 

an n-dimensional manifold with corners is the correspondent set of points in local charts for which the 

codimension function is at least one.

An n-dimensional simple polytope in Rn is a convex polytope where exactly n bounding hyperplanes 

meet at each vertex. It is easy to see that simple polytope is a nice manifold with corners. For notational 

purposes, we consider a nice manifold with corners as a polytope if it is homeomorphic to a simple polytope 

and the codimension function is preserved. We denote the set of vertices of a nice manifold with corners P

by V (P ) and the set of facets of P by F(P ).
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Definition 3.1. A smooth action of Tn on a 2n-dimensional smooth manifold M is said to be locally standard 

if every point y ∈ M has a Tn-invariant open neighborhood Uy and a diffeomorphism ψ : Uy → V , where 

V is a Tn-invariant open subset of Cn, and an isomorphism δy : Tn → Tn such that ψ(t · x) = δy(t) · ψ(x)

for all (t, x) ∈ Tn × Uy.

Modifying the definition of quasitoric manifold and torus manifold in [2] and [13], we consider the fol-

lowing. More general torus actions are discussed in [22] by Yoshida.

Definition 3.2. A closed, connected, oriented, and smooth 2n-dimensional Tn-manifold M is called a locally 

standard torus manifold over a nice manifold with corners P if the following conditions are satisfied:

(1) The Tn-action is locally standard.

(2) ∂P 
= ∅, where ∂P is the boundary of P .

(3) There is a projection map q : M → P constant on orbits which maps every l-dimensional orbit to a 

point in the interior of an l-dimensional face of P .

In the case that P is a polytope, M is called a quasitoric manifold.

Note that according to the Definition 3.2, P is the orbit space and is path-connected. Also we remark 

that for the definition of torus manifolds in [13], the authors assume that the torus action has fixed points. 

But here we do not have such restrictions.

Example 3.3. Consider the natural Tn-action on

S2n = {(z1, . . . , zn, x) ∈ Cn × R : |z1|2 + · · · + |zn|2 + x2 = 1},

which is defined by

(t1, . . . , tn) · (z1, . . . , zn, x) �→ (t1z1, . . . , tnzn, x).

The orbit space is given by Q = {(x1, . . . , xn, x) ∈ Sn : x1, . . . , xn ≥ 0} and the number of fixed points is 2.

This action is a locally standard action, so S2n is a locally standard torus manifold. Note that S2n is not 

a quasitoric manifold if n ≥ 2. When n = 2 the orbit space is an eye shape.

Example 3.4. Let M1 and M2 be two quasitoric manifolds of dimension 2n, and Tk be the k-dimensional 

torus, 0 ≤ k ≤ n. Let φi : Tk → Mi be the embedding onto k-dimensional orbit of Mi, and let τi be the 

invariant tubular neighborhood of φi(T
k) for i = 1, 2. Identifying the boundary of τ1 in M1 and τ2 in M2 via 

an equivariant diffeomorphism, we get a smooth Tn-manifold, which is called an equivariant connected sum 

of M1 and M2, denoted M1#Tk M2. Clearly M1#Tk M2 is a torus manifold, and it is not a quasitoric manifold 

if k ≥ 1. Note that the above construction depends on the isomorphism type of the isotropy representations 

and on the gluing map. Here we are assuming that the isotropy representations are the same and the gluing 

map is the natural one.

A more general equivariant connected sum of smooth manifolds with torus action is described in [12]. 

Equivariant connected sum of quasitoric manifolds at a fixed point and along a principal orbit is discussed 

in [3] and [21] respectively.

Definition 3.5. A function λ : F(P ) → Zn is called characteristic function if the submodule generated 

by {λ(Fj1
), . . . , λ(Fjl

)} is an l-dimensional direct summand of Zn whenever the intersection of the facets 

Fj1
, . . . , Fjl

is nonempty.

The vectors λj = λ(Fj) are called characteristic vectors and the pair (P, λ) is called a characteristic pair.



M. Bayeh, S. Sarkar / Topology and its Applications 196 (2015) 133–154 141

In [18] the authors show that given a torus manifold with locally standard action one can associate a 

characteristic pair to it up to the choice of sign of characteristic vectors. They also constructed a torus 

manifold with locally standard action from the pair (P, λ). Following [18] we write the construction briefly. 

A more general construction is done in [22].

Let P be a nice manifold with corners and (P, λ) be a characteristic pair. A codimension-k face F of 

P is a connected component of the intersection Fj1
∩ . . . ∩ Fjk

of unique collection of k facets Fj1
, . . . , Fjk

of P . Let Z(F ) be the submodule of Zn generated by the characteristic vectors λj1
, . . . , λjk

. Then Z(F ) is 

a direct summand of Zn. Therefore the torus TF := (Z(F ) ⊗Z R)/Z(F ) is a direct summand of Tn. Define 

Z(P ) = (0) and TP to be the proper trivial subgroup of Tn. If p ∈ P , then p belongs to the relative interior 

of a unique face F (p) of P .

