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Simple approach to approximate quantum error correction based on the transpose channel
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We demonstrate that there exists a universal, near-optimal recovery map—the transpose channel—for

approximate quantum error-correcting codes, where optimality is defined using the worst-case fidelity. Using

the transpose channel, we provide an alternative interpretation of the standard quantum error correction (QEC)

conditions and generalize them to a set of conditions for approximate QEC (AQEC) codes. This forms the basis of

a simple algorithm for finding AQEC codes. Our analytical approach is a departure from earlier work relying on

exhaustive numerical search for the optimal recovery map, with optimality defined based on entanglement fidelity.

For the practically useful case of codes encoding a single qubit of information, our algorithm is particularly easy

to implement.
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I. INTRODUCTION

Quantum error correction (QEC) is one of the cornerstones

of quantum information and quantum computing. Since quan-

tum effects are extremely fragile and susceptible to damage

by environmental noise, many quantum communication or

computational tasks will be impossible without the use of QEC

to protect the information from noise. QEC is thus critical for

the success of quantum technologies. The idea behind QEC

is a simple one—information is stored in a particular part of

the system Hilbert space, cleverly chosen based on the noise

process, so a recovery operation can be applied to retrieve the

information affected by the noise.

Much of the discussion in the past on error correction

focuses on perfect QEC, where the recovery operation ei-

ther perfectly corrects the full completely positive trace-

preserving (CPTP) noise channel or perfectly corrects the

errors conditioned on the fact that fewer than some t

errors occurred. However, an example of a code designed

for correcting errors affected by weak amplitude damping

noise presented in Ref. [1] suggests that the requirement

for perfect recovery may be too stringent for certain tasks.

While the smallest known perfect QEC code requires at

least five qubits to encode a single qubit, the code in

Ref. [1] uses only four qubits to achieve comparable fidelity.

This illustrates a key advantage of relaxing the requirement

for perfect QEC—one might be able to encode the same

amount of information into fewer qubits while retaining a

nearly identical level of protection from the noise process.

The four-qubit code is also specially designed for the channel

in question, a departure from standard QEC codes that seek to

perfectly correct up to t arbitrary errors on the system. This

adaptation of the code to the noise channel, an idea emphasized

later in Ref. [2], is a crucial factor behind the success of the

four-qubit code. Such approximate QEC (AQEC) codes reveal

the possibility of designing codes that are better tailored to the

particular information processing task at hand.

The analysis in Ref. [1] was based on small perturbations

of the perfect QEC conditions central to the standard theory
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of error correction. Subsequent work on AQEC adopted an

alternate approach by recasting it as an optimization problem.

One can formulate AQEC as the problem of finding the optimal

encoding and recovery maps, given a noise channel and the

information we want to encode (qubit or higher-dimensional

object), with optimality defined in terms of a chosen measure

of fidelity. In this article, optimality is measured in terms of the

worst-case fidelity, i.e., the fidelity between the input state and

the state after noise and recovery, minimized over all possible

input states, for given encoding and recovery maps. This is a

triple-optimization problem since one needs to optimize over

all possible encodings, recovery maps, and input states.

The simplest approach to solving this optimization problem

is to hold either the encoding or the recovery map fixed

and then perform the optimization over the remaining two

variables—the recovery or the encoding map, and the input

state. The problem can be further simplified by looking

instead at measures based on entanglement fidelity [3] and

characterizing the performance of the code averaged over

some input ensemble. This eliminates the minimization over all

input states required for the worst-case fidelity measure. The

task of finding the optimal encoding or recovery map is then

numerically tractable via convex-optimization methods [4–8],

but the resulting recovery is now optimal for an averaged

measure of fidelity. Recovery maps which are near-optimal for

the average entanglement fidelity have also been constructed

analytically, first in Ref. [9] and more recently in Ref. [10].

For many communication or computational tasks, however,

one would prefer an assurance that all the information stored

in the code is well protected. In such cases, the worst-

case fidelity is the appropriate measure for determining the

optimality of encoding and recovery maps. The resulting

double-optimization problem for a given encoding map was

examined using semidefinite programming in Ref. [11]. This

method, however, requires a relaxation of one of the constraints

in the problem, so the recovery map found is typically

suboptimal. Furthermore, the numerically computed recovery

map is difficult to describe and understand analytically.

In this article, using the worst-case fidelity measure to

define optimality, and assuming a fixed encoding, we construct

a universal recovery map that is very easy to define analytically.

This universal recovery map—the transpose channel [9,12]—

gives a worst-case fidelity that cannot be too far from that
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of the optimal recovery. Using the fact that the transpose

channel is the optimal recovery map for perfect QEC codes,

we rewrite the error-correction conditions [13–15] for perfect

QEC in such a way that the role of the transpose channel

is apparent. From this, we derive necessary and sufficient

conditions for AQEC founded on the transpose channel, as a

natural generalization of the perfect QEC conditions. While

AQEC conditions have been derived in the past from an

information-theoretic perspective [16–20], our conditions are

algebraic and lead to a simple and universal algorithm to find

AQEC codes that does not require optimizing over all recovery

maps for each encoding map. Furthermore, we demonstrate

that the worst-case fidelity for the transpose channel is an

easily computable quantity for the most practically useful case

of codes encoding a single qubit. Note that AQEC based on the

worst-case entanglement fidelity was also discussed recently

in Ref. [21].

