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Abstract. Sharp shapes in the inflaton potentials often lead to short departures from slow
roll which, in turn, result in deviations from scale invariance in the scalar power spectrum.
Typically, in such situations, the scalar power spectrum exhibits a burst of features associated
with modes that leave the Hubble radius either immediately before or during the epoch of fast
roll. Moreover, one also finds that the power spectrum turns scale invariant at smaller scales
corresponding to modes that leave the Hubble radius at later stages, when slow roll has been
restored. In other words, the imprints of brief departures from slow roll, arising out of sharp
shapes in the inflaton potential, are usually of a finite width in the scalar power spectrum.
Intuitively, one may imagine that the scalar bi-spectrum too may exhibit a similar behavior,
i.e. a restoration of scale invariance at small scales, when slow roll has been reestablished.
However, in the case of the Starobinsky model (viz. the model described by a linear inflaton
potential with a sudden change in its slope) involving the canonical scalar field, it has been
found that, a rather sharp, though short, departure from slow roll can leave a lasting and
significant imprint on the bi-spectrum. The bi-spectrum in this case is found to grow linearly
with the wavenumber at small scales, a behavior which is clearly unphysical. In this work,
we study the effects of smoothening the discontinuity in the Starobinsky model on the scalar
bi-spectrum. Focusing on the equilateral limit, we analytically show that, for smoother
potentials, the bi-spectrum indeed turns scale invariant at suitably large wavenumbers. We
also confirm the analytical results numerically using our newly developed code BINGO. We
conclude with a few comments on certain related points.
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1 Inflationary models, discontinuities and the scalar bi-spectrum

The inflationary scenario is a very efficient paradigm to resolve the puzzles of the standard
cosmological model and to simultaneously describe the origin of perturbations in the early
universe [1–21]. Even the simplest of models lead to a sufficiently long duration of inflation
that is required to overcome the horizon problem. Moreover, many of these models permit
inflation of the slow roll type, which generates a nearly scale invariant primordial power
spectrum that is remarkably consistent with the observations of the anisotropies in the Cosmic
Microwave Background (CMB) and other cosmological data [22–28].

While attempting to identify the correct inflationary scenario, apart from the power
spectrum, the non-Gaussianities and, in particular, the scalar bi-spectrum, also play a sig-
nificant role. Indeed, the recent Planck data have shown that the non-Gaussianities are
consistent with zero, with the three parameters that characterize the scalar bi-spectrum
constrained to be: f loc

NL
= 2.7 ± 5.8, f eq

NL
= −42 ± 75 and fortho

NL
= −25 ± 39 [28]. These

constraints imply that the correct model of inflation cannot deviate too much from the stan-
dard single field inflation of the slow roll type, involving the canonical kinetic term. In other
words, inflation seems to be a non-trivial (i.e. n

S
6= 1, where n

S
denotes the scalar spectral

index), but ‘non-exotic’ (viz. f
NL

≃ 0) mechanism [29–31]. On the theoretical front, the
most complete formalism to calculate the three-point correlation functions involving scalars
and tensors in a given inflationary model is the approach due to Maldacena [32]. In the
Maldacena formalism, the three-point functions are evaluated using the standard rules of
perturbative quantum field theory, based on the interaction Hamiltonian that depends cu-
bically on the perturbations [32–38]. The resulting expressions for the three-point function
of primary interest, viz. the scalar bi-spectrum, involves integrals over combinations of the
background quantities such as the scale factor and the slow roll parameters as well as the
modes describing the curvature perturbation (see, for instance, Refs. [39, 40]). Evaluating
the bi-spectrum analytically for a generic inflationary model proves to be a non-trivial task.
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But, as in the case of the power spectrum, the bi-spectrum can be calculated analytically
under the slow roll approximation [32, 33, 35, 41–44].

As we have already mentioned, slow roll inflation driven by a single scalar field seems to
be the most likely possibility to describe the early universe. Nevertheless, it is also interesting
to consider other scenarios which lead to larger levels of non-Gaussianities. Such analyses
can help us gain a better understanding of the constraints imposed by the Planck data on
the parameters characterizing these class of models. Moreover, these exercises can actually
allow us to assess the degree of fine-tuning implied by the CMB data from Planck and
WMAP on the non-minimal alternatives (see, for example, Ref. [45–47]). Further, the recent
claim of the detection of the imprints of the primordial tensor modes by BICEP2 and the
indication of a relatively high tensor-to-scalar ratio [48, 49], if confirmed, implies that we
cannot completely rule out non-trivial possibilities either. Studying non-standard scenarios
is however not a simple task, since, in these situations, the calculation of non-Gaussianities
can be highly non-trivial and one often has to rely on numerical calculations (for numerical
analysis of specific models, see Refs. [50–56]; for a broader discussion on the procedures
involved and applications to a few different classes of models, see Ref. [57]; in this context,
also see Ref. [58]). However, occasionally, it is also possible to evaluate the bi-spectrum
analytically in non-trivial situations such as scenarios involving departures from slow roll [59–
61]. One such example that permits an analytic evaluation of the power spectrum and the
complete bi-spectrum (at least, in the equilateral limit) even in the presence of fast roll, is
the model originally due to Starobinsky [59]. This model has recently attracted quite a lot
of attention, but different physical conclusions with regards to the shape of the bi-spectrum
have been reached. The present paper is aimed at considering the question again in order to
clarify the situation.

As we shall soon outline, the Starobinsky model involves a canonical scalar field and
is described by a linear potential with a sudden change in the slope at a given point. The
sharp change in the slope leads to a brief period of fast roll sandwiched between two epochs
of slow roll. Typically, in such situations, the power spectrum is expected to turn scale
invariant when slow roll has been restored, and it is indeed what happens in the case of
the Starobinsky model. The scalar power spectrum has a step like feature with a burst of
oscillations connecting the two levels of the step (see, for instance, Fig. 3 of Ref. [39]). The
flat regions of the step reflect the two epochs of slow roll, while the oscillations in between
arise as a result of the period of fast roll.

Naively, one would have expected that the scalar bi-spectrum too would exhibit a similar
behavior, viz. that it would turn scale invariant when slow roll has been restored. However,
strikingly, when considered without adequate care, it is found that the bi-spectrum grows
linearly with the wavenumbers at small scales (see, Refs. [62, 63]; in this context, also see
Figs. 7 and 11 in Ref. [57] and the recent work Ref. [64]). From a theoretical point of view,
evidently, it is imperative to firmly establish the predictions of the model and settle upon
the correct behavior in a physically relevant and realistic situation. It is also worth noting
here that, given the extent of accuracy of the measurements of non-Gaussianities by Planck,
upon comparing with the data, the two behavior mentioned above would probably lead to
very different constraints on the Starobinsky model. With these motivations in mind, in this
work, as we have already pointed out, we intend to revisit the issue.

Clearly, the fact that the scale invariance of the bi-spectrum is not restored on large
scales must be unphysical and, in this paper, we shall show that this arises due to the
discontinuity in the second derivative of the potential. In fact, the point that the growing
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term is indeed unrealistic could have been easily guessed from the very beginning, since
it exactly corresponds to a well-known and well-studied situation which was investigated
long ago in the context of particle production by time-dependent, classical, gravitational
fields [65]. In what follows, we shall quickly recall the main results and conclusions arrived
at in the earlier work, as the phenomenon closely resembles the behavior of the bi-spectrum
encountered in the Starobinsky model.

