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We identify signatures of chaos in the dynamics of discord in a multiqubit system collectively modelled as a

quantum kicked top. The evolution of discord between any two qubits is quasiperiodic in regular regions, while

in chaotic regions the quasiperiodicity is lost. As the initial wave function is varied from the regular regions to

the chaotic sea, a contour plot of the time-averaged discord remarkably reproduces the structures of the classical

stroboscopic map. We also find surprisingly opposite behavior of two-qubit discord versus entanglement of the

two qubits as measured by the concurrence. Our results provide evidence of signatures of chaos in dynamically

generated discord.

DOI: 10.1103/PhysRevE.91.032906 PACS number(s): 05.45.Mt, 03.67.Ac, 03.65.Ud

I. INTRODUCTION

Classical chaos has been widely studied in a variety of

contexts, including weather patterns, population dynamics,

and chemical reactions [1]. Chaos in classical systems is char-

acterized by sensitivity to initial conditions, which means that

nearby trajectories separate exponentially fast with a rate given

by the Lyapunov exponents of the system. The above char-

acterization of chaos fails in quantum mechanics as the

overlap of two state vectors undergoing unitary evolution due

to Schrödinger’s equation is constant with time. A natural

question that arises is in regard to how to characterize chaos

at the quantum level. This has led to the development of the

field of quantum chaos: the study of how chaos manifests

itself in the quantum regime. Signatures of chaos in quantum

systems have been explored in the context of level statistics

of chaotic Hamiltonians [2,3], the dynamics of open quantum

systems undergoing measurement or decoherence [4,5], and

hypersensitivity of a system to perturbations [6,7]. In the past

decade, there has been considerable interest in the role of

dynamical chaos in entanglement generation. This is central

to the understanding of the emergence of the classical world

from the underlying quantum mechanics and the role of

entanglement in the irreversibility of dynamical evolution [8].

Moreover, such questions are important as entanglement is a

crucial resource for quantum information processing [9–12].

However, entanglement does not completely capture the

quantum correlations of a system, and neither does it seem to

be the only reason behind the quantum advantage in quantum

information processing. Quantum discord aims to fill this

gap and capture essentially all the quantum correlations in

a quantum state using information-theoretic measures [13–

15]. There is a considerable interest in quantum discord as

recent studies show that it may account for the speedup in

the performance of certain quantum algorithms compared to

classical ones [16].

In this work, we provide the first evidence of signatures of

chaos in the the dynamical behavior of discord in a quantum

*vmadhok@gmail.com
†sghose@wlu.ca

kicked top. An advantage of the quantum kicked top is that for

a given angular momentum j , it can be regarded as a quantum

simulation of a collection of N = 2j spin-half particles whose

evolution is restricted to the symmetric subspace under particle

exchange. Thus, we have a multiqubit system where the

collective behavior of the qubits is governed by the kicked-top

Hamiltonian. Another advantage of this approach is that it

allows us to study discord between any two qubits and compare

it to pairwise entanglement between two qubits or to bipartite

entanglement between two qubits and the remaining qubits.

Here we present results showing various signatures of chaos

in the dynamics of discord between any two qubits. The discord

dynamics exhibits regular, quasiperiodic behavior in a regular

regime but not in a chaotic regime. A contour plot of the

time-averaged discord reproduces the classical phase space

structures. We find a surprising relationship between two-qubit

discord and two-qubit concurrence—a measure of pairwise

entanglement. When discord increases, concurrence decreases

and vice versa. The two-qubit discord is robust and remains

nonzero in a chaotic regime, whereas the concurrence quickly

decreases to zero. The quantum kicked top was experimentally

realized recently [17], and our simulations are performed

using parameters that are experimentally accessible using

current technology. In the light of recent advances in quantum

simulations and computation using superconducting qubits

[18], we believe that our findings can be realized to explore

quantum signatures of classical chaos even for systems that

are deep in the quantum regime.

II. BACKGROUND

A. Quantum kicked top

The quantum kicked top is described by the Hamiltonian

[2,17,19]

H =
κ

2jτ
Jz

2 + pJy

n=+∞
∑

n=−∞
δ(t − nτ ). (1)

Here Jx,Jy , and Jz are components of the angular-momentum

operator J. The time between periodic kicks is given by τ .