II. AQEC AS AN OPTIMIZATION PROBLEM

Consider a physical system, with Hilbert space denoted by

H. In this system, we seek to encode a qudit of information—

information carried by a d-dimensional Hilbert space H0, with

d � dim(H). In particular, we focus on the case of a subspace

code, where the qudit is encoded into a d-dimensional

subspace C, of H. Formally, the information is encoded into C
via a linear, invertible encoding map W . The action of noise

on the system is described by a completely positive (CP),

trace-preserving (TP) map E : B(H) → B(H). E can describe,

for example, the Markovian noise acting on the system over

some time step, or the effects of a single use of a noisy channel

for communication. Complete positivity of E entails that its

action can be described by a (nonunique) set of Kraus operators

{Ei}Ni=1 such that E acts as E(ρ) = ∑N
i=1 EiρE

†
i . To denote

the noise channel in terms of its Kraus elements, we write

E ∼ {Ei}. The fact that E is TP is enforced by the condition
∑

i E
†
i Ei = I, where I is the identity operator for the domain

of E . After the action of E , we perform a CPTP recovery map

R : B(H) → B(C) to undo the effects of the noise and then

decode using W−1.

How well the information is protected from the noise can be

quantified by the fidelity between the input qudit state and the

decoded state after noise and recovery. The fidelity between

any two states ρ and σ is given by F (ρ,σ ) ≡ tr
√

ρ1/2σρ1/2.

For a pure state ρ ≡ |ψ〉〈ψ |, this can be written as F (|ψ〉,σ ) ≡
F (|ψ〉〈ψ |,σ ) = √〈ψ |σ |ψ〉. Note that, 0 � F (ρ,σ ) � 1, with

F = 0 if and only if ρ and σ have orthogonal support, and

F = 1 if and only if ρ = σ . The fidelity is thus a measure of

how close two states are. Since we will often discuss fidelity

for a state before and after the action of a map �, we use the

shorthand F (|ψ〉,�) ≡ F [|ψ〉,�(|ψ〉〈ψ |)].
Based on the fidelity measure, we say that a code C, together

with W and R, is effective at protecting the information from

the noise E if the worst-case fidelity minρ∈S(H0) F [ρ,W−1 ◦
R ◦ E ◦ W] is close to 1. Here, S(H0) denotes the set of all

states, pure or mixed, in the codespace. In fact, since the fidelity

F (ρ,σ ) is jointly concave in its arguments (see, for example,

Ref. [22]), it suffices to minimize only over pure states in

S(H0).

Above, we considered a given encoding mapW and a given

recovery map R. In reality, one wants to maximize the error

correction capability provided by the system by choosing W
and R such that the worst-case fidelity is as close to 1 as

possible. The problem of AQEC can thus be phrased as

max
W

max
R

min
|ψ〉∈H0

F (|ψ〉,W−1 ◦ R ◦ E ◦ W). (1)

If the quantity in Eq. (1) attains the maximum possible value

of 1, i.e., there exist W and R such that the worst-case fidelity

is 1, then we have perfect QEC.

The simplest approach to solving this optimization problem

is to do an exhaustive search over all possible encodings. This

amounts to randomly choosing d-dimensional subspaces C ⊂
H. For each C, we still need to optimize over R to maximize

worst-case fidelity. For a given C, the optimization problem

can be written as

max
R

min
|ψ〉∈C

F (|ψ〉,R ◦ E), (2)

where the worst-case fidelity is computed over all pure states

in C only.

Before proceeding further, let us define some terminology.

We will often make use of the square of the fidelity, which

we denote as F 2(·,·) ≡ [F (·,·)]2. Whenever unambiguous, we

will also refer to F 2 as the fidelity. The recovery R with the

largest worst-case fidelity for a given C is the optimal recovery

and is denoted by Rop. The fidelity loss ηR, for a given code C
and a recovery R, is defined as

ηR ≡ 1 − min
|ψ〉∈C

F 2(|ψ〉,R ◦ E). (3)

The fidelity loss for Rop, denoted ηop, is ηop = minR ηR. We

refer to ηop as the optimal fidelity loss. A code C is said to be

ǫ-correctable if it has ηop � ǫ for some ǫ ∈ [0,1]. ǫ-

correctable codes with ǫ ≪ 1 are approximately correctable

in the sense that code states have fidelity at least
√

1 − ǫ ≃
1 − ǫ/2 after the action of the noise and (optimal) recovery.

III. TRANSPOSE CHANNEL AS UNIVERSAL,

NEAR-OPTIMAL RECOVERY

Here, we describe the transpose channel and demonstrate

that it is indeed the standard recovery map for perfect QEC

codes characterized by the well-known QEC conditions. We

then proceed to show that the transpose channel is nearly

optimal even in the case of AQEC codes.

A. Transpose channel

Consider a d-dimensional code C and a CPTP noise channel

E ∼ {Ei}Ni=1. Let P be the projector onto C and PE be the

projector ontoPE ≡ the support ofE(C). The transpose channel

is the CPTP map RP : B(PE ) → B(C) such that

RP (·) ≡
N

∑

i=1

PE
†
i E(P )−1/2(·) E(P )−1/2EiP, (4)

where the inverse of E(P ) is taken on its support. The transpose

channel can be understood as being composed of three CP

maps: RP = P ◦ E† ◦ N , where P is the projection P (·)P
onto C, E† is the adjoint of E , and N is the normalization map
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N (·) = E(P )−1/2(·)E(P )−1/2. In this form, RP is manifestly

independent of the choice of Kraus representation for E .