Define an equivalence relation ∼ on the product Tn × P by

(t, p) ∼ (s, q) ⇐⇒ p = q and s−1t ∈ TF (p). (3.1)

Let

M(P, λ) = (Tn × P )/ ∼

be the quotient space. The group operation in Tn induces a natural Tn-action on M(P, λ). The projection 

onto the second factor of Tn × P descends to the quotient map

q : M(P, λ) → P, q([t, p]) = p (3.2)

where [t, p] is the equivalence class of (t, p). So the orbit space of this action is P . One can show that the 

space M(P, λ) has the structure of a locally standard torus manifold.

Definition 3.6. Two Tn-actions on 2n-dimensional torus manifolds M1 and M2 are called equivalent if there 

is a homeomorphism f : M1 → M2 such that

f(t · x) = t · f(x), ∀ (t, x) ∈ Tn × M1.

Definition 3.7. Let δ : Tn → Tn be an automorphism. Two torus manifolds M1 and M2 over the same 

manifold with corners P are called δ-equivariantly homeomorphic if there is a homeomorphism f : M1 → M2

such that

f(t · x) = δ(t) · f(x), ∀ (t, x) ∈ Tn × M1.

When δ is the identity automorphism, f is called an equivariant homeomorphism.

Proposition 3.8. Let M be a 2n-dimensional locally standard torus manifold over P , and λ : F(P ) → Zn be 

its associated characteristic function. Let M(P, λ) be the locally standard torus manifold constructed from 

the pair (P, λ), and H2(P, Z) = 0. Then there is an equivariant homeomorphism f : M(P, λ) → M covering 

the identity on P .

This proposition is a particular case of Theorem 6.2 in [22]. We remark that this result is proved for qua-

sitoric manifolds in [9], for torus manifolds with locally standard action in [18], and for specific 4-dimensional 

manifolds with effective T2-action in [20].

Lemma 3.9. Let M1 and M2 be 2n-dimensional quasitoric manifolds, then M1#Tk M2 is simply connected 

for all n and k except k = n = 1, 2.
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Proof. We adhere the notations of Example 3.4. Let qi : Mi → Pi be the orbit map, and Qi = Pi − qi(τi) ≃

Pi − {∗} where ∗ ∈ Pi for i = 1, 2. Then Qi is simply connected and Mi − τi = q
−1
i (Qi). By Proposition 3.8

we have

Mi − τi
∼=

(
Tn × Qi

)
/∼

where ∼ is defined in (3.1).

Let gi : Tn × Qi → Mi − τi be the quotient map, for i = 1, 2. By definition of the equivalence relation ∼, 

g−1
i (x) is connected for all x ∈ Mi − τi. Also Tn × Qi is locally path-connected and Mi − τi is semi-locally 

simply connected. Thus by Theorem 1.1 in [4], we get a surjective map

π1(gi) : π1(Tn × Qi) ։ π1(Mi − τi).

Since Qi is simply connected,

π1(Tn × Qi) = π1(Tn).

Existence of fixed point in Mi − τi implies that all generator of π1(Tn) maps to zero. So π1(Mi − τi) is 

trivial. Hence π1(M1#Tk M2) is trivial by Van-Kampen theorem. ✷

More generally we have,

Theorem 3.10. Let M be a locally standard torus manifold with orbit space P . If M has a fixed point and P

is simply connected, then M is simply connected.

Proof. Since M is a smooth locally standard torus manifold with fixed point, the orbit space P is a nice 

manifold with corners and ∂P 
= ∅ (see Section 4 in [22]).

By result of Yoshida [22], M is equivariantly homeomorphic to TP / ∼l, where TP is a principal Tn-bundle 

over P and ∼l is defined in Definition 4.9 in [22]. Since P is simply connected, the fibration

Tn → TP → P

induces a surjective map i∗ : π1(Tn) → π1(TP ). Let f : TP → TP / ∼l be the quotient map. From Section 4 

of [22], the fiber f−1(x) of each point x ∈ TP / ∼l is a connected subset of Tn. Hence by Theorem 1.1 in [4],

f∗ : π1(TP ) → π1(TP / ∼l) = π1(M)

is surjective and therefore f∗ ◦ i∗ is surjective. Since Tn-action has a fixed point, all generators of π1(Tn)

maps to identity via f∗ ◦ i∗. Thus π1(M) is trivial. ✷

4. LS-category of locally standard torus manifolds

The Lusternik–Schnirelmann category of a space X, denoted cat(X), is the least integer n such that 

there exists an open covering U1, . . . , Un of X with each Ui contractible to a point in the space X. If no 

such integer exists, we write cat(X) = ∞.

In this section we discuss the LS-category of locally standard torus manifolds for the following cases:

• Quasitoric manifolds.

• Locally standard torus manifold over P , where P is simply connected and a connected component of 

∂P is a simple polytope.
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• 4-dimensional locally standard torus manifold over P , where a connected component of ∂P is a boundary 

of a polygon.

Lemma 4.1. Let M be a 2n-dimensional quasitoric manifold over a simple polytope P . Then cat(M) = n +1.