Each kick is a rotation about the y axis by an angle p. κ is

the strength of a twist applied between kicks and is also the
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chaoticity parameter: as κ is increased, the degree of chaoticity

increases. Since the kick is in the form of delta kicks, we can

express the Floquet map (evolution from kick to kick) as a

sequence of operations given by

Uτ = exp

(

−i
κ

2jτ
J 2

z

)

exp(−ipJy). (2)

For a given value of angular momentum j , the Hilbert space

dimension is 2j + 1. The finite dimension of the Hilbert space

makes it possible to explore the dynamics without the need for

truncation of the space.

The classical limit of this map can be obtained by writing the

Heisenberg equations of motion for the expectation values of

Jx , Jy , and Jz and factorizing higher moments of the angular-

momentum operators in the limit of large j . The resulting

equations describe the motion of an angular-momentum vector

on the surface of a sphere. The dynamics can be understood

as a rotation by a fixed angle p about the y axis by angle p,

followed by a rotation about the z axis by an angle proportional

to the z component of the angular momentum. This sequence of

transformations can result in chaotic dynamics due to the lack

of enough constants of motion. In our analysis, we fix p = π/2

and choose κ to be our chaoticity parameter. As we vary κ from

0 to 6, the classical limit of the dynamics change from highly

regular to completely chaotic. In the quantum description, as

the dynamics becomes globally chaotic, and for j ≫ 1, the

Hamiltonian can be modelled as a random matrix selected

from the appropriate ensemble [2]. It is this randomness that

leads to the analog of ergodic mixing for quantum systems.

We can think of the total angular momentum j as the sum of

the angular momenta of N = 2j individual spin-half particles

or qubits. The qubits are identical and the system remains

unchanged under the exchange of any two qubits. Hence the

state vector is restricted to a symmetric subspace spanned by

the basis states {|j,m〉; (m = −j,−j + 1, . . . ,j )} with j =
N/2.

In order to explore the quantum dynamics and compare it

to the classical limit, we must pick an initial condition for the

dynamics. In the classical case, the initial condition is a set of

coordinates θ and φ which specify the initial direction of the

classical angular-momentum vector. The uncertainty principle

does not allow us to pick a corresponding quantum initial

condition. Instead, we construct a minimum uncertainty state

vector such that the expectation values of Jx , Jy , and Jz define

a vector pointing along the direction θ,φ. Such states are the

spin-coherent states, which can be expressed as [19–22]

|θ,φ〉 = R(θ,φ)|j,j 〉; −π � φ � π,0 � θ � π, (3)

where

R(θ,φ) = exp{iθ [Jx sin φ − Jy cos φ]} (4)

with the expectation value of J given by

〈θ,φ|J/j |θ,φ〉 = (sin θ cos φ, sin θ sin φ, cos θ ). (5)

And the relative variance of J in a state |θ,φ〉 is [19]

(1/j 2){〈θ,φ|J2|θ,φ〉 − 〈θ,φ|J|θ,φ〉2} = 1/j. (6)

This is the minimum uncertainty possible from the angular-

momentum commutation relations and approaches zero as j

becomes very large.

III. MEASURES OF QUANTUM CORRELATIONS

A. Entanglement

For a particular value of j , the system can be decomposed

into N = 2j qubits. To quantify correlations among these

qubits, we trace out N − 2 qubits from the rest of the system

[23]. The two-qubit state, ρ, thus obtained is a mixed state and

the von Neumann entropy of this two-qubit state, defined as

EV = −Tr (ρ ln ρ), captures how the two qubits are entangled

with the rest of the qubits [24]. Pairwise entanglement between

the two qubits can be quantified by concurrence [25]. Concur-

rence is the entanglement of formation for a two-qubit state. If

we have a bipartite system, ρ, ∈ HAB , comprising systems A

and B, then entanglement of formation of the composite mixed

state is defined as the minimum average entanglement of an

ensemble of pure states that represents ρ [25].