The earlier work [65] considers a scalar field, say, ψ, that is non-minimally coupled
to gravity, and is evolving in a spatially, flat, Friedmann-Lemâıtre-Robertson-Walker (for
convenience, simply FLRW, hereafter) metric. Such a scalar field is governed by the following
equation of motion:

(�− ξ R) ψ = 0, (1.1)

where R denotes the scalar curvature, while ξ an arbitrary constant. In a time-dependent
background such as the FLRW universe, it is common knowledge that, upon quantization,
pairs of particles associated with the scalar field ψ will, in general, be produced, provided
the coupling is not conformal, i.e. ξ 6= 1/6. Let a(η) denote the scale factor of the FRLW
universe, with η being the conformal time coordinate. Upon Fourier transforming the scalar
field and redefining the Fourier modes, say, ψk, as ψk ≡ µk/a(η), one finds that the differential
equation satisfied by µk can be written as

µ′′k + k2 µk = Vk(η)µk, (1.2)

where an overprime represents differentiation with respect to the conformal time η, while k
denotes the comoving wavenumber. The quantity Vk(η) is given by

Vk(η) ≡ (1− 6 ξ)
a′′

a
=

(

1

6
− ξ

)

a2R. (1.3)

The above differential equation for µk can also be cast as an integro-differential equation as
follows:

µk(η) =
e−i k η

√
2 k

+
1

k

∫ η

−∞

dτ Vk(τ) sin [k (η − τ)]µk(τ). (1.4)

At early stages of the expansion, the mode function can be expected to behave as µk →
e−i k η/

√
2 k, which essentially corresponds to choosing the field to be in the vacuum state

initially. At late times, one has µk → (Ak/
√
2 k) e−ikη + (Bk/

√
2 k) ei k η, where Ak and Bk

are the standard Bogoliubov coefficients that relate the modes at different times. Then, using
Eq. (1.4), one can approximate the Bogoliubov coefficient Bk at very late times to be

Bk ≃ i

2 k

∫

∞

−∞

dτ Vk(τ) e
−2 i k τ . (1.5)

This expression, in turn, permits one to evaluate the energy density of the created particles,
which is arrived at by calculating the integral [65]

ρ =
1

2π2 a4

∫

∞

0
dk k3 |Bk|2. (1.6)

Let us now consider the case wherein there is a sharp transition from a phase of de
Sitter inflation to a radiation dominated era. Let the transition take place at the conformal
time, say, η∗. In this scenario, the scalar curvature R is non-zero, but constant (being related
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to the constant Hubble parameter during the de Sitter phase) for η < η∗, while R vanishes
for η > η∗ (i.e. during the radiation dominated epoch). The integral (1.5) can be carried out
explicitly in such a case and, one obtains that, Bk = 2 (1 − 6 ξ) Γ(−1, 2 i k η∗), where Γ(b, z)
is the incomplete Euler function [66, 67]. For large values of k, one finds that |Bk|2 ∝ k−4,
with the result that the corresponding energy density ρ diverges logarithmically. However, as
discussed in the original work [65], this conclusion is unphysical, and it is just an artifact of
the abruptness of the transition from the de Sitter phase to the epoch of radiation domination.
Indeed, if we now ‘regularize’ the transition, for instance, by smoothening out the quantity
Vk(η) to be, say, Vk(η) = 2 (1 − 6 ξ)/(η2 + η2∗), then the coefficient Bk is found to be

Bk = − i π

k η∗
e2 k η∗ . (1.7)

In other words, one obtains an exponential cut-off in the spectrum, i.e. |Bk|2, of created
particles (note that η∗ is negative), which occurs as a result of smoothening out the sharp
transition. If we now calculate the corresponding energy density, then we arrive at a finite
result, viz. ρ = (1 − 6 ξ)2/(32 a4 η4∗). This unambiguously illustrates the point that the
original logarithmic divergence was indeed an artifact and, upon modeling the transition
more realistically, one obtains a result that is perfectly finite and physical.

In the same manner, the indefinite growth of the bi-spectrum at small scales in the
Starobinsky model ought to be just an artifact and should be considered to be unphysical.
In this work, focusing on the equilateral limit, we shall analytically investigate the effects
of smoothening out the discontinuity in the derivative of the potential on the scalar bi-
spectrum. We shall also compare the analytical results with the numerical results from the
code Bi-spectra and Non-Gaussianity Operator or, simply, BINGO, which we had recently
put together to compute the scalar bi-spectrum in inflationary models involving the canonical
scalar field [57]. As we shall illustrate, in the case of the bi-spectrum, smoothening out the
discontinuity restores the scale invariance of the bi-spectrum at suitably large wavenumbers,
depending on the extent of the smoothening. This allows us to conclude that the continued
growth in the bi-spectrum at small scales, as was found earlier, can be attributed to the unre-
alistic assumption that the discontinuity in the derivative of the potential can be arbitrarily
sharp.

The remainder of this paper is organized as follows. In the following two sections, we
shall highlight a few essential aspects of the Starobinsky model and discuss the dominant
contribution to the scalar bi-spectrum (in the equilateral limit) which arises due to the
discontinuity in the first derivative of the potential in the model. In Sec. 4, we shall smoothen
the discontinuity in a simple manner, which allows one to obtain the modes during the
transition, and evaluate the corresponding contribution to the scalar bi-spectrum. We shall
see that even the simplest of smoothening curtails the growth of the bi-spectrum on small
scales. In Sec. 5, focusing on the limit of large wavenumbers, we shall discuss the effects
of a more generic smoothening of the potential. We shall analytically illustrate that, if the
potential is smoothened sufficiently, it ensures that the corresponding contributions to the
bi-spectrum prove to be insignificant at suitably small scales. In Sec. 6, we shall compare the
analytical expressions we obtain with the numerical results from BINGO. We shall conclude
in Sec. 7 with a few general remarks.

Note that, we shall assume the background to be the spatially flat, FLRW line-element,
which is described by the scale factor a and the Hubble parameter H. Also, we shall work
with units such that c = ~ = 1, and we shall set M2

Pl
= (8π G)−1. Moreover, t shall denote
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the cosmic time coordinate, and we shall represent differentiation with respect to t by an
overdot. As we have already mentioned, η represents the conformal time coordinate, while
an overprime denotes differentiation with respect to η. Further, N shall denote the number
of e-folds. Lastly, a plus sign, a zero or a minus sign in the sub-script or the super-script of
any quantity shall denote its value or contribution before, during and after the field crosses
the discontinuity in the derivative of the potential, respectively.

2 Essential aspects of the Starobinsky model

The Starobinsky model involves a canonical scalar field and it consists of a linear potential
with a sudden change in its slope at a given point [59]. The potential that describes the
model can be written as follows:

V (φ) =

{

V0 +A+ (φ− φ0) for φ > φ0,
V0 +A− (φ− φ0) for φ < φ0.

(2.1)

Evidently, while the value of the scalar field where the slope, i.e. Vφ ≡ dV/dφ, changes
abruptly is φ0, the slope of the potential above and below φ0 are given by A+ and A−,
respectively. Moreover, the quantity V0 denotes the value of the potential at φ = φ0. In this
section, we shall highlight a few important points relating to the evolution of the background,
in particular, the behavior of the slow roll parameters, in the Starobinsky model. We shall
also discuss the behavior of the modes describing the curvature perturbation before and after
the field crosses the point φ0.

2.1 Evolution of the background

An important assumption of the Starobinsky model is that the value of V0 is sufficiently large
that it dominates the energy of the scalar field as it rolls down the potential across φ0. As a
result, the behavior of the scale factor proves to be essentially that of de Sitter. This, in turn,
implies that the first slow parameter, viz. ǫ1 = −Ḣ/H2, remains much smaller than unity
throughout the evolution, even as the field crosses the discontinuity in the potential. In fact,
the first slow roll parameter before and after the transition, i.e. when the field crosses φ0,
can be shown to be [39]

ǫ1+ ≃ A2
+

18M2
PlH

4
0

, (2.2)

ǫ1− ≃ A2
−

18M2
PlH

4
0

[

1− ∆A

A−

e−3 (N−N0)

]2

, (2.3)

respectively, where H0 is a constant that is determined by the relation H2
0 ≃ V0/(3M

2
Pl
),

while N0 denotes the e-fold at the transition, and ∆A ≡ A− −A+.
Before the transition, the second slow roll parameter, viz. ǫ2 = d ln ǫ1/dN , is determined

by the slow roll approximation and is found to be ǫ2+ ≃ 4 ǫ1+. However, as the field crosses φ0,
the change in the slope causes a short period of deviation from slow roll. After the transition,
the second slow roll parameter ǫ2 is found to be [39]

ǫ2− ≃ 6∆A

A−

e−3 (N−N0)

1− (∆A/A−) e−3 (N−N0)
+ 4 ǫ1−. (2.4)
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It is clear that ǫ2− turns large immediately after the transition and, when slow roll is restored
eventually, one finds that ǫ2− ≃ 4 ǫ1−, just as one would expect.