Proof. By Proposition 3.10 in [9], each generator of degree 2n in the integral cohomology group of M

is a product of n cohomology classes of lowest dimension 2. Since dim(M) = 2n, cuplength of M (see 

Definition 1.4 of [7]) is n,

cup
Z
(M) = n.

Thus by Proposition 1.5 in [7],

cat(M) ≥ n + 1.

By Corollary 3.9 of [9], M is simply connected. Therefore by Proposition 27.5 in [10],

cat(M) ≤ n + 1. ✷

Lemma 4.2. Let M be a 2n-dimensional locally standard torus manifold over P . If a connected component 

of ∂P is a boundary of an n-dimensional simple polytope Q, then

cat(M) ≥ n + 1.

Proof. Let v be a vertex of Q and v = Fi1
∩ · · · ∩ Fin

, where Fi1
, · · · , Fin

are unique n-many facets of Q

(and therefore facets of P ). Let xv = q
−1(v) and Xj = q

−1(Fij
), for j = 1, 2, · · · , n. Since Tn-action on M

is locally standard, xv is a fixed point and the intersection X1 ∩ · · · ∩ Xn(= xv) is transversal. Therefore 

the Poincaré dual of Xj represents a non-zero cohomology class in H2(X, Z) (see Section 0.4 in [11]). So by 

definition of cup-length, cup
Z
(M) ≥ n. ✷

Note that Lemma 4.2 is not true for every locally standard torus manifold, see the Example 6.6.

Theorem 4.3. Let M be a 2n-dimensional locally standard torus manifold with a simply connected orbit 

space P . If a connected component of ∂P is the boundary of a simple polytope Q, then

cat(M) = n + 1.

Proof. By Theorem 3.10 M is simply connected, so cat(M) ≤ n + 1. On the other hand by Lemma 4.2, 

cat(M) ≥ n + 1. ✷

Corollary 4.4. Let M1 and M2 be quasitoric manifolds. Then for any k and n except k = n = 1, 2, we have

cat(M1#Tk M2) = n + 1.

Proof. Let P be the orbit space of locally standard Tn-action on M1#Tk M2. Since M1 and M2 are qua-

sitoric manifolds, ∂P contains the boundary of a simple polytope. Also by Lemma 3.9, M1#Tk M2 is simply 

connected. Therefore by Theorem 4.3

cat(M1#Tk M2) = n + 1. ✷
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Fig. 1. An eye shape.

Fig. 2. Choosing neighborhood Xi, Yj , and Zk.

Lemma 4.5. Let M be a 4-dimensional locally standard torus manifold with a fixed point x0. Then any orbit 

is contractible to x0.

Proof. Let P be the orbit space and q : M → P be the orbit map. By Proposition 3.8, we may assume that 

M = M(P, λ) where λ is the characteristic function of M . Let θ be an orbit such that q(θ) = x ∈ P . We 

can choose a path α : [0, 1] → P from x to x0 such that α is injective and α(0, 1) ∩ P ⊂ P 0 (interior of P ). 

We denote the image of α by [x, x0]. Then

(T2 × [x, x0])/ ∼ ⊂ M.

Let T2
x be the isotropy group of x. Then

θ = q
−1(x) = (T2 × x)/ ∼∼= T2/T2

x.

Since the T2-action is locally standard, we have T2 ∼= T2
x ⊕ (T2/T2

x). Observe that (T2/T2
x × [x, x0])/ ∼ gives 

a homotopy. ✷

Theorem 4.6. Let M be a 4-dimensional locally standard torus manifold over P , such that a connected 

component of ∂P is the boundary of a polygon. Then

cat(M) = 3.

Proof. By Lemma 4.2, cat(M) ≥ 3. Since the T2-action on M is locally standard, P is a nice 2-dimensional 

manifold with corners. So every component of ∂P is either boundary of a polygon, a circle, or an eye shape 

(see Fig. 1).

Note that P can be obtained from a closed surface by removing the interior points of a finite number of 

non-intersecting polygons, or polygons and eye shapes, or polygons and circles, or polygons and eye shapes 

and circles. Thus by [1] P has a triangulation Σ such that the vertices of P belong to the vertex set of Σ. 

Let

• {x1, . . . , xl} be the vertices of Σ,

• {E1, . . . , Em} be the edges of Σ, and

• {F1, . . . , Fn} be the faces of Σ.

Suppose yj and zk are interior points of Ej and Fk respectively, for j = 1, . . . , m and k = 1, . . . , n. Regarding 

to the Fig. 2 one can choose the neighborhoods Xi, Yj , Zk of xi, yj , zk in P respectively such that
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Fig. 3. Example of covering for a triangulation.

(1) Xi ∩ Xj = ∅, Yi ∩ Yj = ∅ and Zi ∩ Zj = ∅ if i 
= j.

(2) yi, zi /∈ Xj , xi, zi /∈ Yj and xi, yi /∈ Zj for all i, j.

(3) Xi1
∪ Yj ∪ Xi2

is an open neighborhood of Ej in P if xi1
and xi2

are vertices of Ej .