Ef (ρ) = min

(

∑

i

piE|ψi〉〈ψi |
)

, (7)

where |ψi〉 are pure states and E(|ψi〉〈ψi |) represents the

entanglement as quantified by the von Nuemann entropy

of one of the subsystems. For the two-qubit case, it has a

simplified expression defined as

C = max(0,
), (8)

where 
 = λ1 − λ2 − λ3 − λ4, and λi are the eigenvalues in

decreasing order of the matrix ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2). σ2 is a

Pauli matrix and ρ∗ is the complex conjugate of ρ.

B. Quantum discord

Quantum discord is a measure that captures all quantum

correlations, including and beyond entanglement in a quantum

state [13]. The approach to do this is to remove the classical

correlations from the total correlations in a system. A measure

of total correlations in a bipartite quantum system ρAB is the

quantum mutual information,

I(A : B) = H(A) + H(B) − H(A,B), (9)

where H(·) is the von Neumann entropy, H(ρ) ≡
−Tr (ρ log ρ). A definition of mutual information for classical

probability distributions based on Bayes’s rule is

I (A : B) = H (A) − H (A|B). (10)

Here the conditional entropy H (A|B) is the average of the

Shannon entropies of A, conditioned on the values of B,

and reflects the ignorance in A given the state of B. In the

quantum case, we can describe measurements on B by a

POVM (positive-operator valued measure) set {i}, such that

the conditioned state of A given outcome i is

ρA|i = Tr B(iρAB)/pi, pi = Tr A,B(iρAB). (11)

The POVMs are a set of Hermitian, positive, and complete

operators and represent the most general quantum mea-

surements on a quantum system [26]. The corresponding

entropy is then H̃{i }(A|B) ≡
∑

i piH(ρA|i), from which

one can write the quantum mutual information as J{i }(A :

B) = H(A) − H̃{i }(A|B). Maximizing this over all {i}, we

obtain J (A : B) = max{i } (H(A) − H̃{i }(A|B)) ≡ H(A) −

032906-2
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H̃(A|B), where H̃(A|B) = min{i } H̃{i }(A|B). The mini-

mum is achieved using rank 1 POVMs since the conditional

entropy is concave over the set of convex POVMs [27]. Hence

we arrive at a definition for quantum discord:

D(A : B) = I(A : B) − J (A : B)

= H(B) − H(A,B) + min
{i }

H̃{i }(A|B), (12)

with {i} being rank 1 POVMs. Quantum discord is

non-negative for all quantum states [13,27], and it is

subadditive [28].

IV. DYNAMICS OF QUANTUM CORRELATIONS

In order to study the connection between discord and

chaos in the kicked top, we use the multiqubit representa-

tion of the system as discussed above. We trace out two

qubits whose state and discord are calculated after every

application of the Floquet map. Since all the qubits are

identical, this represents the discord between any two qubits

of the system. We choose as initial states the minimum

uncertainity spin-coherent states, which can be characterized

by angle θ and φ. We take for the initial conditions different

points in the classical phase space for p = π/2 and κ = 3

(Fig. 1). We choose to take points corresponding to (θ,φ) =
(2.25,0.63),(2.25,0.90),(2.25,1.05), and (θ,φ) = (2.25,2.00).

As can be seen from the classical phase space, these four points

correspond to a fixed point, a point chosen in the regular island,

an “edge of chaos” point or point on the boundary of the regular

island and the chaotic sea [29], and a point chosen in the middle

of the chaotic sea. In Fig. 2 we plot the discord dynamics for

different values of φ for θ = 2.25. It can be clearly noticed

that as we move towards the chaotic region, the long-term

periodic modulation is lost. Also, it clearly shows that chaotic

initial conditions lead to a higher value of average dynamically

generated discord. The dynamics of discord for these specific

four coordinates are shown separately in Fig. 3. For a coherent

state initialized at a fixed point and in a regular island, discord

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

φ

θ

FIG. 1. (Color online) Classical stroboscopic map for the kicked

top. The direction of the angular-momentum vector is plotted after

each kick for different initial conditions with p = π/2,κ = 3.
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FIG. 2. (Color online) Dynamical evolution of discord for initial

SCS with θ = 2.25 and different φ. Here we have taken parameters

as κ = 3 and j = 40.

increases at a slow rate and exhibits quasiperiodic oscillatory

behavior. For a spin-coherent state initially in the chaotic sea

(θ = 2.25,φ = 0.63), the discord increases more rapidly and

reaches a quasisteady state. The periodic modulation of discord

dynamics is lost as the initial conditions are scanned from

the regular region to the chaotic sea in the classical phase

space. This demonstrates that there is a correlation between

discord dynamics and regular versus chaotic regions of the

classical phase space where the quantum state is initialized.