As we shall discuss in the following section, the dominant contribution to the scalar bi-
spectrum arises due to the so-called fourth term in the Maldacena formalism (in this context,
see, for instance, Refs. [39, 40, 57]). This contribution involves the time derivative of the
second slow roll parameter ǫ2. Upon using the background equations, one can show that ǫ̇2
can be written as [39, 62, 63]

ǫ̇2 = −2Vφφ
H

+ 12H ǫ1 − 3H ǫ2 − 4H ǫ21 + 5H ǫ1 ǫ2 −
H

2
ǫ22, (2.5)

where Vφφ ≡ d2V/dφ2, and we should stress here that this expression is an exact one. In
the case of the Starobinsky model, due to the discontinuity in the slope Vφ of the potential,
clearly, the first term in the expression for ǫ̇2 above, which involves the second derivative of
the potential, will lead to a Dirac delta function. The contribution to ǫ̇2 due to this specific
term can then be written as

ǫ̇2 ≃
2 ∆A

H0
δ(1)(φ− φ0) =

6 ∆A

A+ a0
δ(1)(η − η0). (2.6)

In fact, on large wavenumbers, as we shall soon discuss, it is this particular term that was
found to lead to the dominant contribution to the scalar bi-spectrum [62, 63], if one works
in the limit where the discontinuity in Vφ is infinitely sharp.

2.2 Evolution of the perturbations

Let us now turn to briefly discuss the behavior of the modes describing the scalar perturba-
tions in the Starobinsky model.

Recall that, the Fourier modes of the curvature perturbations, say, fk(η), are governed
by the differential equation [11]

f ′′k + 2
z′

z
f ′k + k2 fk = 0, (2.7)

where z = aMPl

√
2 ǫ1. In terms of the Mukhanov-Sasaki variable, vk = z fk, the above

equation for fk reduces to

v′′k +

(

k2 − z′′

z

)

vk = 0. (2.8)

The ‘effective potential’ z′′/z that appears in this differential equation can be written in
terms of the slow roll parameters as follows:

z′′

z
= H2

(

2− ǫ1 +
3 ǫ2
2

+
ǫ22
4

− ǫ1 ǫ2
2

+
ǫ2 ǫ3
2

)

, (2.9)

where H ≡ a′/a = aH is the conformal Hubble parameter, while ǫ3 denotes the third slow
roll parameter given by

ǫ3 =
d ln ǫ2
dN

=
ǫ̇2
H ǫ2

. (2.10)

Also, it should be emphasized that the above expression for z′′/z is exact, and no approxi-
mation has been made in arriving at it.
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In the Starobinsky model, due to certain cancellations that occur under the approxi-
mations of interest, one finds that the quantity z′′/z reduces to 2H2 before as well as after
the transition [39, 59, 62, 63]. This basically corresponds to the de Sitter limit, which then
implies that the Mukhanov-Sasaki variable vk during these regimes is essentially given by
the conventional Bunch-Davies solutions [68]. However, it should be clear from the expres-
sions (2.9), (2.10) and (2.6) that, at the transition, it is the last term involving the quantity
ǫ3 in z′′/z above which will dominate. One finds that the corresponding effective potential
is described by a Dirac delta function at the transition, and is given by [39]

z′′

z
≃ H2 ǫ2 ǫ3

2
=

H2 ǫ̇2
2H

= a20 ∆A δ(1) (φ− φ0)

=
a20∆A

|dφ/dη|η0
δ(1) (η − η0) =

3 a0H0∆A

A+
δ(1) (η − η0) , (2.11)

where η0 and a0 denote the conformal time and the scale factor at the transition. We should
clarify that, while the strictly de Sitter term, viz. z′′/z ≃ 2H2, remains, it is the above term
which a priori dominates at the transition.

Due to slow roll, before the transition, the modes vk can be described to a good ap-
proximation by following de Sitter solution:

v+
k
(η) =

1√
2 k

(

1− i

k η

)

e−i k η. (2.12)

Though slow roll is indeed restored at late times, due to the intervening epoch of fast roll,
post-transition, the modes vk do not remain in the Bunch-Davies vacuum. Hence, after the
transition, the solution to vk takes the general form

v−
k
(η) =

αk√
2 k

(

1− i

k η

)

e−i k η +
βk√
2 k

(

1 +
i

k η

)

ei k η, (2.13)

where αk and βk are the standard Bogoliubov coefficients. The expression (2.11) for z′′/z
then leads to the following matching conditions on the modes vk and their derivatives v′

k
at

the transition:
v−
k
(η0) = v+

k
(η0) . (2.14)

and

v−
k

′ (η0)− v+
k

′ (η0) =
3 a0H0∆A

A+
v+
k
(η0) . (2.15)

These conditions then allow us to determine the Bogoliubov coefficients αk and βk, which
can be obtained to be

αk = 1 +
3 i∆A

2A+

k0
k

(

1 +
k20
k2

)

, (2.16)

βk = −3 i∆A

2A+

k0
k

(

1 +
i k0
k

)2

e2 i k/k0 , (2.17)

where k0 ≡ −1/η0 = a0H0 corresponds to the mode that leaves the Hubble radius at the
transition.
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One can arrive at the corresponding expressions for the modes fk and the derivative f ′
k

before and after the transition from the above expressions for vk and its time derivative v′
k
.

Before the transition, the mode fk and the derivative f ′
k
are given by

f+
k
(η) =

iH0

2MPl

√

k3 ǫ1+
(1 + i k η) e−i k η, (2.18)

and

f+
k

′(η) =
iH0

2MPl

√

k3 ǫ1+

[

−H
(

ǫ1+ +
ǫ2+
2

)

(1 + i k η) + k2 η
]

e−i k η. (2.19)

Whereas, after the transition, one finds that

f−
k
(η) =

iH0 αk

2MPl

√

k3 ǫ1−
(1 + i k η) e−i k η − iH0 βk

2MPl

√

k3 ǫ1−
(1− i k η) ei k η (2.20)

and

f−
k

′(η) =
iH0 αk

2MPl

√

k3ǫ1−

[

−H
(

ǫ1− +
ǫ2−
2

)

(1 + i k η) + k2 η
]

e−i k η

− iH0 βk

2MPl

√

k3ǫ1−

[

−H
(

ǫ1− +
ǫ2−
2

)

(1− i k η) + k2 η
]

ei k η.

(2.21)

Note that, unlike the case of the Mukhanov-Sasaki equation (2.8), the governing equa-
tion (2.7) for fk involves only z′/z rather than z′′/z. It should also be clear from the above
arguments that z′/z will involve the Heaviside step function. This implies that the mode fk
and its derivative f ′

k
are both continuous at the transition. As we shall discuss in the next

section, the most significant contribution to the dominant term in the scalar bi-spectrum in
the Starobinsky model shall depend on the mode fk and the derivative f ′

k
evaluated at the

transition. Because of their simpler structure, it proves to be convenient to make use of the
expressions (2.18) and (2.19) for the mode fk and f ′

k
before the transition. At the transition,

these reduce to

fk(η0) =
iH0

2MPl

√

k3 ǫ1+

(

1− i k

k0

)

ei k/k0 , (2.22)

and

f ′k(η0) = − iH0

2MPl

√

k3 ǫ1+

[

3 ǫ1+ k0

(

1− i k

k0

)

+
k2

k0

]

ei k/k0

≃ − iH0

2MPl

√

k3 ǫ1+

k2

k0
ei k/k0 , (2.23)

where we have made use of the fact that ǫ2+ = 4 ǫ1+ to obtain the first expression, and have
ignored the term involving ǫ1+, as is done in the slow roll approximation, to arrive at the
second.

3 The dominant contribution to the scalar bi-spectrum

For simplicity, we shall focus on the equilateral limit in this work. It is well known that,
when deviations from slow roll occur, it is the fourth term in the Maldacena formalism that
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leads to the dominant contribution to the bi-spectrum [40, 50–56]. In the equilateral limit of
our interest, the fourth term, which we shall refer to as G4(k), is given by

G4(k) =M2
Pl

[

f3k(ηe)G4(k) + f∗k
3(ηe)G∗

4(k)
]

, (3.1)

where ηe denotes the end of inflation. The quantity G4(k) is described by the integral

G4(k) = 3 i

∫ ηe

ηi

dη a3 ǫ1 ǫ̇2 f
∗

k

2 f ′∗k , (3.2)

where ηi denotes a very early time, say, when the initial conditions are imposed on the
perturbations.