(4) Zk ∪ Yk1
∪ Yk2

∪ Yk3
∪ Xi1

∪ Xi2
∪ Xi3

is an open neighborhood of Fk in P if Ek1
, Ek2

, Ek3
are edges of 

Fk and xi1
, xi2

, xi3
are vertices of Fk.

(5) Zk ⊂ F 0
k where F 0

k is the interior of Fk.

(6) Each Xi is either homeomorphic (preserving the codimension function) to R2
≥0, or R≥0 × R, or R2.

(7) Each Yj is either homeomorphic (preserving the codimension function) to R≥0 × R, or R2.

(8) Each Zk is homeomorphic (preserving the codimension function) to R2.

(See Fig. 3.)

Suppose q : M → P is the orbit map. Let Ui = q
−1(Xi), Vj = q

−1(Yj) and Wk = q
−1(Zk) for 

i = 1, . . . , l, j = 1, . . . , m and k = 1, . . . , n. Then Ui, Vj and Wk are equivariantly contractible to the 

orbit q−1(xi), q
−1(yj), and q−1(zk) respectively. By hypothesis M has a fixed point say x̂0. By Lemma 4.5

q
−1(xi), q

−1(yj), and q−1(zk) are contractible to x̂0. Thus Ui, Vj and Wk are equivariantly contractible to x̂0. 

Let

A =
l⋃

i=1

Ui, B =
m⋃

j=1

Vj and C =
n⋃

k=1

Wk.

By the choice of Xi, Yj and Zk we get that A, B and C are contractible to x̂0. Clearly M = A ∪ B ∪ C. 

Therefore cat(M) ≤ 3. ✷

We remark that the proof of previous theorem could be obtained by using Corollary 1.7 of [19], however 

the current version of proof plays an important role in proof of Theorem 5.7. More generally we can prove 

the following.

Corollary 4.7. Let M be a 2n-dimensional locally standard torus manifold over P . If there exists a triangu-

lation for P , then cat(M) ≤ n + 1.

Corollary 4.8. Let M be a 2n-dimensional locally standard torus manifold over P , such that a connected 

component of ∂P is the boundary of a polygon. If there exists a triangulation for P , then cat(M) = n + 1.

Proof. This follows from Lemma 4.2 and Corollary 4.7. ✷

Note that Theorem 4.6 is not true for every locally standard torus manifold, see Examples 4.9 and 6.6.
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Fig. 4. An annulus in R
2.

Example 4.9. Consider the annulus P and characteristic function λ as in the Fig. 4. Note that P ∼= C × I

where C is a circle and I is the closed interval [0, 1]. Then the following is an equivariant homeomorphism

(T2 × C × I)/ ∼ ∼= C × (T2 × I)/ ∼

where ∼ is defined in (3.1). By Section 2 in [20],

(T2 × I)/ ∼ ∼= RP3.

Therefore

M(P, λ) ∼= (T2 × C × I)/ ∼ ∼= C × (T2 × I)/ ∼ ∼= S1 × RP3.

Since cat(RP3) = 4 and cat(S1) = 2, using categorical sequences (see Section 1.5 in [7]), one can show that

cat(S1 × RP3) ≤ 5.

On the other hand by Künneth theorem,

H∗(S1 × RP3,Z2) = H∗(S1,Z2) ⊗Z2
H∗(RP3,Z2)

Therefore cup
Z2

(S1 × RP3) = 4. Thus by Proposition 1.5 in [7],

cat(S1 × RP3) = 5.

5. Equivariant LS-category of torus manifolds

In this section, we compute equivariant LS-category of some locally standard torus manifolds.

Theorem 5.1. Let M be a 2n-dimensional quasitoric manifold with k fixed points. Then

catTn(M) = k.

Proof. Since the fixed points are isolated, by Corollary 2.9 we have

catTn(M) ≥ k.

So it is enough to show that for any v ∈ MT
n

, there is a Tn-categorical subset Xv, such that

M =
⋃

v∈MTn

Xv.
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Let q : M → P be the orbit map. Then P is a simple n-polytope and also MT
n

corresponds bijectively to 

V (P ), the vertex set of P . So we may assume

MT
n

= V (P ).

For v ∈ V (P ), let

Cv =
⋃

v /∈F

F, Uv = P − Cv, and Xv = q
−1(Uv)

where F is a face of P . Clearly Xv is Tn-invariant. Since Uv is a convex subset of P , it is contractible to v. 

So there exists a homotopy h : Uv × I → P such that for all x ∈ Uv, h(x, 0) = x, h(x, 1) = v, and also for 

any face F of Uv we have

h(x, t) ∈ F, ∀x ∈ F, t ∈ I.

By Lemma 1.8 of [9],

M ∼= M(P, λ) and Xv
∼= (Tn × Uv)/ ∼

where λ, M(P, λ), and ∼ are recalled in (3.1). Therefore h induces a homotopy

Id × h : Tn × Uv × I → Tn × P

defined by ((t, x), r) �→ (t, h(x, r)). Since for each face F of Uv, we have

x ∈ F =⇒ h(x, r) ∈ F, for all r ∈ I,

Id × h induces a homotopy H : Xv × I → M , with ([t, x], r) �→ [t, h(x, r)]. Since

sH([t, x], r) = s[t, h(x, r)] = [st, h(x, r)] = H([st, x], r) = H(s[t, x], r),

therefore H is Tn- homotopy. Also

H(x, 0) = x, H(x, 1) = q
−1(v) = {v}, ∀x ∈ Xv.