It is remarkable that we see these signatures even though we

operate with very few qubits (j = 4 which corresponds to

just eight qubits). Such a quantum regime is achievable in

current experiments [17]. As we increase the value of j , the

system approaches the classical limit and the signatures of

chaos become clearer.

In order to further understand the signatures of chaos in

the evolution of discord, we look at the time-averaged value

of discord as we scan through different initial conditions. A

contour plot of the time-averaged discord as a function of

the initial spin-coherent state. Figure 4 clearly reproduces the
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400

FIG. 3. (Color online) Dynamically generated discord as a func-

tion of the number of applications of the Floquet map for j = 4

and κ = 3. (a) Fixed-point initial condition (θ = 2.25,φ = 0.63).

(b) Regular initial condition (θ = 2.25,φ = 0.90). (c) Edge-of-chaos

initial conditions (θ = 2.25,φ = 1.05). (d) Chaotic initial condition

(θ = 2.25,φ = 2.00).
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 0         π
φ

−π 0 π

0

π
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π
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    0 

     - 

    θ

π

 θ

         (a) (b)

FIG. 4. (Color online) Side-by-side comparison showing dynam-

ically generated discord as a remarkable signature of classical chaos

in a mixed phase space (p = π/2,κ = 3, and j = 40). (a) Classical

phase space, Poincaré section. (b) Long-time average discord, D, as

a function of mean coordinate of the initial projected coherent state.

A weighted average of D according to the measure on phase space

gives the value of D̄ = 0.275 in the chaotic sea and D̄ = 0.143 in the

regular islands.

regular and chaotic structure of the classical phase space and

shows remarkably strong correlation between structures in the

classical mixed phase space and the time-averaged discord

plot. Chaotic initial conditions generally go to a higher average

value than regular initial conditions, with the smallest values of

discord generation near the classical fixed points. Additionally,

all initial conditions in the chaotic sea saturate to nearly the

same average discord.

Long-time average discord for states localized in the

chaotic sea is higher than those localized deep inside regular

islands. As one gradually approaches the border between a

regular island and the chaotic sea, the dynamically generated

discord for an initial condition inside a regular island becomes

comparable to that for an initial state located inside the chaotic

sea [Figs. 3(c) and 3(d)]. Thus, discord as a signature of

chaos effectively differentiates between the features of the

classical phase space and regular islands from the chaotic

sea, while leaving the border between the regular island and

the chaotic sea murky. Therefore, as discussed above and as

Figs. 3(c) and 3(d) show, one needs to be careful with the

initial states at the border [30] that has an average value of

discord comparable to the value inside the chaotic sea. This

is especially true for lower values of j such that the system

is far from the classical limit. While classical chaos leads to

infinitely intricate structures in the phase space, in quantum

mechanics, the Plank’s constant, �, limits the scale for such

structures. Our resolution of the phase space is determined by

the Plank’s constant. Therefore, quantum discord is a universal

signature of chaos if one considers it as a tool to demarcate

regular islands from the chaotic sea in a coarse-grained fashion.

In order to compare dynamically generated discord as a

function of chaos, we consider the same initial state while

increasing the chaos in the system gradually. Figure 5 shows

 0.26

  0.24

  0.32

  0.3

0.28

0.22

0.2

  0.18

1.51 2 2.5 3.5 4.5 4 54.5 5.5 6

        К

D

FIG. 5. (Color online) Average discord, D, as a function of the

chaoticity parameter, κ , for the kicked top for j = 100. The average

is calculated over the first 350 kicks. The initial state is the same as

in Fig. 3(c), given by (θ = 2.25,φ = 1.05).

the average discord generated for the same initial state as

in Fig. 3(c), given by (θ = 2.25,φ = 1.05), as we gradually

increase the chaoticity parameter. We see a strong correlation

between the degree of chaos in the system and the average

value of discord generated. Therefore, for a fixed family of

maps and sufficiently large spin size, the generation of discord

is a function of chaos in the system.