RP is a special case of a recovery map introduced in Ref. [9]

for reversing the effects of a quantum channel on a given initial

state. RP defined here is exactly the case for the initial state

P/d, where d is the dimension of C. In Ref. [23], RP was

shown to be useful for correcting information carried by codes

preserved according to an operationally motivated notion. The

term transpose channel owes its origin to Ref. [12], where this

channel was first defined in an information-theoretic context.

It was shown [24] that the transpose channel has the property

of being the unique noise channel that saturates Uhlmann’s

theorem, i.e., the monotonicity of relative entropy—a fact that

was later used to characterize states that saturate the strong

subbadditivity of quantum entropy [25].

While our focus is on AQEC, understanding the relevance

of RP to perfect QEC provides the intuition behind the AQEC

conditions presented later. An important characterization of

perfect QEC codes is the set of QEC conditions [13–15], which

we briefly review here (see, for example, Ref. [22]):

Theorem 1 (Perfect QEC conditions). A CPTP recovery R
that perfectly corrects a CP map E on a subspace code C exists

if and only if

∀i,j, PE
†
i EjP = αijP, (5)

for some complex matrix α.

It is useful to rewrite Eq. (5) in a “diagonal” form. α is

clearly Hermitian and can be diagonalized with a unitary u

such that α = uDu†, where D is the diagonal matrix of eigen-

values. The set {Fk ≡ ∑

i uikEi} constitutes a different Kraus

representation for E . With this choice of Kraus representation,

the perfect QEC conditions take the diagonal form

∀k,l, PF
†
k FlP = δkldkkP, (6)

where dkk are the diagonal entries of D.

The recovery map R when Eq. (5) is satisfied—which we

denote asRperf—is constructed as follows [22]: using the polar

decomposition FkP = √
dkkUkP , Rperf : B(PE ) → B(C) is

given by Rperf ∼ {PU
†
k }. One can check that Rperf is TP on

its domain B(PE ) and that for any ρ ∈ B(C), (Rperf ◦ E)(ρ) =
(
∑

k dkk)ρ. From the QEC conditions [Eq. (6)], we see that
∑

k dkk = tr[E(ρ)] is independent of ρ and is exactly equal to

1 if and only if E is TP on C. Rperf thus recovers the original

code state, up to any reduction in trace due to the possible

non-TP nature of E .

A natural question to ask here is how the transpose channel

RP relates to the recovery Rperf for a given E and C that satisfy

the QEC conditions. Here, we show that they are exactly the

same map, as previously noted in Ref. [9]:

Lemma 2. RP = Rperf .

Proof. Observe that E(P ) = ∑

k(FkP )(PF
†
k ) = ∑

k dkkPk ,

where Pk ≡ UkPU
†
k . Equation (6) gives PU

†
k UlP = δklP ,

so Pk’s are orthogonal projectors with PkPl = δklPk .

Hence, E(P )−1/2 = ∑

k Pk/
√

dkk . The Kraus operators

{PF
†
k E(P )−1/2} of RP can hence be written as

PF
†
k E(P )−1/2 = ∑

l

√
dkk/dllPU

†
k UlPU

†
l = PU

†
k , (7)

which are exactly the Kraus operators of Rperf . �

Perfect QEC is often discussed for a noise channel that is CP

but not necessarily TP. In fact, Theorem 1 and Lemma 2 remain

true even for a non-TP E . The non-TP scenario is particularly

relevant when we deal with a system of n quantum registers,

where each register is independently affected by some CPTP

noise E1. One often looks for codes that perfectly correct the

noise up to some maximum number t of quantum registers

with errors. Then, instead of having E ≡ E⊗n
1 , the relevant

noise channel for perfect QEC describes noise where at most

t registers have errors. Such an E is not TP, since we have

discarded the part of E⊗n
1 that corresponds to having errors in

more than t registers.

Actually, a perfect QEC code for such a non-TP noise

channel can be viewed as an AQEC code for the original

n-register noise channel E⊗n
1 , which is TP. In our AQEC

discussion, the code we look for is approximately correctable

on the channel anyway, so E is always assumed to be TP, which

is often the physically relevant scenario. The TP requirement

is also important for fidelity to be a good measure of the

efficacy of the recovery operation. Note that the analysis in

the remainder of the article applies to a special type of non-TP

maps—E ∼ {Ei} such that
∑

i PE
†
i EiP = aP for 0 � a � 1,

giving an additional proportionality factor a in our expressions.

B. Near-optimality of the transpose channel

In general, RP need not be the optimal recovery map Rop

for a given C and E . However, in the following theorem and

the subsequent corollary, which form the core results of our

article, we show that it does not do much worse than Rop.

Theorem 3. Consider a d-dimensional code C with optimal

fidelity loss ηop under a CPTP noise channel E . For any |ψ〉 ∈
C,

F 2(|ψ〉,Rop ◦ E) �
√

1 + (d − 1)ηopF (|ψ〉,RP ◦ E). (8)

Proof. Let {Rj } be a set of Kraus operators of Rop :

B(PE ) → B(C). For any |ψ〉 ∈ C, following [9], we have

F 2(|ψ〉,Rop ◦ E)

�

√

√

√

√

√

⎡

⎣

∑

i

|〈E†
i E(P )−1/2Ei〉|2

⎤

⎦

⎡

⎣

∑

j

|〈RjE(P )1/2R
†
j 〉|2

⎤

⎦,

(9)

where 〈·〉 denotes expectation value with respect to |ψ〉.
Since Rop is TP, we have that

∑

j |〈RjE(P )1/2R
†
j 〉|2 �

〈∑j RjE(P )R
†
j 〉 = 〈(Rop ◦ E)(P )〉.