Recall that, in a generic situation, the complete expression for the quantity ǫ̇2 is given by
Eq. (2.5). As we have already discussed, in the Starobinsky model, the first term involving Vφφ
in the exact expression for ǫ̇2 leads to a delta function [cf. Eq. (2.6)]. It is then evident from
the integral (3.2) that the corresponding contribution will be non-zero only at the transition.
Actually, the contributions due to all the other terms, i.e. apart from the term involving Vφφ
in Eq. (2.5), can be evaluated analytically (in this context, see Ref. [39]). However, we shall
focus here only on the specific contribution due to the Vφφ term in ǫ̇2, since it is this term
that has been found to lead to the linear and indefinite growth on large wavenumbers in the
bi-spectrum [62, 63]. We find that, with ǫ̇2 given by Eq. (2.6), the quantity G4(k) can be
written as

G0
4(k) =

i∆AA+ k
2
0

H6
0 M

2
Pl

f∗k
2(η0) f

′

k

∗(η0). (3.3)

Towards the end of inflation, i.e. as η → 0, the mode f−
k

simplifies to

f−
k
(ηe) =

iH0

2MPl

√

k3 ǫ1−(ηe)
(αk − βk) , (3.4)

where ǫ1−(ηe) denotes the value of the first slow roll parameter at late times. Upon using the
above two expressions for G0

4(k) and f−
k
(ηe) in the expression (3.1) for G4(k), we find that

we can write the contribution to the bi-spectrum due to the transition as follows:

k6G0
4(k) = − i∆AA+

64M6
Pl

k0
k

1
√

ǫ31+ ǫ
3
1− (ηe)

×
{

3 i

[

(

α2
k
β̃k + αk β̃

2
k

)

C(k) +
(

α∗

k

2 β̃∗
k
+ α∗

k
β̃∗
k

2
)

C∗(k)

]

sin

(

k

k0

)

−3

[

(

α2
k β̃k − αk β̃

2
k

)

C(k)−
(

α∗

k

2 β̃∗k − α∗

k β̃
∗

k

2
)

C∗(k)

]

cos

(

k

k0

)

− i
[(

α3
k + β̃3k

)

C(k) +
(

α∗

k

3 + β̃∗k
3
)

C∗(k)
]

sin

(

3 k

k0

)

+
[(

α3
k − β̃3k

)

C(k)−
(

α∗

k

3 − β̃∗k
3
)

C∗(k)
]

cos

(

3 k

k0

)

}

, (3.5)

where β̃k = βk e
−2 i k/k0 and the quantity C(k) is given by

C(k) =
(

1 +
i k

k0

)2

. (3.6)
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Figure 1. The behavior of the quantity k6 |G0
4(k)| [cf. Eq. (3.5)] (in blue) as well as its behavior

at small (in magenta) and large (in orange) wavenumbers in the Starobinsky model. The above plot
corresponds to the following values of the parameters of the Starobinsky model: V0 = 2.36×10−12M4

Pl
,

A+ = 3.35 × 10−14M3

Pl
, A

−
= 7.26 × 10−15M3

Pl
and φ0 = 0.707M

Pl
. The linear growth at large

wavenumbers is evident.

As k/k0 → 0, we find that G0
4(k) behaves as

lim
k/k0→0

k6G0
4(k) =

− 27∆AA3
−H

6
0

8A5
+M

3
Pl

√

2 ǫ31− (ηe)
, (3.7)

while, in the limit k/k0 → ∞, one obtains that

lim
k/k0→∞

k6G0
4(k) =

27∆AH6
0

8A2
+M

3
Pl

√

2 ǫ31− (ηe)

k

k0
sin

(

3 k

k0

)

. (3.8)

In Fig. 1, we have plotted the absolute values of the exact result (3.5) for the quantity k6

times G0
4(k) as well as its asymptotic forms (3.7) and (3.8). Note the linear growth with k

at large wavenumbers [57, 62, 63]. As we had discussed earlier, one physically expects the
bi-spectrum to turn scale invariant for small scale modes that leave the Hubble radius at late
times, when slow roll has been reestablished. However, one finds here that the bi-spectrum
continues to grow indefinitely with the wavenumber. Evidently, this can be attributed to the
fact that the potential contains an infinitely sharp transition, which can be considered to be
unphysical, as discussed in the introductory section. As we shall illustrate in the following
sections, the indefinite growth disappears as one smoothens the transition.
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4 Effects of smoothening the discontinuity: A simple analytical treatment

In this section and the next, we shall analytically consider the effects of smoothening the
discontinuity on the scalar bi-spectrum. We shall focus on the contribution due to the fourth
term and we shall restrict ourselves to the specific term in ǫ̇2 (viz. the one involving Vφφ)
that leads to the indefinite growth in the scalar bi-spectrum.

We shall first study the effects on the scalar bi-spectrum by smoothening the discontinu-
ity in a specific fashion that permits a relatively complete analytical treatment of the problem.
Essentially, we shall replace the delta function by one of its conventional representations. Let
us write the delta function involved, viz. δ(1)(η − η0), in the following fashion:

δ(1)(η − η0) =











0 for η < η−
1

ε
for η− < η < η+,

0 for η > η+,

(4.1)

where, for convenience, we have set

η± = η0 ±
ε

2
, (4.2)

with ε being a small quantity (not to be confused with the slow roll parameters) that de-
termines the width and the height of the transition. Obviously, the limit ε→ 0 corresponds
to the original sharp transition. In other words, instead of a function of infinite height and
infinitesimal width, we shall alter the width and height suitably such that the area under
the function is unity, as is required. In such a situation, in contrast to the infinitely sharp
transition wherein there had existed just two domains, viz. the ones before and after the
transition, there now exists a third domain corresponding to the period of the transition.
It is then clear that, in the two original domains, i.e. when η < η− and η > η+, we have
z′′/z ≃ 2H2, just as we had before. Hence, the earlier solutions for vk, viz. (2.12) and (2.13)
continue to remain valid during these domains. However, during the transition, i.e. when
η− < η < η+, we have

z′′

z
≃ 2H2 +

3 a0H0∆A

A+ ε
. (4.3)

In order to be able to solve for the modes analytically corresponding to the z′′/z above
and also to be able to evaluate the integral describing the quantity G4 [see Eq. (3.2)], we
shall assume a few further points. Recall that, the delta function encountered in z′′/z arises
essentially due to its dependence on ǫ̇2 [cf. Eq. (2.11)]. Therefore, by altering the delta
function, we have essentially modified the behavior of ǫ′2 during the transition to be

ǫ02
′ =

6∆A

A+ ε
. (4.4)

In such a case, clearly, during the transition, we would have

ǫ02(η) = γ (η − η−) + 4 ǫ1+, (4.5)

where, for convenience, we have set γ = 6∆A/(A+ ε). Actually, such a modification would
also result in a change in the behavior of the first slow roll parameter ǫ1 and, needless to
add, the scale factor as well. But, we shall assume that the scale factor continues to behave
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as that of de Sitter, and that the first slow roll parameter remains small and largely constant
during the transition. As we shall see, these assumptions allow us to arrive at a complete
analytical form for the resulting bi-spectrum, with the expected limit as ε→ 0.