Thus Xv is Tn-categorical subset of M . Clearly {Xv : v ∈ V (P )} covers M , therefore catTn(M) =∣∣V (P )
∣∣ = k. ✷

Theorem 5.2. Let Mi be a 2n-dimensional quasitoric manifold over Pi, for i = 1, 2. Then

catTn(M1#Tk M2) =
∣∣V (P1)

∣∣ +
∣∣V (P2)

∣∣ , for k ≥ 1.

Proof. We adhere the notations of Example 3.4 and Theorem 5.1. By the construction of equivariant con-

nected sum we have M1#Tk M2 is a locally standard torus manifold. Let k ≥ 1. Then the number of fixed 

points of Tn-action on M1#Tk M2 is |V (P1)| + |V (P2)|. So by Corollary 2.9, we have

catTn(M1#Tk M2) ≥ |V (P1)| + |V (P2)|.

Let qi : Mi → Pi be the orbit map and qi(T
k) = xi, so xi belongs to the relative interior of a k-dimensional 

face Ei of Pi for i = 1, 2. Let L(Pi) be the face lattice of Pi and v ∈ V (Pi). Define
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Cv =
⋃

v /∈F ∈L(Pi)

F, Uv = Pi − Cv and Xv = q
−1
i (Uv).

Let S1 = {v11, . . . , v1p} and S2 = {v21, . . . , v2q} be the vertices of E1 and E2 respectively. For i ∈ {1, 2}, 

let

αij : I → Pi

be a simple path from xi to vij such that:

• αij(I0) ⊂ E0
i , where E0

i is the relative interior of Ei, and

• αi1(I0) ∩ αi2(I0) = ∅,

where 1 ≤ j ≤ p for i = 1 and 1 ≤ j ≤ q for i = 2. Let

Vv =

{
Uv − qi(τi) if v ∈ V (Pi) − Si for i ∈ {1, 2}

Uv − {qi(τi) ∪ αil(I
0)} if v ∈ Si and v 
= vil.

(5.1)

Let P1#P2 be the orbit space (M1#Tk M2)/Tn. Note that P1#P2 can be obtained from P1 − q1(τ1) and 

P2 − q2(τ2) by gluing q1(∂τ1) and q2(∂τ2) via a homeomorphism which preserve codimension function as 

well as characteristic function. So Vv is an open subset of P1#P2 containing the vertex v. If v ∈ V (Pi), then 

Yv = q
−1
i (Vv) is a Tn-invariant subset of Mi which is equivariantly contractible to the fixed point q−1

i (v)

by Proof of Theorem 5.1. From the definition of equivariant connected sum, there is a Tn-invariant open 

neighborhood Ŷv of Yv with a Tn-homotopy from Ŷv to Yv. Then the collection

{
Ŷv : v ∈ V (P1) ∪ V (P2)

}

is a Tn-categorical covering of M1#Tk M2. Thus

catTn(M1#Tk M2) ≤ |V (P1)| + |V (P2)|. ✷

Remark 5.3. If k = 0, then M1#Tk M2 is a quasitoric manifold, therefore we can apply Theorem 5.1.

Example 5.4. Let M1 and M2 be 4-dimensional quasitoric manifolds over triangle P1, and rectangle P2

respectively. Let xi be the interior point of Pi, i = 1, 2. Then qi(τi) is a neighborhood of xi with the 

boundary Ci for i = 1, 2. Regarding to Theorem 5.2 here E1 = P1 and E2 = P2.

So

• V11 = P1 −
{
q1(τ1) ∪ [v12, v13] ∪ α12(I0)

}
.
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• V12 = P1 −
{
q1(τ1) ∪ [v11, v13] ∪ α11(I0)

}
.

• V13 = P1 −
{
q1(τ1) ∪ [v11, v12] ∪ α11(I0)

}
.

• V21 = P2 −
{
q2(τ2) ∪ [v22, v23] ∪ [v23, v24] ∪ α22(I0)

}
.

• V22 = P2 −
{
q2(τ2) ∪ [v23, v24] ∪ [v21, v24] ∪ α21(I0)

}
.

• V23 = P2 −
{
q2(τ2) ∪ [v21, v22] ∪ [v21, v24] ∪ α21(I0)

}
.

• V24 = P2 −
{
q2(τ2) ∪ [v21, v22] ∪ [v22, v23] ∪ α21(I0)

}
.

Here [vij , vkl] is the edge joining the vertices vij and vkl. Clearly Yij = q
−1
i (Vij) is T2-invariant and equiv-

ariantly contractible to the fixed point q−1
i (vij). Note

M1#T2M2 = Y11 ∪ Y12 ∪ Y13 ∪ Y21 ∪ · · · ∪ Y24.