Now, choose a basis {|ψi〉}di=1 for C with |ψ1〉 ≡ |ψ〉. Let

ρi ≡ (Rop ◦ E)(|ψi〉〈ψi |) = ∑

kl α
(i)
kl |ψk〉〈ψl|, for coefficients

satisfying
∑

k α
(i)
kk = 1 and α

(i)
kk � 0∀k. From the definition

of ηop, α
(i)
ii = 〈ψi |ρi |ψi〉 � 1 − ηop. This implies

∑

k �=i α
(i)
kk �

ηop, which in turn gives α
(i)
kk � ηop∀k �= i. Since |ψ〉 =

|ψ1〉 by construction, we get
∑

j |〈RjE(P )1/2R
†
j 〉|2 � 〈(Rop ◦

E)(P )〉 � 1 + (d − 1)ηop. Putting this into Eq. (9), and not-

ing that (
∑

i |〈E†
i E(P )−1/2Ei〉|2)1/2 � F (|ψ〉,RP ◦ E), gives

Eq. (8). �
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Let ηP be the fidelity loss for code C with RP as the

recovery. Then, Theorem 3 implies

Corollary 4. ηP satisfies ηop � ηP � ηopf (ηop; d), where

f (η; d) is the function

f (η; d) ≡ (d + 1) − η

1 + (d − 1)η
= (d + 1) + O(η). (10)

Proof. ηP � ηop is true by definition of ηop. For any |ψ〉 ∈
C, let F 2(|ψ〉,RP ◦ E) ≡ 1 − ηP,ψ . Then, by definition, the

fidelity loss is ηP = maxψ (ηP,ψ ). From Theorem 3, 1 − ηop �

F 2(|ψ〉,Rop ◦ E) �
√

[1 + (d − 1)ηop](1 − ηP,ψ ). Rearrang-

ing gives ηP,ψ � ηopf (ηop; d). Since this holds for all ηP,ψ , it

also holds for ηP . �

The inequality ηP � ηopf (ηop; d) makes precise our state-

ment that RP is near-optimal, with the additional factor of

(d + 1). For the most practically relevant case of a code

encoding a single qubit, this is only a factor of 3. Note that, for

ηop = 0, the inequality in Corollary 4 collapses to ηP = ηop, as

expected from Lemma 2. Corollary 4 provides necessary and

sufficient conditions for C to be approximately correctable—C
is approximately correctable if and only if ηP is small.

We do not know if the upper bound on ηP in Corollary 4 is

tight. However, the appearance of the dimension d of the code

in the bound is unavoidable, as can be seen from the following

example:

Example 1. Consider a noise channel E , whose action on

a code C is given by the set of Kraus operators {EiP } =
{√1 − pP,

√
p|0〉〈0|,√p|0〉〈1|, . . . ,√p|0〉〈d − 1|}, for 0 �

p ≪ 1. E acts like the identity channel on C, except for a small

damaging component that maps a small part of every code

state onto |0〉. For d � 3, one can show that the worst-case

fidelity, when using RP as the recovery, occurs for state |0〉.
The corresponding fidelity loss is ηP = (d − 1)p/[1 + (d −
1)p]. Since E is nearly the identity channel, we might instead

do nothing (identity channel as the recovery), for which the

fidelity loss is η0 = p. η0 is always smaller than ηP for small p.

Since ηop � η0, we see that ηP /ηop � ηP /η0 = (d − 1)/[1 +
(d − 1)p], which grows as d increases, for fixed p. Hence, for

this noise channel and code, the separation between ηP and

ηop grows as d increases.

That the dimension of the code space appears here is

perhaps not surprising. In the next section, we will see that

this approach to AQEC using the transpose channel can be

viewed as a perturbation from the perfect QEC case. The

factor of d appearing in our bounds can hence be understood

as quantifying the number of degrees of freedom in which the

approximate case can deviate from the perfect case.

Note, however, that as d gets large, f (η; d) approaches 1/η.

In this case, the inequality in Corollary 4 simply becomes the

trivial statement ηop � ηP � 1. While we will often only be

interested in codes with small values of d, this demonstrates

the weakness in the bounds derived here for large d values.

IV. THE TRANSPOSE CHANNEL AND QEC CONDITIONS

One of the key tools in perfect QEC are the perfect QEC

conditions (Theorem 1). Conditions characterizing AQEC

codes would likewise be useful. A natural approach is

to perturb the perfect QEC conditions to allow for small

deviations. For example, the four-qubit code for the amplitude

damping channel in Ref. [1] was shown to obey a set of

perturbed QEC conditions. More recently, [26] examined

small perturbations of the perfect QEC conditions for general

CPTP channels. However, the analysis in Ref. [26] is often

complicated, and one wonders if there is a simpler approach

using the transpose channel. In this section, we discuss such a

set of AQEC conditions built on Corollary 4. We begin by first

writing down an alternate but equivalent set of perfect QEC

conditions which highlights the role of the transpose channel:

Theorem 5 (Alternate form of perfect QEC conditions). A

code C satisfies the perfect QEC conditions (Theorem 1) if and

only if it satisfies

∀i,j, PE
†
i E(P )−1/2EjP = βijP, (11)

where β ≡ √
α, for α is defined in Eq. (5).