Under the above assumptions, during the transition, the quantity z′′/z is given by

z′′

z
≃ 2

η2
+

3 a0H0∆A

A+ ε
, (4.6)

and the corresponding solution to the Mukhanov-Sasaki equation can be written as

v0k(η) =
ᾱk√
2 q

(

1− i

q η

)

e−i q η +
β̄k√
2 q

(

1 +
i

q η

)

ei q η, (4.7)

where ᾱk and β̄k denote the Bogoliubov coefficients during the transition, while

q2 = k2 − 3 a0H0∆A

A+ ε
. (4.8)

It is important to stress that, since ∆A < 0 for the parameter values of our interest (in this
context, see the caption of Fig. 1) and, as a0 and H0 are positive quantities, q2 is a positive
definite quantity. The corresponding mode f0

k
and its derivative f0

k

′ are given by

f0k(η) =
iH0 ᾱk

2MPl

√

q3 ǫ01
(1 + i q η) e−i q η − iH0 β̄k

2MPl

√

q3 ǫ01
(1− i q η) ei q η, (4.9)

and

f0k
′(η) =

iH0 ᾱk

2MPl

√

q3 ǫ01

[

−H
(

ǫ01 +
ǫ02
2

)

(1 + i q η) + q2 η

]

e−i q η

− iH0 β̄k

2MPl

√

q3 ǫ01

[

−H
(

ǫ01 +
ǫ02
2

)

(1− i q η) + q2 η

]

ei q η, (4.10)

where ǫ01 and ǫ02 represent the first two slow roll parameters during the transition.
The expressions for the Bogoliubov coefficients during the transition, viz. ᾱk and β̄k,

are obtained by matching the modes vk and their derivatives v′
k
on either side at η−. It

should also be clear that the Bogoliubov coefficients after the transition, i.e. αk and βk,
will no more be given by the original expressions [viz. Eqs. (2.16) and (2.17)], but will be
modified. They are arrived at by matching the modes at η+. We find that the Bogoliubov
coefficients ᾱk and β̄k are given by

ᾱk =
1

2 η−

1

(k q)3/2
(k + q) (k q η− + i k − iq) e−i (k−q) η− , (4.11)

β̄k = − 1

2 η−

1

(k q)3/2
(k − q) (k q η− − i k − iq) e−i (k+q) η− . (4.12)

The Bogoliubov coefficients, say, αk and βk in the domain η > η+ can be calculated to be

αk =
1

2 η+

1

(k q)3/2

[

(k + q) (k q η+ − i k + i q) ᾱk ei (k−q) η+

+(k − q) (k q η+ + i k + i q) β̄k ei (k+q) η+

]

, (4.13)

βk =
1

2 η+

1

(k q)3/2

[

(k − q) (k q η+ − i k − i q) ᾱk e−i (k+q) η+

+(k + q) (k q η+ + i k − i q) β̄k e−i (k−q) η+

]

. (4.14)
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One can easily show that, as ε → 0, these expressions simplify to the original expressions,
viz. (2.16) and (2.17), for αk and βk.

Recall that, our aim is to evaluate contribution to the bi-spectrum during the transition,
when it has been smoothened. It is now a matter of substituting the mode (4.9) and the
corresponding derivative (4.10) in the expression (3.2) and evaluating the integral involved
from η− to η+. We find that, we can write G0

4(k) as

G0
4(k) = 3 i

[

ᾱ∗

k

3 I04 (k) + β̄∗k
3 I04

∗(k) + ᾱ∗

k

2 β̄∗k J
0
4 (k) + ᾱ∗

k β̄
∗

k

2 J0
4
∗(k)

]

, (4.15)

where the quantities I04 (k) and J
0
4 (k) are described by the integrals

I04 (k) =
iH0 γ

16M3
Pl
q3

√

q3 ǫ01

∫ η+

η−

dη

η3
e3 i q η (1− i q η)2

×
{

[γ (η − η−) + 4 ǫ1+] (1− i q η) + 2 q2 η2
}

, (4.16)

J0
4 (k) =

− iH0 γ

16M3
Pl
q3

√

q3 ǫ01

∫ η+

η−

dη

η3
ei q η (1− i q η)

×
{

3 [γ (η − η−) + 4 ǫ1+]
(

1 + q2 η2
)

+ 2 q2 η2 (1− i q η)

+ 4 q2 η2 (1 + i q η)

}

. (4.17)

We should mention that, in arriving at these integrals, we have ignored the term involving
ǫ01 in the expression for f0

k

′ [the one within the square brackets in Eq. (4.10)], and we have
made use of the expressions (4.4) and (4.5) for ǫ02

′ and ǫ02, respectively. If we also ignore the
term involving ǫ02 [within the square brackets in Eq. (4.10)], we find that the above integrals
can be trivially integrated to arrive at the following results1:

I04 (k) =
iH0 γ

16M3
Pl
q3

√

q3 ǫ01
e3 i q η0

{

−
(

4 q3 η0
3

+
28 i q2

9

)

sin

(

3 q ε

2

)

+
2 i q3 ε

3
cos

(

3 q ε

2

)

+2 q2 e−3 i q η0 [Ei (3 i q η+)− Ei (3 i q η−)]

}

, (4.18)

J0
4 (k) =

− iH0 γ

16M3
Pl
q3

√

q3 ǫ01
ei q η0

{

−
(

4 i q2 − 4 q3 η0
)

sin
(q ε

2

)

− 2 i q3 ε cos
(q ε

2

)

+ 6 q2 e−i q η0 [Ei (i q η+)− Ei (i q η−)]

}

, (4.19)

where Ei(x) denotes the exponential integral function [66, 67].
The resulting contribution to the bi-spectrum can be obtained by substituting the above

results for I04 (k) and J0
4 (k) in the expression (4.15) for G0

4(k) and, in turn, substituting the
resulting G0

4(k) in the expression (3.1) and making use of the behavior (3.4) of the modes
f−
k

at late times [with αk and βk now being given by Eqs. (4.13) and (4.14)]. The complete

1We should clarify a point here. We find that the final results and conclusions we have presented below
remain largely unaffected, even if we retain the term involving ǫ02.
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expression for G0
4(k) is quite long and unwieldy and, hence, we will not write it down here.

However, its form in the limit of k/k0 → ∞, which is the behavior of our principal focus, can
be arrived at easily. One obtains that

lim
k/k0→∞

k6G0
4(k) =

27∆AH6
0

8A2
+M

3
Pl

√

2 ǫ31− (ηe)

[

2

3 ε k
sin

(

3 k ε

2

)]

k

k0
sin

(

3 k

k0

)

. (4.20)

It ought to be highlighted that, in the large k limit, the only additional factor [as compared
to the original result (3.8)] that arises due to the smoothening of the transition is the one
that appears within the square brackets in the above expression. Note that, the quantity ε
has dimensions of time, and the width as well as the sharpness of the step are determined
by the ratio ε/|η0| or, equivalently, ε k0. If we write ε = κ/k0, where κ is a dimensionless
quantity, then we arrive at

lim
k/k0→∞

k6G0
4(k) =

27∆AH6
0

8A2
+M

3
Pl

√

2 ǫ31− (ηe)

[

2 k0
3κk

sin

(

3κk

2 k0

)]

k

k0
sin

(

3 k

k0

)

, (4.21)

an expression that can be said to be the first important result of this paper.
Three points need to be emphasized regarding the result we have arrived at above.

Firstly, it should be evident that the additional factor [when compared to the original ex-
pression (3.8)] reduces to unity in the limit ε tends to zero, exactly as is required. This
suggests that the assumptions and methods we have adopted to smoothen the step seem
reasonable. Secondly, the above expression does not grow indefinitely, but turns finite at
large k. It saturates at a scale invariant amplitude that is inversely proportional to the value
of κ and, moreover, the quantity turns scale invariant at k/k0 ≃ κ−1. In Fig. 2, we have
plotted the complete expression for the absolute value of the quantity k6G0

4(k) for different
values of κ. A close look clearly indicates that the figure completely corroborates the two
points we have made above. Thirdly and lastly, it is interesting to compare the above result
with the contribution to the bi-spectrum that arises when all the other terms in ǫ̇2, i.e. apart
from the term involving Vφφ, are taken into account. In such a situation, one obtains that
(in this context, see Eq. (106) of Ref. [39])

lim
k/k0→∞

k6 Ḡ4(k) =
27∆AA−H

6
0

8A3
+M

3
Pl

√

2 ǫ31− (ηe)
cos

(

3 k

k0

)

. (4.22)

If one neglects the trigonometric functions that are of order unity in the above two expres-
sions, one finds that

lim
k/k0→∞

k6 Ḡ4(k)

k6G0
4(k)

≃ 3κ

2

A−

A+
≃ ∆k

k0

A−

A+
, (4.23)

where we have set ∆k ≃ ε k20 = κk0, at first order in ε. This suggests that the contribution
originating from the unphysical, growing term can be negligible provided ∆k/k0 ≫ A+/A−.
In other words, if the transition is sufficiently smooth, then the growing term cannot rise to
be too large. For the values of the parameters we have worked with in Figs. 1 and 2, viz.
A+ = 3.35 × 10−14M3

Pl
and A− = 7.26 × 10−15M3

Pl
, the condition we have arrived at above

leads to ∆k/k0 ≃ κ ≫ 4.6. It remains to be seen if this represents a reasonable value in
the context of a realistic model. But, in any case, we have explicitly shown here that the
bi-spectrum turns scale invariant on suitably small scales, when the step is smoothened.
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Figure 2. The behavior of the quantity k6 |G0
4(k)| in the Starobinsky model, when the delta function

is represented by Eq. (4.1). We have worked with the same values for the set of parameters that
describe the original Starobinsky model (viz. V0, A+ and A

−
) as in the last figure. The different plots

correspond to the following values of the dimensionless parameter κ = ε k0: 10
−6 (in blue), 10−4 (in

red), 10−2 (in green) and 1 (in purple). It is evident that the smoothened step curtails the growth at
k/k0 ≃ κ−1. Also, it is clear that the ratio of the scale invariant amplitudes at large k/k0 is inversely
proportional to the values of κ, thereby confirming the limiting behavior (4.21) that we had arrived
at analytically.

