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The walk distances in graphs are defined as the result of appropri-

ate transformations of the
∑∞

k=0(tA)
k proximity measures, where

A is the weighted adjacency matrix of a connected weighted graph

and t is a sufficiently small positive parameter. The walk distances

are graph-geodetic, moreover, they converge to the shortest path

distance and to the so-called long walk distance as the parameter t

approaches its limiting values. In this paper, simple expressions for

the long walk distance are obtained. They involve the generalized

inverse, minors, and inverses of submatrices of the symmetric irre-

ducible singular M-matrix L = ρI − A, where ρ is the Perron root

of A.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The walk distances for graph vertices are a parametric family of graph distances proposed in [4].

Along with their modifications they generalize [5] the logarithmic forest distances [3], resistance

distance, shortest path distance, and the weighted shortest path distance. The walk distances are
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graph-geodetic: for a distance3 d(i, j) on the vertices of a graph G this means that d(i, j) + d(j, k) =
d(i, k) if and only if every path in G connecting i and k visits j.

The long walk distance, dLW(i, j), is obtained by letting the parameter of the walk distances go to

one of its limiting values (approaching the other limiting value leads to the shortest path distance).

A number of expressions for dLW(i, j) are given in [5]. In this paper, we obtain simple expressions in

terms of the matrix L = ρI − A, where A is the weighted adjacency matrix of a connected weighted

graph G on n vertices and ρ is the Perron root of A. L is a symmetric irreducible singular M-matrix, so

rank L = n − 1 and L is positive semidefinite. In [5], Lwas called the para-Laplacian matrix of G. The
expressions presented in this paper generalize some classical expressions for the resistance distance

(cf. [2]). They enable one to conclude that the long walk distance can be considered as the counterpart

of the resistance distance obtained by replacing the Laplacianmatrix L=diag(A1)−A and the vector 1

(of n ones) which spans Ker L with the para-Laplacian matrix L and the eigenvector of A spanning

Ker L. If A has constant row sums, then L = L and these distances coincide.

2. Notation

In the graph definitions we mainly follow [7]. Let G be a weighted multigraph (a weighted graph

where multiple edges are allowed) with vertex set V(G) = V, |V | = n > 1, and edge set E(G).
Loops are allowed; throughout the paper we assume that G is connected. For brevity, we will call G a

graph. For i, j ∈ V, let nij ∈ {0, 1, . . .} be the number of edges incident to both i and j in G; for every

q ∈ {1, . . . , nij}, wq
ij > 0 is the weight of the qth edge of this type. Let

aij =
nij∑
q=1

w
q
ij

(if nij = 0,we set aij = 0) and A = (aij)n×n; A is the symmetricweighted adjacency matrix of G. In this

paper, all matrix entries are indexed by the vertices of G.
The weighted Laplacian matrix of G is L=diag(A1)−A, where 1 is the vector of n ones.

For v0, vm ∈ V, a v0 → vm path (simple path) in G is an alternating sequence of vertices and edges

v0, e1, v1, . . . , em, vm where all vertices are distinct and each ei is an edge incident to vi−1 and vi. The
unique v0 → v0 path is the “sequence”v0 having no edges.

Similarly, a v0 → vm walk in G is an arbitrary alternating sequence of vertices and edges v0, e1,
v1, . . . , em, vm where each ei is incident to vi−1 and vi. The length of a walk is the number m of its

edges (including loops and repeated edges). The weight of a walk is the product of the m weights of

its edges. The weight of a set of walks is the sum of the weights of its elements. By definition, for any

vertex v0, there is one v0 → v0 walk v0 with length 0 and weight 1.

Let rij be the weight of the set Rij of all i → j walks in G, provided that this weight is finite.

R = R(G) = (rij)n×n will be referred to as thematrix of the walk weights.

By dr(i, j) we denote the resistance distance between i and j, i.e., the effective resistance between i

and j in the resistive network whose line conductances equal the edge weightsw
q
ij in G. The resistance

distance has several expressions via the generalized inverse,minors, and inverses of the submatrices of

the weighted Laplacianmatrix of G (see, e.g., [9,1] or the papers by Subak-Sharpe and Styan published

in the 60s and cited in [5]).

Definition 1. For a multigraph G with vertex set V, a function d : V × V → R is called graph-

geodetic provided that d(i, j) + d(j, k) = d(i, k) holds if and only if every path in G connecting i and k

contains j.

Graph-geodetic functions can also be called bottleneck additive or cutpoint additive.

3 In this paper, a distance is assumed to satisfy the axioms of metric.
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3. The walk distances

For any t > 0, consider the graph tG obtained from G by multiplying all edge weights by t. If the
matrix of the walk weights of tG, Rt = R(tG) = (rij(t))n×n, exists, then

4

Rt =
∞∑
k=0

(tA)k = (I − tA)−1,

where I denotes the identity matrix of appropriate dimension.