Proof. For a code C that satisfies the perfect QEC conditions

(Theorem 1), using Eq. (7) and PU
†
k UlP = δklP , we have

PF
†
k E(P )−1/2FlP = δkl

√

dkkP. (12)

This diagonal form can be rotated to any other Kraus

representation using a unitary u so that Fk = ∑

i uikEi and

α = uDu†. Defining β ≡ √
α gives Eq. (11), thus showing

that if a code C satisfies the perfect QEC conditions, it also

satisfies Eq. (11).

Conversely, suppose we start from the diagonal form of

Eq. (11) as in Eq. (12), which can be accomplished by choosing

u so that β is diagonal with entries
√

dkk . Then taking the

square root of Eq. (12) gives E(P )−1/4FkP = (dkk)1/4VkP for

some unitary Vk , so FkP = (dkk)1/4E(P )1/4VkP . Putting this

into Eq. (12) gives PV
†
k VlP = δklP . Furthermore, E(P )1/2 =

[
∑

k(FkP )(PF
†
k )]1/2 = ∑

k

√
dkkVkPV

†
k . Direct computation

then gives PF
†
k FlP = δkldkkP , which is exactly Eq. (6).

Applying an appropriate u to rotate to the desired Kraus

representation gives Eq. (5). �

Observe that the left-hand side of Eq. (11) is a Kraus

operator of RP ◦ E . Thus, the QEC conditions in Theorem 5,

and equivalently the original conditions stated in Theorem 1,

simply express the fact that C is perfectly correctable if and

only if RP ◦ E ∝ P . The proportionality factor is
∑

ij β2
ij =

∑

ij αij = ∑

k dkk .

We can now obtain a set of conditions for AQEC by

perturbing this alternate form of the QEC conditions.

Theorem 6 (AQEC conditions). Consider a CPTP channel

E ∼ {Ei}, and a d-dimensional code C with projector P . Let


ij ∈ B(C) be traceless operators such that

PE
†
i E(P )−1/2EjP = βijP + 
ij , (13)

where βij ∈ C. Then, for ǫ ∈ [0,1], ∃ η ∈ [0,1] given by

η = max
|ψ〉∈C

∑

ij

[〈ψ |
†
ij
ij |ψ〉 − |〈ψ |
ij |ψ〉|2]. (14)

such that

(i) C is ǫ-correctable if η � ǫ;

(ii) C is ǫ-correctable only if η � ǫf (ǫ; d), where f is the

function defined in Eq. (10).

Proof. The left-hand side of Eq. (13) is a Kraus operator of

RP ◦ E . This, along with the TP condition for RP ◦ E , gives
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the expression on the right-hand side of Eq. (14) for ηP . Setting

η = ηP , conditions (i) and (ii) follow from Corollary 4. �

Equation (14) elucidates how the fidelity loss arises from

the presence of the 
ij operators. If 
ij = 0∀i,j , we have

perfect QEC.

The AQEC conditions, like the perfect QEC conditions,

provide a way to check if a code is approximately correctable,

without requiring knowledge of the optimal recovery. More

precisely, given a maximum tolerable fidelity loss ǫ for some

information processing task at hand, one can check if a code C
is ǫ-correctable as follows. The AQEC conditions instruct us

to compute ηP , which can be done once we know C and the

noise channel E . If ηP � ǫ, then C is a good code. If, however,

ηP violates the inequality in condition (ii), we know that C
is not good enough for our purposes. Of course, there is a

gap—for ηP taking values ǫ � ηP � ǫf (ǫ; d), we cannot use

the conditions to determine if C is within our tolerable fidelity

loss, but this gap is small for small d. We do not know if the

gap can be shrunk by replacing ηP with the fidelity loss for

a different recovery map than the transpose channel, but we

believe it is unlikely to vanish completely.

For a general C, the fidelity loss ηP may be difficult to

compute as it requires a maximization over all states in the code

space. However, there is a quick way to check for sufficiency

by relaxing condition (i) of Theorem 6:

Corollary 7. C is ǫ-correctable for some ǫ ∈ [0,1] if

‖
sum‖ � ǫ, where 
sum ≡ ∑

ij 

†
ij
ij , and ‖ · ‖ denotes the

operator norm.

Proof. Observe that the right-hand side of Eq. (14)

satisfies
∑

ij [〈ψ |
†
ij
ij |ψ〉 − |〈ψ |
†

ij |ψ〉|2] � 〈ψ |
sum|ψ〉.
Maximizing this expression over all |ψ〉 ∈ C gives ‖
sum‖.

Hence, ηP � ‖
sum‖, and the sufficiency condition (i) in

Theorem 6 is satisfied if ‖
sum‖ � ǫ. �

Since 
sum � 0, its operator norm is given by its maximum

eigenvalue, which is easily computable. In fact, for codes

encoding a single qubit, it is easy to show (using the Pauli

basis, for example) that ‖
sum‖ = 1 − ∑

ij |βij |2. Note that

βij for any code C and noise channel E is simply given by

βij = (1/d)tr(PE
†
i E(P )−1/2EjP ).