5 Smoothening the transition: A more general treatment

The calculation of the last section was based on a specific representation of the regularized
Dirac delta function, as given by Eq. (4.1). One may wonder as to what happens if we alter
the fashion in which the transition is smoothened. In particular, it will be interesting to
examine whether the plateau at small scales, as seen in Fig. 2, generically appears whenever
the transition is no longer infinitely sharp. In the previous section, we had chosen to work
with the simple representation (4.1) of the regularized delta function, since it had permitted
us to analytically determine the modes during the transition. But, the modes prove to be
difficult to obtain for a generic representation of the delta function. However, as we are only
interested in the small scale limit of the bi-spectrum, we find that, fortunately, it turns out
to be possible to arrive at its behavior analytically in this regime in a simple manner, as we
shall now describe.

To begin with, note that, for very large wavenumbers, i.e. in the extreme small scale
limit, the modes are completely unaffected by the background. As a result, in this limit, the
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modes f0k and their time derivative f0k
′ during the transition will be given by

f0
k
(η) =

−H0 k η

2MPl

√

k3 ǫ01
e−i k η (5.1)

and

f0
k

′(η) =
iH0 k

2 η

2MPl

√

k3 ǫ01
e−i k η, (5.2)

which are basically the behavior of the modes before the transition. Actually, for the ex-
tremely small scale modes, the above form will be valid even after the transition. In other
words, the form of the modes remain unchanged throughout the evolution. Moreover, it
should be clear that this behavior is independent of the details of the transition. Due to
this reason, the Bogoliubov transformations turn trivial, with ᾱk and αk reducing to unity,
while β̄k and βk vanish. It is straightforward to check that the above-mentioned behavior
are indeed satisfied by the modes and the Bogoliubov coefficients for the specific form of the
regularized delta function representation considered in the previous section. For instance,
as k → ∞, one finds that ᾱk and αk [as given by Eqs. (4.11) and (4.13)] reduce to unity,
whereas β̄k and βk [as given by Eqs. (4.12) and (4.14)] vanish, just as expected. Further,
since q → k for large k, the mode (4.9) and its derivative (4.10) indeed reduce to the above
forms for f0k and f0k

′.
Therefore, for the extreme small scale modes, we find that the quantity G0

4(k), i.e. the
integral characterizing the contribution to the bi-spectrum during the transition, reduces to
the following simple form:

G0
4(k) =

3H0 k

8M3
Pl

√

k3 ǫ01

∫ η+

η−

dη η ǫ02
′ e3 i k η, (5.3)

which is essentially the main result of this article. It is important to appreciate the point
that this expression for applies to any smooth transition in the small scale limit. Note that,
G0
4(k) is basically the Fourier transform of the combination η ǫ02

′. Moreover, since αk is unity,
while βk vanishes for small scales, the mode f−

k
(ηe) at late times [cf. Eq. (3.4)] simplifies to

f−
k
(ηe) =

iH0

2MPl

√

k3 ǫ1−(ηe)
. (5.4)

As a consequence, if we can carry out the integral (5.3) describing G0
4(k), then, upon using the

above expression for f−
k
(ηe), we can easily determine the small scale behavior of the quantity

k6G0
4(k). Recall that, according to the representation (4.1) of the delta function that we had

considered in the previous section, ǫ02
′ is a constant during the transition [cf. Eq. (4.4)]. In

such a situation, the above integral for G0
4(k) turns out to be trivial to evaluate and, if we

make use of the late time modes (5.4), we find that we indeed recover the large wavenumber
behavior (4.21) that we had mentioned earlier.

5.1 The case with the exponential cut-off

The main advantage of the approach described above to arrive at the small scale behavior of
the bi-spectrum should be obvious. We can now make use of the procedure to analytically test
the behavior of the bi-spectrum at large wavenumbers on the details of the transition. With
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this motivation, let us replace the quantity ǫ02
′ by the following alternative representation of

the original delta function:

ǫ02
′(η) =

6∆A

A+

1

2 ε
exp

(

−|η − η0|
ε

)

. (5.5)

If we substitute this expression in Eq. (5.3) describing G0
4(k), it takes the form

G0
4(k) =

3H0 k

8M3
Pl

√

k3 ǫ01

6∆A

A+

1

2 ε

∫ η+

η−

dη η exp

(

−|η − η0|
ε

+ 3 i k η

)

, (5.6)

where
η± = η0 ± r

ε

2
, (5.7)

as before, represent the boundaries of the transition. However, notice that this definition
differs from that of Eq. (4.2). Specifically, we have introduced the dimensionless quantity
r to control the duration of the transition, with r = 1 leading to the case of the step
transition that we had considered in the last section. The justification for the introduction
of the additional parameter r being that, with the parameterization (5.5), the duration of
the transition is not necessarily related to the height of ǫ02

′, as it was in the case before.
In order for Eq. (5.5) to represent the Dirac delta function faithfully, one should actually
choose η± = ±∞, viz. the limits wherein ǫ02

′ vanishes. If this condition is not satisfied,
there will arise spurious contributions proportional to ǫ02

′(η±). In what follows, we shall also
evaluate these contributions (in order to highlight a specific point), but they can always be
made negligible by suitably tuning the parameter r. The integral (5.6) can be performed in
a straightforward manner, and we obtain that

G0
4(k) =

3H0 k

8M3
Pl

√

k3 ǫ01

{

6∆A

A+

[ −1/k0
1 + 9 k2 ε2

+
6 i k ε2

(1 + 9 k2 ε2)2

]

e−3 i k/k0

+ ǫ02
′ (η±)

[

η+ e3 i k η+

3 i k − 1/ε
− η− e3 i k η−

3 i k + 1/ε
+

e3 i k η−

(3 i k + 1/ε)2
− e3 i k η+

(3 i k − 1/ε)2

]}

(5.8)

and, to arrive at this result, we have assumed that the transition is symmetric with ǫ02
′(η+) =

ǫ02
′(η−). The above expression is evidently made of two terms, with the second one, as

already mentioned, originating from the non-zero contributions to ǫ02
′ at the boundaries of

the transition.
Having arrived at the above expression, we can now evaluate the corresponding con-

tribution to the bi-spectrum. A somewhat lengthy, but straightforward calculation, leads
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to

k6G0
4(k) =
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(
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)

]

− 9H6
0 κk/k

2
0
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Pl

√

2 ǫ31− (ηe)
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2
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cos
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sin

(
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)

− 6κk/k0
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sin

(

3 r κ k

2 k0

)

sin

(

3 k

k0

)

+

[

r κ

1 + 9κ2 k2/k20
+

2κ
(

1− 9κ2 k2/k20
)

(

1 + 9κ2 k2/k20
)2

]

sin

(

3 r κ k

2 k0

)

cos

(

3 k

k0

)

+

[

3 r κ2 k/k0
1 + 9κ2 k2/k20

+
12κ2 k/k0

(

1 + 9κ2 k2/k20
)2

]

cos

(

3 r κ k

2 k0

)

cos

(

3 k

k0

)

}

, (5.9)

where we should remind that, as earlier, ε has been written as κ/k0. It is easy to check
from the above expression that, in the limit corresponding to that of the exact Dirac delta
function (i.e. as ε→ 0) one recovers the original result that k6G0

4(k) grows linearly as k/k0.
Let us now assume that we indeed have a faithful representation of the Dirac function so
that ǫ02

′(η±) = 0. In such a case, we find the leading contribution at large k to be

lim
k/k0→∞

k6G0
4(k) =

3∆AH6
0

8A2
+M

3
Pl

√

2 ǫ31− (ηe)

k0
κ2 k

sin

(

3 k

k0

)

. (5.10)

Note that, importantly, we no longer obtain a plateau in the small scale limit, but a term
which decreases as k−1. This clearly illustrates the point that the small scale behavior of the
bi-spectrum depends on the manner in which the original Dirac delta function and, thereby
the transition, is smoothened.