By assumption, G is connected, while its edge weights are positive, so Rt is positive whenever it

exists. The walk distances can be introduced as follows.

Definition 2. For a connected graph G, the walk distances on V(G) are the functions dt(i, j) : V(G)×
V(G) → R and the functions positively proportional to them, where

dt(i, j) = − ln

⎛
⎝ rij(t)√

rii(t) rjj(t)

⎞
⎠ . (1)

Lemma 1 [4]. For any connected G, if Rt = (rij(t)) exists, then (1) determines a graph-geodetic distance

on V(G).

Regarding the existence (finiteness) of Rt, since G is connected, A is irreducible, so the Perron–

Frobenius theory of nonnegative matrices provides the following result.

Lemma 2. For any weighted adjacency matrix A of a connected graph G, the series Rt = ∑∞
k=0(tA)

k with

t > 0 converges to (I − tA)−1 if and only if t < ρ−1, where ρ = ρ(A) is the spectral radius of A.
Moreover, ρ is an eigenvalue of A; as such ρ has multiplicity 1 and a positive eigenvector.

Thus, the walk distance dt(i, j) with parameter t exists if and only if 0 < t < ρ−1.
A topological interpretation of the walk distances in terms of the weights of routes and circuits in

G is given in [6].

4. The long walk distance

The long walk distance is defined [5] as the limit of the walk distance (1) as t → (ρ−1)− with a

scaling factor depending on t, ρ, and n. Namely,

dLW(i, j)
def= lim

t→(ρ−1)−
2dt(i, j)

nρ2(ρ−1 − t)

= lim
t→(ρ−1)−

ln rii(t) + ln rjj(t) − 2 ln rij(t)

nρ2(ρ−1 − t)
, i, j ∈ V .

It is shown [5] that this limit always exists and defines a graph-geodetic metric.

There is a two-way connection between the long walk distance and the resistance distance. In

particular, the following theorem holds.

Theorem 1 [5]. Let G be a connected graph on n vertices with weighted adjacency matrix A; let p =
(p1, . . . , pn)

T be the Perron vector of A. Suppose that p′ = (p′
1, . . . , p

′
n)

T = √
np/‖p‖2, where

4 In the more general case of weighted digraphs, the ij-entry of the matrix Rt − I is called the Katz similarity between vertices i

and j. Katz [8] proposed it to evaluate the social status taking into account all i→ j paths.
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‖p‖2 = (
∑n

i=1 p
2
i )

1/2, and P′ = diag p′. Then the long walk distance in G coincides with the resistance

distance in the graph G′ whose weighted adjacency matrix is P′AP′.

Using Theorem1 and two classical expressions for the resistance distance one has:

Corollary 1 [5]. In the notation of Theorem 1,

dLW(i, j) = det(L′̄ιῑ)j̄ j̄

det L′vv
, j �= i, ∀ v ∈ V,

dLW(i, j) = �′−
ii + �′−

jj − 2�′−
ij ,

where L′ = P′LP′, L = ρI − A, Xuv is X with row u and column v removed, and L′− = (�′−
ij ) is any

g-inverse 5 of L′.

Note that by Lemma13 in [5], L′ is the weighted Laplacian matrix of the connected graph G′ intro-
duced in Theorem1. Therefore, the Matrix tree theorem implies that det L′vv, the denominator of the

above determinant formula for dLW(i, j), is strictly positive.

Now we obtain simple expressions for dLW(i, j) in terms of the matrix L = ρI − A.

5. Simple expressions for the long walk distance

Theorem 2. In the notation of Theorem 1 and Corollary 1, for all i, j ∈ V such that j �= i,

dLW(i, j) = det(L ῑ ῑ)j̄ j̄

p′2
j det L ῑ ῑ

, (2)

dLW(i, j) = zT(i, j)L−z(i, j), (3)

dLW(i, j) = zTu(i, j)(Lvu)
−1zv(i, j), ∀ u, v ∈ V, (4)

where L− is any g-inverse of L and z(i, j) is the n-vector whose ith element is 1/p′
i, jth element is −1/p′

j,

and the other elements are 0.

Proof. By virtue of Corollary 1, for j �= i we have

dLW(i, j) = det((P′LP′)ῑῑ)j̄ j̄

det(P′LP′)ῑῑ
= (

∏
k �∈{i,j} p′

k)
2 det(Lῑ ῑ)j̄ j̄

(
∏

k �=i p
′
k)

2 det Lῑῑ

= det(L ῑ ῑ)j̄ j̄

p′2
j det L ῑῑ

,

that is, (2) holds. To prove (3), consider the matrix 6 H = (hij) ∈ R
n×n such that

hij =
⎧⎪⎨
⎪⎩
− p′

i det(L ῑῑ)j̄ j̄

2p′
j det L ῑῑ

, j �= i,

0, j = i.