Thus catT2(M1#T2M2) = 3 + 4 = 7.

Theorem 5.5. Let M and N be two 2n-dimensional quasitoric manifolds with p and q many fixed points 

respectively. Then catTn(M × N) = pq, where Tn-action on M × N is diagonal.

Proof. We adhere the notations of Theorem 5.1. First observe that the diagonal Tn-action on M × N has 

pq many fixed points. By Corollary 2.9,

catTn(M × N) ≥ pq.

Let Xu and Yv be Tn-categorical open subsets of M and N respectively (as constructed in Theorem 5.1), 

where u ∈ MT
n

and v ∈ NT
n

. Let

H : Xu × I → Xu and K : Yv × I → Yv

be the respective Tn-homotopy such that

H(x, 0) = x, H(x, 1) = u, ∀x ∈ Xu and K(y, 0) = y, K(y, 1) = v, ∀y ∈ Yv.

Then the Tn-homotopy

L : Xu × Yv × I → Xu × Yv defined by L(x, y, r) = (H(x, r), K(y, r))

implies that Xu × Yv ⊂ M × N is Tn-categorical. Since

M × N =
⋃

u∈MTn ,v∈NTn

Xu × Yv,

catTn(M × N) ≤ pq. Thus catTn(M × N) = pq. ✷

Corollary 5.6. Let Mi be a 2n-dimensional quasitoric manifold with pi many fixed points for i = 1, . . . , l. 

Then catTn(M1 × · · · × Ml) = p1 . . . pl, where Tn-acts on M1 × · · · × Ml diagonally.

Theorem 5.7. Let M be a 4-dimensional locally standard torus manifold over P , and s be the number of 

circles in ∂P (see proof of Theorem 4.5). Then 
∣∣MT

2∣∣ + 2s ≤ catT2M ≤
∣∣MT

2∣∣ + 2(s + 1).



150 M. Bayeh, S. Sarkar / Topology and its Applications 196 (2015) 133–154

Proof. By Corollary 2.9

catT2(M) ≥
∣∣∣MT

2
∣∣∣.

Let q : M → P be the orbit map, and

X = q
−1(

s⋃

i=1

Ci) =

s⋃

i=1

q
−1(Ci),

where C1, . . . , Cs are the circles in ∂P . We claim that if a T2-categorical open subset U contains a fixed 

point, then U ∩ X = ∅. Suppose there is z ∈ U ∩ X and U contains a fixed point v. So O(z) ⊂ U . Since 

z ∈ X, q(z) ∈ Ci for some i ∈ {1, . . . , s}. Since T2-action on M is locally standard and Ci ⊂ ∂P , O(z) is 

homeomorphic to a circle and isotropy of z is a circle subgroup of T2.

Suppose H : O(z) × I → M be a T2-path from O(z) to O(v) = v. Then q ◦ H : z × I → P is a path from 

q(z) to q(v). Observe that Im(q ◦ H) ∩ P 0 
= ∅. Since isotropy group over the interior P 0 is trivial, it is a 

contradiction to Lemma 2.15. This proves our claim.

On the other hand for each i ∈ {1, · · · , s}, q−1(Ci) is homeomorphic to Ci × S1, for some circle subgroup 

S1 of T2. Also for all y ∈ q
−1(Ci), T

2
y

∼= S1. Since T2-action on M is locally standard, there exists an 

equivariant tubular neighborhood Ni of q−1(Ci) such that T2
x is trivial for all x ∈ Ni − q

−1(Ci). So by 

Lemma 2.15, there is no G-path from an orbit in q−1(Ci) to any orbit in M − q
−1(Ci), and therefore 

q
−1(Ci) cannot be covered by a T2-categorical open set.

Suppose U is a T2-categorical subset such that

U ∩ q
−1(Ci) 
= ∅ 
= U ∩ q

−1(Cj), for some i 
= j.

So U is G-homotopic to an orbit O(z) in M . Therefore there exists a G-path from an orbit in q−1(Ci) to 

O(z), meaning O(z) ⊂ q
−1(Ci). Similarly O(z) ⊂ q

−1(Cj) which is a contradiction because q−1(Ci) and 

q
−1(Ci) are disjoint by locally standardness of the action.

Hence

∣∣∣MT
2
∣∣∣ + 2s ≤ catT2(M).

Let Q1, . . . , Qk be the edges of P . To prove the other inequality, we adhere the notations of the proof 

of Theorem 4.6. Since the fixed point set corresponds bijectively to the vertex set of P , we may assume ∣∣∣MT
2
∣∣∣ = x1, . . . , xk where k < l. Now choose an orientation on P such that the vertex xi is the initial vertex 

of Qi. We denote the open cover of P constructed in the proof of Theorem 4.6 by U(P ). Let

Ri = {U ∈ U(P ) : U ∩ Qi 
= ∅ and (V (Qi) − {xi}) /∈ U} and Ri =
⋃

U∈Ri

U.

For simplicity, we may assume xk+j , xk+s+j ∈ Cj for j = 1, . . . , s. Let

Rk+j = {U ∈ U(P ) : U ∩ Cj 
= ∅ and xk+j /∈ U} and Rk+j =
⋃

U∈Rk+j

U.