V. COMPUTING ηP FOR QUBIT CODES

Computing ηP for a general code requires an exhaustive

optimization over all states in the code. However, for the

practically relevant case of codes encoding a single qubit, i.e.,

C with dimension d = 2, ηP turns out to require only simple

eigenanalysis to compute.

For a qubit code, (RP ◦ E) : B(C) → B(C) is a qubit map.

Observe that RP ◦ E is not only CPTP but also unital [i.e.,

(RP ◦ E)(P ) = P ]. Here, we show that the worst-case fidelity

for a unital, CPTP qubit map is easy to compute. While our

context requires only a unital, CPTP qubit map, we begin

with a general CP map � ∼ {Ki} on a d-dimensional Hilbert

subspace C, so as to highlight why the qubit case is particularly

simple.

We begin by choosing a Hermitian basis

{O0,O1, . . . ,Od2−1} for B(C), where O0 ≡ I,O†
α =

Oα∀α,tr{O†
αOβ} = δαβd∀α,β. The operators {Oα,α =

1, . . . ,d2 − 1} are clearly traceless. Such a basis exists for any

d—for example, one can use the set of standard generators

of the SU(d) group, augmented with the identity operator.

The action of � can be represented as a matrix M, acting on

vectors [operators in B(C)] in the Hilbert-Schmidt space, with

matrix elements

Mαβ ≡ 1

d
tr{Oα�(Oβ)}. (15)

Since � is CP and Oα’s are Hermitian, M∗
αβ = Mαβ , so M

is a real matrix.

Now, the density operator corresponding to any pure state

|ψ〉 in C can be expanded in terms of the Hermitian basis as

|ψ〉〈ψ | = 1

d
(I + s · O) = 1

d
�s · �O, (16)

where s is a real (d2 − 1)-element vector, �s ≡ (1,s), O ≡
(O1,O2, . . . ,Od2−1), and �O ≡ (I,O). s is not an arbitrary

vector, but in general has to obey some constraints in order

for it to correspond to a pure state.

Using Eqs. (15) and (16), the fidelity for a state |ψ〉 ∈ C
under the map � can be written as F 2(|ψ〉,�) = 1

d
sTMs,

where s is �s written as a column vector, and the superscript

T denotes the transpose. We can rewrite the expression for

the fidelity using the symmetrized version of M: Msym ≡
1
2
(M + MT ). Observe that sTMsyms = sTMs. Therefore,

F 2(|ψ〉,�) = sTMsyms. (17)

Finding the worst-case fidelity is hence equivalent to the

following minimization problem for a real, symmetric matrix

Msym:

minimize: sTMsyms, (18a)

constraint: s corresponds to a pure state. (18b)

For d > 2, the constraint Eq. (18b) is difficult to write down.

Even if we relax the constraint to include mixed states, it is not

known in general what s corresponding to a (positive, trace-1)

density operator looks like. This constrained minimization

problem is hence not simple for a general d.

For qubits (d = 2), however, the constraint equation is

simple to write down. We choose the operator basis to be

the Pauli basis. Given an orthonormal basis {|v1〉,|v2〉} for the

qubit code space, the Pauli basis {σ0 ≡ I2,σx,σy,σz} can be

constructed as

σ0 = |v1〉〈v1| + |v2〉〈v2| ≡ I2,

σx = |v1〉〈v2| + |v2〉〈v1|,
(19)

σy = −i(|v1〉〈v2| − |v2〉〈v1|),
and σz = |v1〉〈v1| − |v2〉〈v2|.

Equation (16) then corresponds to the Bloch sphere represen-

tation of a pure state, with the Bloch vector s ≡ (sx,sy,sz) sat-

isfying ‖s‖ = (s2
x + s2

y + s2
z )1/2 = 1. The constraint Eq. (18b)

becomes

constraint: s = (1,s), with ‖s‖ = 1. (18b′)

The constrained minimization problem can then be solved

using the Lagrange multiplier method.
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For the case of a CPTP qubit map that is also unital, the

minimization problem can be further simplified. For any CPTP,

unital � (arbitrary d), M takes the form

M =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 . . . 0

0

... T

0

⎞

⎟

⎟

⎟

⎟

⎠

. (20)

The first row comes from the fact that � is TP, and the first

column from the fact that � is unital. T is a (d − 1) × (d − 1)

real matrix. Defining Tsym ≡ 1
2
(T + T T ), Eq. (17) can be

written as F 2(|ψ〉,�) = 1
d

(1 + sT Tsyms). This means that we

can equivalently minimize sT Tsyms instead of the original

sTMsyms in Eq. (18a). For a qubit CPTP, unital � then, the

constrained minimization problem becomes

minimize: sT Tsyms, (21a)

constraint: ‖s‖ =
√

s2
x + s2

y + s2
z = 1. (21b)

This simply tells us to minimize the expectation value of Tsym

with respect to all real unit vectors s.