(5)

Lemma 3. H is a g-inverse of L : LHL = L.

Proof. Let Dr
G′ be the matrix of resistance distances in the graph G′ introduced in Theorem1. Then, by

[12, Theorem10.1.4],

Dr
G′ = �−

G′1T + 1(�−
G′)T − 2L−G′ , (6)

5 A matrix Z is a g-inverse of X whenever X = XZX. A simple choice of L′− is (L′ + 1
n
11T)−1 [12, Theorem10.1.4].

6 H generalizes the zero-axial matrix Z studied in [13].
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where L−
G′ is any g-inverse of LG′ , LG′ is the weighted Laplacian matrix of G′, and �−

G′ is the column

vector containing the diagonal entries of L−
G′ . As LG′1 = 0 and 1TLG′ = 0T, (6) implies that

LG′(− 1
2
Dr
G′)LG′ = LG′ .

Since by Lemma13 in [5], LG′ = P′LP′ and by Theorem1, Dr
G′ = DLW

G (where DLW

G is the matrix of long

walk distances in G), we have

P′LP′(− 1
2
DLW

G )P′LP′ = P′LP′. (7)

It follows from (2) and (5) that

H = P′(− 1
2
DLW

G )P′,

moreover, P′ is invertible. Thus, (7) yields LHL = L, as desired. �

By (2) and (5),

dLW(i, j) = −2
hij

p′
i p

′
j

= zT(i, j)Hz(i, j), j �= i, (8)

where z(i, j) is the n-vector whose ith element is 1/p′
i, jth element is −1/p′

j, and the other elements

are 0.

Let i and j �= i be fixed and let z = z(i, j). Lemma2 implies that 0 is a simple eigenvalue of L,while

p spans Ker L.Hence, rank L = n−1 and the range of L is p⊥, the orthogonal complement of p. Since
z ∈ p⊥, it follows that z = Lx for some n-vector x. Consequently, if L− is a g-inverse of L, then

zT(i, j)L−z(i, j) = xTLL−Lx = xTLx = zT(i, j)Hz(i, j) = dLW(i, j),

where the last two transitions follow from Lemma3 and Eq. (8). This proves (3).

SinceL is a singularM-matrix, the principalminors ofL are strictly positive. By [5, Lemma7] (which

follows from Theorem3.1 in [10]) lvu/lvv = pu/pv,where lvu is the cofactor of the entry lvu ofL.Hence,
Lvu is non-singular. In view of (3), proving (4) reduces to showing that

LL∼
(uv)L = L, (9)

where L∼
(uv) ∈ R

n×n is the matrix that has all zeros in row u and column v and satisfies
(L∼

(uv)

)
uv =

(Lvu)
−1. Eq. (9) can be derived from the general result [12, Section 11.2]. Alternatively, the multiplica-

tion of block matrices verifies that for (lkm) = L and L′ = (l′km)
def= LL∼

(uv)L it holds that L′
uv = Luv,

l′uv = luv, l
′
uv = luv, and l′uv = luv(Luv)

−1luv, where luv and luv are L’s row u and column v with luv
removed, respectively. Now to prove (9) it remains to show that

luv(Luv)
−1luv = luv, (10)

which is true due to the following lemma.

Lemma 4. If X = (xkm)n×n is a singular matrix, while Xuv is non-singular, then

xuv = xuv (Xuv)
−1xuv,

where xuv and xuv are X’s row u and column v with xuv removed, respectively.

Lemma 4 is a special case of [11, Eq. (6.2.1)] and can alternatively be proved by first expanding det X

along row u and then expanding the cofactors of the entries in row u (except for xuv) along column v.
Lemma 4 verifies (10) and thus, (9) and (4). �
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In conclusion, it is worth introducing a rescaled version of the long walk distance, d̃LW(i, j)
def=

n‖p‖2
2 d

LW(i, j), where, as before, p is the Perron vector of A and n is the number of vertices. It has

the following desirable property: if for a sequence of connected graphs (Gk) on n vertices, we have7

ak12 = ak21 = 1, k = 1, 2, . . . , whereas all other entries akij tend to zero as k goes to infinity, then

d̃LW(1, 2) tends to 1 (while all other non-zero distances tend to infinity). If G is balanced, i.e., all its

vertices have the same weighted degree, then, obviously, both versions of the long walk distance

coincide with the resistance distance: d̃LW ≡ dLW ≡ dr.
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