It is an easy exercise to show that there is a codimension function preserving homeomorphism from Ri to 

R2
≥0 if 1 ≤ i ≤ k and from Rk+j to R × R≥0 if 1 ≤ j ≤ s. So q−1(Ri) is equivariantly contractible to 

the orbit q−1(xi) for i = 1, . . . , k + s. Also q−1(Xk+s+j) is equivariantly contractible to q−1(xk+s+j) for 

j = 1, . . . , s.
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Let

Rk+2s+1 =
⋃

yi∈P 0

Yi and Rk+2s+2 =
⋃

zj∈P 0

Zj .

Recall that Yi and Zj are homeomorphic to open disc and subset of P 0 if yi ∈ P 0. So q−1(Yi) and q−1(Zj)

are equivariantly contractible to q−1(yi) and q−1(zj) respectively. Since Yi1
∩ Yi2

= Zj1
∩ Zj2

= ∅ for i1 
=

i2, j1 
= j2 and P 0 is path connected space, q−1(Rk+2s+1) and q−1(Rk+2s+2) are equivariantly contractible 

to an orbit. Note that

M =
k+s⋃

i=1

q
−1(Ri) ∪

s⋃

j=1

q
−1(Xk+s+j) ∪ q

−1(Rk+2s+1) ∪ q
−1(Rk+2s+2).

Therefore catT2M ≤
∣∣MT

2∣∣ + 2(s + 1). ✷

6. Examples

Example 6.1. Consider the natural T2-action on

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1},

which is defined by

(t1, t2) · (z1, z2) → (t1z1, t2z2).

Since all the isotropy groups T2
x are trivial except for x = (1, 0) and x = (0, 1), by Lemma 2.16 the orbits 

O(1, 0) and O(0, 1) cannot belong to a same T2-categorical subset of S3 and therefore catT2(S3) ≥ 2. Let

U1 = S3 − O(1, 0) and U2 = S3 − O(0, 1).

Let B2 be the open disk. Since U1 and U2 are equivariantly homeomorphic to S1 × B2, there are 

T2-homotopies from U1 and U2 onto the orbits O(0, 1) and O(1, 0) respectively. Thus catT2(S3) = 2.

Example 6.2. Consider the natural T2-action on

S5 =
{

(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 + |z3|2 = 1
}

,

which is defined by

(t1, t2) · (z1, z2, z3) → (t1z1, t2z2, z3).

An orbit of this action is either a point, circle, or torus; And S5 is not contractible to any of them. So 

catT2(S5) ≥ 2. Let

V1 = S5 − {(0, 0, −1)} and V2 = S5 − {(0, 0, 1)}.

Clearly V1 and V2 are equivariantly contractible to the fixed points (0, 0, 1) and (0, 0, −1) respectively. So 

they make a T2-categorical covering of S5. Thus catT2(S5) = 2.

Lemma 6.3. Consider the T2-actions defined in the Examples 6.1 and 6.2. For any subgroup H of T2, the 

fixed point sets (S3)H and (S5)H are path-connected. Hence S3 and S5 are T2-connected.
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Proof. If H = {(1, 1)} is the trivial subgroup of T2, then (S3)H = S3, and it is path-connected.

• Assume H is non-trivial and there exist α 
= 1 
= β such that p0 = (α, β) ∈ H. In this case

(S3)H ⊂ (S3){p0} = ∅.

• Assume H is non-trivial and for all elements (α, β) in H, either α = 1 or β = 1. If all elements of H

look like (1, β), then

(S3)H =
{

(z1, 0) ∈ S3 : |z1|2 = 1
}

∼= S1.

Similarly if all elements of H look like (α, 1), then (S3)H ∼= S1.

Thus in any case (S3)H is path-connected. Similarly one can show that (S5)H is path-connected. ✷

Note that every compact metric space is completely normal, so by Lemma 2.22, S3, S5 and S3 × S5 are 

T2-completely normal spaces.

Example 6.4 (Counterexample to Theorem 3.15 in [6]). We adhere notations of Examples 6.1 and 6.2. Let 

X = S3 × S5. Consider the diagonal T2-action on X, which is defined by

t · (p, q) → (t · p, t · q).

Let A0 = ∅, A1 = U1, A2 = S3 and B0 = ∅, B1 = V1, B2 = S5. Clearly A0 ⊂ A1 ⊂ A2 and B0 ⊂ B1 ⊂ B2 are 

T2-categorical sequences for S3 and S5 respectively. Consider the sequence

C0 ⊂ C1 ⊂ C2 ⊂ C3 (⋆)

where

C0 = ∅, C1 = A1 × B1, C2 = A2 × B1 ∪ A1 × B2, and C3 = A2 × B2 = X.

Although S3, S5 and X satisfy the conditions in Theorem 3.15 in [6], we show that

C2 − C1 = (A2 − A1) × B1 ∪ A1 × (B2 − B1)

does not sit in any T2-categorical set of X, and therefore (⋆) is not a T2-categorical sequence.