SinceTsym is real and symmetric, it can be diagonalized with

an orthogonal matrix Q so that Tsym = QT TDQ, where TD is a

real, diagonal matrix of eigenvalues of Tsym. Then sT Tsyms =
(Qs)T TD(Qs). Q, being orthogonal, preserves the length of

the vector it acts on. The minimization problem Eq. (21) thus

corresponds to minimizing the expectation value of TD over

all real unit vectors. As TD is real and diagonal, this minimum

expectation value is exactly the smallest eigenvalue of TD

(and hence of Tsym), attained by the corresponding eigenvector

normalized to unit length. Therefore, we see that the fidelity

loss for a CPTP, unital qubit map � is given by

η� = 1 − min
|ψ〉∈C

F 2(|ψ〉,�) = 1
2
(1 − tmin), (22)

where tmin is the smallest eigenvalue of Tsym corresponding to

the map �. Setting � = RP ◦ E ◦ P gives ηP . Note that, for �

with a Hermitian-closed set1 of Kraus operators, as is the case

for � ≡ RP ◦ E ◦ P ∼ {PE
†
i E(P )−1/2E

†
jP }, T is symmetric

so that Tsym = T .

VI. EXAMPLE: AMPLITUDE DAMPING CHANNEL

As an example to illustrate our discussion so far, let us

look at the noise channel considered in Ref. [1]—the ampli-

tude damping channel. The single-qubit amplitude damping

channel EAD is the CPTP channel with Kraus operators

E0 =
(

1 0

0
√

1 − γ

)

and E1 =
(

0
√

γ

0 0

)

, (23)

written in some qubit basis {|0〉,|1〉}. EAD can be thought of

as describing energy dissipation for a system where |0〉 is

the ground state and |1〉 is some excited state. γ is then the

probability of a transition from the excited state to the ground

1A set K ≡ {Ki} is Hermitian closed if Ki ∈ K if and only if

K
†
i ∈ K.
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FIG. 1. (Color online) Codes for the amplitude damping channel,

for 0 � γ � 0.5.

state. In the absence of any encoding or recovery, the worst-

case fidelity for a single qubit undergoing EAD falls off as 1 −
γ , as γ increases (see Fig. 1, line labeled “no error correction”).

A code that uses four physical qubits to protect a single

qubit of information against amplitude damping noise was

constructed by Leung et al. [1]. Assuming that the noise acts

independently on the qubits, the four-qubit noise channel is

just four copies of EAD, i.e., E⊗4
AD. The four-qubit subspace

code constructed in Ref. [1] is the span of the following two

states:

|0L〉 ≡ 1√
2

(|0000〉 + |1111〉),
(24)

and |1L〉 ≡ 1√
2

(|0011〉 + |1100〉).

|0L〉 and |1L〉, respectively, represent the |0〉 and |1〉 states

of the single qubit of information we want to encode in the

four-qubit Hilbert space. We denote this code as the [4,1] code,

where the first entry in the brackets corresponds to the number

of qubits in the system, and the second entry is the number

of qubits of information encoded in the system. It was shown

in Ref. [1] that this code satisfies the perfect QEC conditions

for E⊗4
AD , except for small corrections of order γ 2 and hence a

recovery operation similar toRperf can be constructed. We refer

to this recovery map as the Leung recovery. The worst-case

fidelity for this code and recovery is plotted as a function of γ

in Fig. 1. Clearly, the [4,1] code is able to significantly raise

the worst-case fidelity for the encoded qubit of information, as

compared to the no-error-correction case.

In the same figure, we also plot the worst-case fidelity using

the transpose channel RP as the recovery operation, instead

of the Leung recovery, for the same [4,1] code. We see that

using the transpose channel as the recovery map gives a higher

fidelity than the original Leung recovery.

For comparison, we also look at a recovery map for the [4,1]

code constructed by Fletcher et al. in Ref. [27]. This recovery

map, which we refer to as the Fletcher recovery, was originally

optimized for an averaged measure of fidelity. We instead
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compute the worst-case fidelity for this recovery,2 also plotted

in Fig. 1. For small values of γ , the Fletcher recovery gives

the best performance compared to the other recovery maps,

despite being optimized for an averaged measure of fidelity.

However, it only does marginally better than the transpose

channel recovery.

We also compare the performance of the [4,1] code under

these different recovery maps with that of a code that satisfies

the perfect QEC conditions. The smallest code capable of

perfectly correcting an arbitrary error on any single qubit

requires five qubits. The relevant noise channel now is E⊗5
AD.

The five-qubit code [14,28], usually referred to as the [[5,1,3]]

code,3 satisfies the perfect QEC conditions for the CP channel

comprising only the single-qubit (Pauli) errors in E⊗5
AD. Using

the corresponding Rperf as the recovery for the [[5,1,3]] code,

we compute the worst-case fidelity for the noise channel E⊗5
AD,

for different values of γ . As the plot in Fig. 1 shows, the

[[5,1,3]] code performs better than the [4,1] code with Leung

recovery, but the [4,1] code uses one qubit less to encode the

same amount of information. The [4,1] code with the transpose

channel as recovery has nearly identical worst-case fidelity as

the [[5,1,3]] code, while the one with Fletcher recovery does

slightly better for small values of γ .

These observations clearly demonstrate the benefit of going

beyond codes described by the perfect QEC conditions.

Furthermore, while the [[5,1,3]] code is capable of perfectly

correcting an arbitrary single-qubit error in a system subjected

to any noise channel, the comparison with the [4,1] code with

various recovery maps clearly show the gain that one might

achieve by adapting the codes and recovery to the noise channel

in question.

Last, we also compute the worst-case fidelity for randomly

generated four-qubit codes, using the transpose channel as

the recovery map. Computing F 2 for about 500 randomly

selected codes took less than half an hour on a typical laptop

computer. We plot the worst-case fidelity for the best code in

Fig. 1 (line marked “random 4-qubit code, RP recovery”).