At this stage, a couple of clarifying remarks are in order regarding the result we have
obtained above. If there remains a contribution at the boundary of the transition, that is
to say, if ǫ02

′(η±) are not exactly zero, we find that the corresponding contribution to the
bi-spectrum at large k is given by

lim
k/k0→∞

k6G0
4(k) =

3H6
0/k0

8A+M3
Pl

√

2 ǫ31− (ηe)
ǫ02

′(η±)

[

sin

(

3 r κ k

2 k0

)

sin

(

3 k

k0

)

− κ r

2
cos

(

3 r κ k

2 k0

)

cos

(

3 k

k0

)

]

. (5.11)

Since this term depends on the wavenumber only through the trigonometric functions, it will
lead to a plateau (as in the case of Fig. 2) at very small scales, when it begins to dominate
the original term (5.10) which falls as k−1. This will occur at a wavenumber that depends
on the overall amplitude which, in turn, depends on r and ǫ02

′(η±). Let us assume that κ r is
small so that the second term in Eq. (5.11) above is negligible. In such a case, upon equating
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Figure 3. The behavior of the quantity k6 |G0
4(k)| in the Starobinsky model, when the transition has

been smoothened according to the exponential representation (5.5) of the original delta function. We
have worked with the same set of values for the various parameters and the same colors to represent
the results corresponding to the different values of κ, as in the previous figure. The k−1 fall-off at
large wavenumbers is evident.

the amplitudes of the first terms in the above two equations, we find that the plateau will
occur at the wavenumber of k/k0 ≃ exp (r/2)/(3κ). Upon plotting the complete analytical
result (5.9) for sufficiently large wavenumbers, we do observe the plateau, and we also find
that the plateau indeed begins at wavenumbers corresponding to the above estimate. But,
it ought to be clear that, physically, the plateau should not be present since ǫ02

′(η±) = 0 is
necessary in order to have a faithful representation of the Dirac delta function. In summary,
with the original Dirac delta function smoothened and represented in terms of an exponential
function, we arrive at a behavior wherein the contribution to the bi-spectrum due to the
transition falls off as k−1 at large wavenumbers. In Fig. 3, we have plotted the corresponding
results, which explicitly illustrate this behavior.

5.2 Working with a Gaussian representation

The exponential representation (5.5) of the Dirac delta function has a cusp at η0, and it will
be worthwhile to extend the above analysis for an even smoother representation. Towards
this end, let us replace the delta function appearing in the original ǫ02

′(η) [cf. Eq. (2.6)] with
the following Gaussian representation:

ǫ02
′(η) =

6∆A√
π A+ ε

exp

[

−(η − η0)
2

ε2

]

. (5.12)
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In such a case, upon carrying out the integral (5.3) from η− = η0 − r ε/2 to η+ = η0 + r ε/2,
and ignoring the contributions due to the end points of the transition (for reasons discussed
in the previous subsection), we obtain that

G0
4(k) =

3H0 k

8M3
Pl

√

k3 ǫ01

3∆A
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(

3 i k ε2
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− 1
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×
[

erf

(

r

2
− 3 i k ε

2

)

− erf

(

−r
2
− 3 i k ε

2

)]

, (5.13)

where erf(z) denotes the error function [66, 67]. One can then obtain the corresponding
contribution to the bi-spectrum to be
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(5.14)

If we now assume r to be sufficiently large, then we find that this expression simplifies to

k6G0
4(k) =

27∆AH6
0

8A2
+M

3
Pl

√

2 ǫ31− (ηe)
e−9 k2 ε2/4

×
[

k

k0
sin

(

3 k

k0

)

+
3 k2 ε2

2
cos

(

3 k

k0

)]

, (5.15)

which reduces to the original result [viz. Eq. (3.8)] involving the sharp step in the limit
ε → 0. The reason for assuming r to be sufficiently large is the same as the reason we had
attributed in the case of the exponential representation discussed in the previous sub-section.
If ǫ02

′(η±) do not vanish, then the Gaussian (5.12) ceases to be a faithful representation of
the original delta function, and it can then lead to incorrect contributions. In fact, it can be
easily established analytically that the immediate sub-leading term (for a finite r) contains
an additional Gaussian growth and, when taken into account along with the overall Gaussian
suppression encountered above, it leads to a spurious plateau at large wavenumbers, just as
in the exponential case. It should now be evident from the examples we have considered that
the smoother ǫ′2(η) is during the transition, the sharper is the cut-off in the scalar bi-spectrum
at large wavenumbers.

More generally, it should be clear from the above discussion that, the contribution to
the bi-spectrum due to the transition contains a cut-off at large wavenumbers for an arbitrary
smooth transition. The specific case that we had considered in the last section wherein the
form of smoothening had led to a plateau therefore appears to be a very particular situation.
The exact nature of the cut-off, of course, depends on the precise form of the transition (and
is therefore not necessarily proportional to k−1 or suppressed exponentially), but our analysis
unambiguously shows that a cut-off is generically present. As we shall illustrate in the next
section, these conclusions are also corroborated by numerical calculations.
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6 Comparison with the numerical results from BINGO

Recently, we have developed an efficient and accurate numerical code, called BINGO, to eval-
uate the scalar bi-spectrum in inflationary models involving the canonical scalar field [57]. In
this section, we shall make use of BINGO to numerically investigate the effects of smoothen-
ing the sharp transition in the Starobinsky model. In place of the actual potential (2.1), we
shall work with the following potentials that have been smoothened in two different fashion:

V1(φ) = V0 +
1

2
(A+ +A−) (φ− φ0) +

1

2
(A+ −A−) (φ− φ0) tanh

(

φ− φ0
∆φ

)

, (6.1)

V2(φ) = V0 +
1

2
(A+ +A−) (φ− φ0) +

1

2
(A+ −A−)∆φ ln

[

cosh

(

φ− φ0
∆φ

)]

, (6.2)

both of which, as is required, reduce to the shape of the original potential in the limit ∆φ→ 0.
Also, it should be clear that, in the above potentials, instead of the original, infinitely sharp
transition, the field will make the transition over the width ∆φ in field space.

While the details of the numerical procedures to compute the scalar bi-spectrum can
be found in our earlier work [57], we believe that a couple of brief and generic remarks are
in order at this stage of our discussion. Given a potential and the value of the parameters
that describe it, the background evolution is completely determined by the initial conditions
on the scalar field. If one further assumes that the perturbations are in the Bunch-Davies
vacuum at sufficiently early times, the quantities that characterize the perturbations—such
as the power spectrum and the bi-spectrum—are uniquely determined as well. In order to
compare with the analytical results we have obtained in the previous section, using BINGO,
we numerically compute the contribution to the fourth term of the bi-spectrum, viz. G4(k),
assuming that the quantity ǫ̇2 [cf. Eq. (2.6)] is determined only by the term involving Vφφ
corresponding to the smoothened potentials (6.1) and (6.2). We work with the same values of
the original parameters V0, A+ and A− that we had considered in the previous three figures,
but vary ∆φ over a suitable range. In Fig. 4, we have plotted the resulting contribution to
the bi-spectrum for a few different values of ∆φ. It should be clear from the figure that the
smoother the transition the more stunted is the growth at large wavenumbers.