For the mixed phase space (p = π/2,κ = 3), the value of

long-time discord is almost the same for all initial states in

the chaotic sea. To find the average discord of the chaotic and

regular regions, we take a grid of coherent states across the

phase space. Each point on the grid is classified as as “regular”

or “chaotic” by the Lyapunov exponent of the classical

dynamics. Weighting these values according to the measure on

phase space gives us an average discord of D̄ = 0.275 in the

chaotic sea and D̄ = 0.143 in the regular islands. Therefore,

using the average value of discord, one can distinguish regular

islands from the chaotic sea.

Our studies are similar to signatures of chaos observed

previously in time-averaged entanglement [11]. We also note

that the average value of discord for initial spin-coherent states

in different parts of the chaotic sea reaches roughly the same

value. To confirm this we took a slice of the graph and plotted

long-time average discord for constant θ = 2.25 and varying

φ (Fig. 6). We see that the fixed-point region has a significantly

lower value of discord compared to the chaotic region. There

is gradual change as we cross from the regular islands into

the chaotic sea. The time-averaged discord thus can be used to

identify the edge of chaos [12].

To understand the nature of measures of correlations such as

discord and entanglement and their relationship to each other,

we next compare the discord dynamics with the entanglement

dynamics. The two-qubit discord quantifies the correlation

of these two qubits among themselves, while the two-qubit

von Neumann entropy quantifies the entanglement of these

two qubits with the rest of the system. Figure 7 shows

discord dynamics compared to the von Neumann entropy and

concurrence dynamics. We find that discord dynamics mirror

the entropy dynamics very well and behaves opposite to that

of concurrence dynamics. When concurrence is high, discord
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FIG. 6. (Color online) (a) Contour plot of discord for j = 40.

Blue regions indicate regions of low average discord. (b) Average

discord for θ = 2.25 and varying φ. Comparison to classical phase

space shows that chaotic region initial conditions lead to higher

average discord.

is low and vice versa. Our results show that although both

concurrence and discord are measures of quantum correlations,

they are two separate quantities. We feel that this is an

important finding and, to the best of our knowledge, has

not been reported elsewhere. Our results suggest a similarity

between various measures of correlations in a quantum system

and demand a detailed and systematic study.

A. Chaos and random matrix theory

Quantum chaos is intimately connected with the theory

of random matrices [2]. As one approaches large Hilbert

space dimensions, and the corresponding classical limit of

the quantum system exhibits global chaos, the eigenstates and

eigenvalues of the quantum Hamiltonian operator have the

statistical properties of appropriately chosen random matrices.

The appropriate ensemble depends on the symmetries of the

system, for example, whether the quantum system has a

time-reversal symmetry [2]. The kicked top has a time-reversal

symmetry. The time-reversal operator, T , for the kicked top

can be given the standard form

T = UK, (13)

where U = exp(ipJy) exp(iπJx) and K is the complex conju-

gation with respect to a standard representation. Since T 2 = 1,

there is no Kramer’s degeneracy [2,3]. The kicked top is

time-reversal invariant [2] has the consequence that the Floquet

operator has the statistical properties of a random matrix
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FIG. 7. (Color online) (a) Discord dynamics. (b) Entropy dynam-

ics and (c) concurrence dynamics for j = 4.
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FIG. 8. (Color online) Dynamically generated discord as a func-

tion of the number of applications of (a) the Floquet map correspond-

ing to global chaos for j = 4. (b) A random unitary chosen from the

COE for j = 4. (c) The Floquet map corresponding to global chaos

for j = 40. (d) A random unitary chosen from the COE for j = 40.

chosen from the circular orthogonal ensemble (COE). The

eigenvectors of these random operators have well-defined sta-

tistical properties [31]. Since the COE ensembles are invariant

under a group of orthogonal transformations, the eigenvectors

must be uniformly distributed on a vector space according to

the Haar measure that is invariant under that group. However,

the case of the dynamically evolved state differs [11]. In

addition to the time-reversal symmetry, the kicked top has

a parity symmetry, R = exp{−iπjy}, that commutes with

the Floquet map. In the basis of the parity operator, the

Floquet map has a block-diagonal structure having two blocks

associated with the positive- or negative-parity eigenvalues.