For small values of γ , this random code does not do as

well as the other codes discussed so far for the amplitude

damping channel, but it still does significantly better than the

case without error correction. Furthermore, for γ � 0.35, our

randomly generated code actually outperforms all the other

codes. For comparison, we have also plotted the worst-case

fidelity for this randomly generated code in the absence of

the transpose channel recovery, i.e., with the identity channel

as the recovery map (line marked “random 4-qubit code, Id

recovery”). One should keep in mind the ease with which the

2The recovery map we used is given in Table II of Ref. [27]. The

Fletcher recovery map actually depends on two parameters α and β

which can be numerically optimized, for each value of γ , for the

best recovery map. For simplicity, we set α = β = 1/
√

2 in our plot,

which corresponds to the “code-projected recovery” in Ref. [27] with

comparable performance as the fully optimized recovery.
3The first two entries in the double brackets mean the same as in the

[4,1] code. The third entry is the distance parameter given by 2t + 1,

where t is the number of errors in the system the code can perfectly

correct. The five-qubit code is capable of correcting an error on any

qubit, so its distance parameter is equal to 3.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.75

0.8

0.85

0.9

0.95

1

damping parameter γ 

w
o

rs
t−

ca
se

 f
id

el
it

y
 F

2

[[5,1,3]] code

random 3−qubit code, R
P
 recovery

random 2−qubit code, R
P
 recovery

random 4−qubit code, Id recovery

random 4−qubit code, R
P
 recovery

FIG. 2. (Color online) Randomly generated two-, three-, and

four-qubit codes using the transpose channel as the recovery map.

For comparison, we have also plotted the worst-case fidelity for the

[[5,1,3]] code and that of the randomly generated four-qubit code

with no recovery (i.e., identity channel as recovery).

performance of the randomly generated code was achieved,

due to the fact that the transpose channel is a near-optimal

recovery map for any code.

Finally, we also consider the possibility of constructing

two-qubit and three-qubit codes for the amplitude damping

channel. Because the transpose channel is near-optimal for

any code, it can be used as a good recovery map for the codes

we generate, thus eliminating the need to search for a good

recovery for every randomly selected code. The worst-case

fidelity for the best codes we found are plotted in Fig. 2.

For comparison, we also plot the worst-case fidelities for the

randomly generated four-qubit code mentioned in the previous

paragraph, with the transpose channel and the identity channel

as recovery maps. The corresponding graphs for the two- and

three-qubit codes with identity channel as recovery are close to

that of the four-qubit code. From the figure, we see that while

the worst-case fidelity decreases as the number of physical

qubits decreases, the two- and three-qubit codes in fact do

not perform too badly compared to the four-qubit code or

the [[5,1,3]] code. Such codes may be of relevance whenever

the desire to lower resource requirements trumps the need for

the best possible worst-case fidelity.

VII. CONCLUSIONS AND OPEN PROBLEMS

In this work, we demonstrated the crucial role the transpose

channel plays in perfect QEC, and used it to formulate a

simple approach to characterizing and finding AQEC codes.

Compared to previous work based on numerically generated

recovery maps specific to the noise channel in question,

the universal and analytically simple form of our transpose

channel makes it particularly useful toward developing a better

understanding of AQEC. While not being the optimal recovery

in the case of AQEC codes, the near-optimality of the transpose

channel provides a simple algorithm for identifying codes

that satisfy some maximum fidelity loss requirements, without
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having to perform a difficult optimization over all recovery

maps for every possible encoding. Furthermore, our approach,

founded on the worst-case fidelity rather than an averaged

measure of fidelity, provides the often desirable guarantee

that the code found is able to protect all information that can

be stored in the code with some minimum fidelity. We have

also shown that the case of qubit codes is particularly easy to

handle, and our method of computing the worst-case fidelity

for a CPTP qubit map might be useful in contexts beyond our

present discussion.

There are many interesting related open problems. An

immediate question is whether the gap present in our AQEC

conditions between the necessary and sufficient conditions

(arising from the inequality in Corollary 4) can be reduced,

either by improving the bound in Theorem 3 or by using

a different recovery map that might perform better than

the transpose channel. It would be very interesting if a simple

and universal recovery map could be found, for which the

dimension of the code does not appear in the worst-case

fidelity. There is also the question of whether it might

be possible to extend our efficient method of computing

the worst-case fidelity for qubit codes to higher dimensional

codes and more general channels. Finally, we expect that the

transpose channel can also be used to study approximate codes

more general than subspace codes, like, for example, OQEC

codes [29].

Another important problem is to figure out whether the

transpose channel can be easily implemented using measure-

ments and gates. In the case of perfect QEC, the transpose

channel (or equivalently Rperf) can be implemented simply

using syndrome measurements and conditional gates (see, for

example, Ref. [22]). In order for AQEC codes to be useful for

computational or communication tasks, it must be possible to

implement the recovery operation using physical operations

that are not overly complicated or demanding in resources.

This is in fact another advantage of our analytical approach

over numerically constructed recovery maps for which no

practical implementation structure may be apparent (although,

see Ref. [7]).

AQEC provides a new and mostly unexplored arena of

possibilities for the design of codes to protect information

from noise for use in quantum information processing tasks.

Our work provides an analytical characterization of AQEC

and further analytical understanding will undoubtedly prove

invaluable toward unlocking the full potential of AQEC.
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