At this stage, it is important that we highlight the results we have obtained and also
discuss earlier efforts in similar situations. As we had outlined in the introductory section,
our main aim had been to illustrate that an indefinite growth in the bi-spectrum is unphysical
and that it is related to the infinitely sharp transition that one encounters in the original
Starobinsky model. Moreover, we had intended to show that, for any finite and smooth tran-
sition, the scale invariance of the bi-spectrum will be restored at suitably large wavenumbers.
Evidently, we have been able to establish these two points both analytically and numerically.
While it seems natural to expect that the indefinite growth will be suppressed if the transi-
tion is smoothened [63], it had not been established earlier. We have been able to explicitly
show that this is indeed the case. However, it should be clear from our discussion in the
last two sections that, whereas the contribution due to a smooth transition is generically
suppressed at large wavenumbers, the details of the suppression depends on the way in which
the discontinuity is smoothened.

In fact, we should also emphasize here that there has also been prior efforts in studying
the bi-spectrum in similar scenarios. These previous efforts had made use of the so-called
generalized slow roll approximation, which is a generic analytical method to study cases
involving short periods of fast roll (see, for instance, Refs. [60, 61]). Using the approach, it
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Figure 4. The behavior of the quantity k6 |G0
4(k)| with a smoothened Starobinsky model that is

described by the potentials (6.1) (on top) and (6.2) (below). These results have been obtained using
BINGO, which is a recently developed numerical code to evaluate the scalar bi-spectrum [57]. We
have worked with the same values for the parameters V0, A+ and A

−
as in the earlier figures, but have

varied ∆φ. The plots correspond to ∆φ/φ0 of 1/7500 (in blue), 1/5000 (in red), 1/2500 (in green) and
1/1000 (in purple). As in Fig. 1, we have also plotted the asymptotic behavior of the analytical result
from the original, unsmoothened, Starobinsky model in the limit of small (in magenta) and large (in
orange) wavenumbers. It should be clear from the two figures that, as the step is smoothened or,
equivalently, the transition is widened, the growth due to term involving Vφφ is considerably reduced
and its contribution ceases to be important at suitably large k.
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has been shown that sufficiently sharp steps in the potential can lead to a strong burst of
oscillations before the bi-spectrum turns scale invariant at small scales (in this context, see
Refs. [56, 69]). There exist some similarities and certain differences between our work and
the earlier efforts based on the generalized slow roll approximation. Evidently, the results
from the generalized slow roll approach can be expected to be broadly applicable to the
linear potential of our interest here and, in this sense, our effort can be considered to be
similar to the prior efforts, but without the constant term V0. However, the presence of the
constant V0 in the potential (which we have assumed to be the dominant term) turns out
to be important in our approach as it ensures that the background evolution is rather close
to that of de Sitter. Moreover, due to this reason (and also because of the linear nature
of the potential), the de Sitter modes prove to be a very good approximation to the scalar
perturbations2. Further, while the bi-spectrum in the earlier efforts was evaluated up to the
first order in the generalized slow roll approximation, such a limitation does not apply to our
approach. We believe that these three points make the approximations we have adopted work
well, as is confirmed by the numerical analysis. But, our approach is specifically designed for
the case of the linear potential, dominated by a constant term. In contrast, the generalized
slow roll approach can be applied to a wider class of potentials. We feel it will be interesting
to examine if the linear growth in the original Starobinsky model can be reproduced, say, at
a certain order, in the generalized slow roll approach. Nevertheless, we should stress the fact
that the restoration of scale invariance in the scenarios studied using the generalized slow
roll approximation [56, 69] corroborate the main conclusions that we have arrived at here.

7 Discussion

It is well known that periods of departure from slow roll will lead to certain features in
the inflationary scalar power spectrum corresponding to modes that leave the Hubble radius
during the epochs of fast roll. However, in the case of the power spectrum, scale invariance is
always restored when slow roll has been reestablished (see, for example, Refs. [70–72]). Such
a behavior occurs independent of the sharpness or the extent of the deviation from slow roll.
In complete contrast to the behavior of the power spectrum, in the case of the Starobinsky
model, it has been found that the abrupt transition that occurs leads to a term which grows
linearly at large wavenumbers in the scalar bi-spectrum. Importantly, this occurs despite
the fact that slow roll is restored a little while after the field crosses the discontinuity in the
Starobinsky model.

Clearly, the continuing growth of the scalar bi-spectrum in the Starobinsky model is
an artifact of the infinitely sharp transition, and one would imagine that the bi-spectrum
will turn scale invariant at sufficiently small scales if the transition is made smoother. In
this work, we have shown, both analytically and numerically, that this expected behavior
indeed occurs. Analytically, we have been able to show that a sufficient smoothening of the
transition leads to a truncation of the growth and an eventual sharp fall-off at a suitably

2It is well known that a de Sitter background and the de Sitter solutions for the scalar modes are generally
a good approximation in most slow roll scenarios. However, in the Starobinsky model, one finds that, since V0

is the dominant term and the fact that the potential is linear make them particularly good approximations. A
large V0 will, evidently, ensure that the background behaves essentially as that of de Sitter. Before the tran-
sition, since ǫ1 is small and constant, ǫ2 ≃ 4 ǫ1 is small and constant as well, while ǫ3 vanishes. Interestingly,
it can be shown that, after the transition, as ǫ1 continues to remain small (because of the dominant V0 term)
and the potential is linear, certain cancellations occur in the expression for the quantity z′′/z as a result of
which the scalar modes are described very well by the de Sitter solutions [39].
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large wavenumber which is related to the width of the transition. Numerically, we find that,
as the sharpness of the transition is decreased, the width of the feature that arises as a
result reduces, with the contribution due to the transition ceasing to be important at large
wavenumbers. In such situations, the various remaining contributions to the bi-spectrum
that we have calculated in some detail earlier (see Ref. [39]) become important.

We should point out here that the restoration of scale invariance of the bi-spectrum
at large wavenumbers can occur in two different ways. Evidently, the complete bi-spectrum
is the sum of the contribution due to the Vφφ term in ǫ′2 (which had been the focus of our
attention here) and the contributions due to all the other terms (that have been calculated
earlier in Ref. [39]). The amplitude of the remaining contributions goes to a constant value
at small scales [39]. Hence, scale invariance of the complete bi-spectrum is restored if the
contribution due to the Vφφ term either itself turns a constant or vanishes at large wavenum-
bers. Our analysis suggests that both cases can arise depending on the manner in which
the transition is actually smoothened, i.e. it depends on the microphysics of the transition.
We should emphasize that a generic smoothening of the transition does not necessarily lead
to an exponential cut-off in the contribution due to the Vφφ term, as one might naively be
tempted to deduce, possibly guided by the example of particle production presented in the
introductory section. But, such a behavior is nevertheless consistent with the scale invari-
ance of the total bi-spectrum at small scales. This is because of the reason that there exist
different ways to arrive at a scale invariant behavior at large k, as we have explained above.

Before concluding, it is worthwhile that we touch upon two related points. Firstly, it
would be interesting to examine if there can exist conditions under which the power spectrum
itself may exhibit the behavior as the scalar bi-spectrum does in the case of the Starobinsky
model, i.e. grow indefinitely at large wavenumbers. The second point that is worth consider-
ing concerns the implication of such behavior for the higher order correlation functions such
as the tri-spectrum. Let us now turn to discuss these two points.

The fact that the discontinuity in the second derivative of the potential leads to the
growth in the bi-spectrum suggests that one can expect such a discontinuity in the first
derivative of the potential to influence the power spectrum. However, a discontinuity in
the first derivative of the potential would imply that the first slow roll parameter itself
would grow large, thereby even ending inflation. In such a case, two possibilities can arise.
Either, inflation is completely terminated, never to be restored. Or, the departure from the
accelerated expansion may be of an extremely short duration and the shape of the potential
permits inflation to restart. The former situation does not help, whereas the latter scenario,
dubbed punctuated inflation [73, 74], is indeed a genuine possibility. However, inflation
reestablished in such situations proves to be of the slow roll type, which also restores scale
invariance of the power spectrum.

One can expect that the tri-spectrum will involve one higher order slow parameter
beyond the third. If so, then the tri-spectrum can, in fact, be expected to diverge in the case
of the Starobinsky model, since the fourth slow roll parameter ǫ4 would. Actually, not only
the tri-spectrum, this conclusion may apply to all the higher order correlations functions as
well. For any transition of a finite width, one can expect the tri-spectrum and the higher
order correlation functions to exhibit a rather sharp rise for modes that leave the Hubble
scale during the transition. These issues are worth studying closer.
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