Due to the parity symmetry, the kicked top is statistically

equivalent to a block-diagonal random matrix (block diagonal

in the basis in which the parity operator is diagonal) whose

blocks (corresponding to positive and negative eigenvalues)

are sampled from the COE [32].

We use a block-diagonal COE as the appropriate ensemble

of random matrices for the kicked-top Hamiltonian to evolve

the system and compare the dynamics of discord with that of

when the system is acted upon by the kicked-top Hamiltonian.

Figure 8(b) shows the evolution of 2-qubit discord for a system

of 8 qubits when acted upon by a random unitary, while

Fig. 8(d) shows discord evolution for 80 qubits. We find that

the discord dynamics under the action of random unitary is

very similar to the discord dynamics under the action of a

kicked-top Hamiltonian in the chaotic regime [Figs. 8(a) and

8(c), respectively]. Interestingly, the fluctuations around the

mean value of quantum discord, as measured by the standard

deviation, decline at the rate proportional to 1/
√

N , where N

is the number of qubits (Fig. 9). This is consistent with entropy

calculations on random states and properties of random vectors

in Hilbert space [33]. As the value of discord becomes sharply

defined upon increasing the dimension of the chaotic system

and, as a result, one can talk about the discord of a typical

state.

This shows that the kicked top with parameters in the

chaotic region effectively simulates a random unitary. This

can have potential practical application as random unitary have
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FIG. 9. (Color online) Fluctuations around the mean value of

quantum discord in the fully chaotic phase space, p = π/2,κ = 6, as

measured by the standard deviation as a function of the number of

qubits N (blue curve). The red line shows the 1/
√

N behavior.

been shown to be instrumental in many quantum information-

processing tasks [34].

V. DISCUSSION AND SUMMARY

The quantum kicked top is a simple but versatile system for

studying various aspects of quantum chaos. A major advantage

of this system is that it simulates a collection of N = 2j qubits

evolving in the symmetric subspace under an exchange of

qubits. This allows for the possibility of studying different

measures of quantum correlations such as entanglement and

discord in the same system. The finite dimension of the Hilbert

space makes it possible to perform accurate calculations

without errors introduced due to truncations issues. In this

paper we have shown that the dynamics of two-qubit discord

in a multiqubit system collectively evolving as a quantum

kicked top shows signatures of chaos. The discord between

any two qubits shows quasiperiodic modulations for initial

states localized in regular regions. The periodic oscillation is

lost when the initial state lies in the chaotic sea, and the discord

rapidly rises to an almost constant value. The time-averaged

discord is higher when the initial conditions correspond to

chaotic region of the classical phase space and the boundary

between regular and choatic regions is sharply delineated by

the change in the average discord.

Chaos occurs when the number of constraints or symmetries

is fewer than the degrees of freedom. The same lack of

symmetries at the quantum level means that the Hamiltonians

cannot be described in block-diagonal form. Instead, chaotic

Hamiltonians have eigenstatistics that are well described by

random matrices [2,3]. Classical chaos can generate random

probability distributions in phase space. Corresponding quan-

tum dynamics can generate random states in Hilbert space [35].

When we focus our attention on the reduced subsystem of two

qubits, this manifests as the generation of highly discordant

states corresponding to the chaotic regions of the phase space.

Quantum chaotic dynamics drives the system into arbitrary

superposition of quantum states and this results in a higher

average of value of discord in the chaotic part of the phase

space as compared to the regular islands.

An interesting question that is relevant to quantum

information-processing applications is the comparison of

various measures of quantum correlations—the two most im-

portant ones being entanglement and discord. Our calculations

show that the dynamical behavior of two-qubit discord mirrors

very closely the two-qubit von Nuemann entropy but behaves

opposite to the two-qubit concurrence. This raises interesting

questions about the relationship of discord and concurrence,

which we plan to explore in future work. Our results shed

new light on the behavior of quantum correlations in chaotic

systems, and since all parameters used are in an experimentally

accessible regime, our work is relevant to future experiments

exploring quantum chaos.
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