Let S1
1 and S1

2 be the circle subgroups of T2 determined by the standard vectors e1 and e2 in Z2 respec-

tively. Let x = ((1, 0), (0, 0, 1)) and y = ((0, 1), (0, 0, −1)). Note that

O(x) ⊂ (A2 − A1) × B1 and O(y) ⊂ A1 × (B2 − B1).

Also for isotropy groups we have, T2
x = S1

2 and T2
y = S1

1. Suppose there exists z ∈ X with T2-paths from 

O(x) to O(z) and from O(y) to O(z). By Lemma 2.15, S1
1 and S1

2 are subgroups of T2
z. Thus z is a fixed 

point. But T2-action on X has no fixed point, therefore by Lemma 2.16 there is no T2-categorical subset in 

X containing C2 − C1. This contradicts the arguments in the proof of Theorem 3.15 in [6].

Here we show that catT2(S3 ×S5) = 4. Clearly U1 ×V1, U1 ×V2, U2 ×V1, and U2 ×V2 form a T2-categorical 

cover for S3 × S5. Hence catT2(S3 × S5) ≤ 4. On the other hand according to orbit types of T2-action on 
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S3 × S5, one can show that the isotropy groups are either trivial or homeomorphic to S1. So by using 

Theorem 3.7 in [14], it is enough to show that

catT2(S1 × S3) ≥ 2.

By looking at homology groups, it is clear that S1 × S3 cannot contract to an orbit. Hence catT2(S1 × S3)

cannot be one. Thus

catT2(S3 × S5) ≥ catT2(S1 × S3) + catT2(S1 × S3) ≥ 4.

Example 6.5 (Counterexample to Theorem 3.16 in [6]). Let M and N be 2m and 2n dimensional quasitoric 

manifolds over the polytopes P and Q respectively. Then M × N is a 4mn-dimensional quasitoric manifold 

over P × Q. By Theorem 5.1,

catTm×Tn(M × N) =
∣∣V (P × Q)

∣∣ =
∣∣V (P )

∣∣ ×
∣∣V (Q)

∣∣ = catTm(M) × catTn(N).

Note that M is a Tm-manifold, N is a Tn-manifold, and M × N is a Tm × Tn-manifold. Also M × N is 

a compact metrizable space, so it is completely normal.

Example 6.6. We adhere the notation of Example 3.3. Let

V1 = S2n − {(0, · · · , 0, −1)} , V2 = S2n − {(0, · · · , 0, 1)}.

Since V1 and V2 are equivariantly contractible to the fixed points (0, · · · , 0, 1) and (0, · · · , 0, −1) respectively, 

so they are Tn-categorical subset of S2n. Thus catTn(S2n) = 2. In particular cat(S2n) = 2, since S2n is not 

contractible.

Example 6.7. Let p > 0, q1, . . . , qn be integers such that p and qi are relatively prime for all i = 1, . . . , n. 

Consider

S2n+1 = {(z1, . . . , zn+1) ∈ Cn+1 : |z1|2 + · · · + |zn+1|2 = 1}.

The (2n + 1)-dimensional lens space L = L(p; q1, . . . , qn) is the orbit space S2n+1/Zp where Zp-action on 

S2n+1 is defined by

θ:Zp × S2n+1 → S2n+1,

([k], (z1, . . . , zn+1)) �→ (e2kq1π
√

−1/pz1, . . . , e2kqnπ
√

−1/pzn, e2kπ
√

−1/pzn+1).

The equivalence class of (z1, . . . , zn+1) is denoted by [z1, . . . , zn+1]. The (n + 1)-dimensional compact torus 

Tn+1 acts on L by:

(t1, . . . , tn+1) × [z1, . . . , zn+1] → [t1z1, . . . , tn+1zn+1]. (6.2)

Let e1, . . . , en+1 be the standard vectors in Cn+1, and [ei] be the equivalence class of ei in L. The orbit of 

[ei] is Oi = {[0, . . . , 0, zi, 0, . . . , 0] : |zi| = 1}. From the action in Equation (6.2) O1, . . . , On+1 are the only 

orbits of dimension one and there is no orbit of dimension less than one. Suppose there are Tn+1-paths from 

Oi to O(z) and from Oj to O(z) for some z ∈ L with i 
= j. So we get inclusions of isotropy groups,

Tn+1
ei

⊂ Tn+1
z and Tn+1

ej
⊂ Tn+1

z .
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Thus Tn+1
z = Tn+1, since i 
= j. This contradicts the fact that Tn+1-action on L has no fixed point. By 

Lemma 2.16, Oi and Oj cannot belong to same Tn+1-categorical subset of L. Thus

catTn+1(L) ≥ n + 1.

Let

Ui = {[z1, . . . , zn+1] ∈ L : zi 
= 0}, for i = 1, . . . , n + 1.

Then Ui is invariant open subset of L. It is not difficult to show that Ui is a Tn+1-categorical set contain-

ing Oi. Since U1, . . . , Un+1 covers L, catTn+1(L) ≤ n + 1. Hence

catTn+1(L) = n + 1.
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