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ABSTRACT

In this era of IoT devices, security is very often traded off for smaller
device footprint and low power consumption. Considering the ex-
ponentially growing security threats of IoT and cyber-physical
systems, it is important that these devices have built-in features
that enhance security. In this paper, we present Shakti-MS, a light-
weight RISC-V processor with built-in support for both temporal
and spatial memory protection. At run time, Shakti-MS can detect
and stymie memory misuse in C and C++ programs, with minimum
runtime overheads. The solution uses a novel implementation of
fat-pointers, those associate capabilities with every pointer. Our
proposal is to use stack-based cookies for crafting fat-pointers in-
stead of having object-based identifiers. We store the fat-pointer
on the stack, which eliminates the use of shadow memory space,
or any table to store the pointer metadata. This reduces the storage
overheads by a great extent. The cookie also helps to preserve con-
trol flow of the program by ensuring that the return address never
gets modified by vulnerabilities like buffer overflows. Shakti-MS
introduces new instructions in the microprocessor hardware, and
also a modified compiler that automatically inserts these new in-
structions to enable memory protection. This co-design approach is
intended to reduce runtime and area overheads, and also provides
an end-to-end solution. The hardware has an area overhead of 700
LUTs on a Xilinx xcvu095-ffva2104-2-e FPGA and 4100 cells on an
open 55nm technology node. The clock frequency of the processor
is not affected by the security extensions, while there is a marginal
increase in the code size by 11% with an average runtime overhead
of 13%.
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1 INTRODUCTION

With the advent of IoT, there has been a rapid increase in the use
of low-power embedded devices. These devices are deployed in
wide and diverse applications that are connected to the Internet.
While these devices becoming more pervasive, large scale attacks
involving compromised embedded devices such as the Mirai bot-
net [21] are becoming commonplace. In the absence of robust secure
environments, vulnerabilities introduced in these devices due to
programming flaws can allow attackers to take control of systems
with ease.

Several of these vulnerabilities occur due to illegal use of memory
accesses. Today, these memory access vulnerabilities rank among
the top 25 vulnerabilities in system software [24]. Vulnerabilities
like buffer overflows [34], use-after-free(UAF) [36, 43], and double-
free [16] are some of the major security threats. These vulnerabili-
ties still persist due to predominant use of C and C++ programming
languages due to the fact that these programming languages have
features like explicit pointer manipulations, flexible type casting
constructs and ease in interfacing with the hardware. These features
make them favorable for the development of operating systems,
virtual machine monitors, embedded systems, and database man-
agement software. However, these features come with the risk of
illegal memory access and have led to many attacks in the past.
Rewriting all existing code in memory safe languages is not feasible
and hence we are left with the difficult task of retrofitting security
into existing systems.

There have been many studies relating to spatial and temporal
attacks due to illegal memory uses [1–3, 5–8, 25, 26, 28–31, 35]
and many have proposed methods to prevent one or both of these
attacks. Some of the approaches focus only on software solutions [1–
3, 5, 8, 28–31], while others rely on support from the hardware
to enforce memory safety [6, 7, 25, 26, 35]. Many of the existing
software solutions either fail to provide complete temporal and
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Figure 1: a. Structure of metadata in a fat-pointer.

b. Storage of metadata along with the malloc’d region

spatial safety or they incur too high run time overheads. Pure
software solutions like [28] and [29] can be combined to tackle most
kinds of spatial and temporal attacks, but this approach leads to high
code size and runtime overheads of around 116% [29]. On the other
hand, hardware solutions like [23, 25] reduce the run time overhead
at the cost of hardware complexity. Although [23] enhances a RISC-
V processor to efficiently implement memory checks, the software
support required for [23] is extremely complex. Watchdog [25],
is a compiler plus hardware solution for memory safety. It uses a
shadow memory space to maintain the metadata used for memory
checks. This shadow memory can result in considerable memory
overheads. For complete spatial and temporal safety, 56% of the
system memory would be inaccessible [25]. Gandalf [18], also has
a hardware plus software solution without much extra hardware
complexity and minimal compiler modifications. However, it does
not provide temporal safety.

In this paper, we introduce Shakti-MS, a RISC-V processor pro-
viding both spatial and temporal memory safety. It requires light-
weight modifications in the compiler to insert certain instructions
that enable the hardware to perform the required memory checks at
runtime. Further, unlike [25], we are not using any separate shadow
memory space and unlike [23], there are no additional tables or tag
bits that are required in the processor to store pointer metadata.
These features reduce the hardware complexities and storage over-
head to a great extent. Another significant benefit of our approach
is that the hardware is fully compliant to the RISC-V spec. Any
binary compiled with an unmodified compiler toolchain can still
run on the modified processor and can coexist with protected pro-
grams. One program itself may have protected and non-protected
sections by selectively building static and dynamic libraries with
protection enabled. In our approach to prevent spatial and temporal
attacks, each derived data type object (pointers, arrays, structures)
is transformed into a fat-pointer as shown in Figure 1.a. In addition
to the memory pointer, the fat-pointer also contains the base, bound
and the id_hash fields. The base and bound are used to ensure spa-
tial safety, whereas the id_hash field is used to ensure temporal
safety. To protect against illegal memory operations in stacks, each
stack frame is associated with a cookie to help craft fat-pointers for
objects within the current stack frame. The idea of having a stack
based cookie instead of an object based identifier helps reduce the
storage overheads, as temporal metadata is associated with stack

frames rather than individual variables. The cookie also helps to
preserve the control flow of the program by ensuring that the return
address never gets modified. Moreover, the cookie not only helps
to prevent temporal attacks in stacks but also serves as the lower
bound to prevent any overflows beyond this region. To provide
memory safety in heaps, each allocated region is associated with
a unique 64-bit value to craft fat-pointers as shown in Figure 1.b.
The base address of pointer referencing to this malloc region would
point to this unique random number. This number also acts as the
cookie for this allocated region. All pointers pointing to the same
allocated region uses the cookie value to craft the fat-pointer. More-
over when any one of these fat-pointers is freed the cookie value
is randomised to ensure that all other fat-pointers pointing to the
same allocated region is invalid. The storage overhead for the pro-
posed solution is (128 ∗n+ 64) bits. In case of stacks, n indicates the
number of derived data type objects in the current stack frame and
for heaps, it indicates the number of aliased pointers, i.e. pointers
pointing to the same allocated region of memory. We introduce
two new instructions namely "hash" and "val" which are added in
the RISC-V ISA to support memory safety checks. These instruc-
tions are inserted by the compiler at the desired places to ensure
that all pointer accesses are validated before being performed. To
achieve the compiler modifications, a transformation pass is devel-
oped in RISC-V LLVM [19] and the hardware support is developed
in Bluespec-System-Verilog [4].

The rest of the paper is organized as follows. Section 2 defines
some of the terminologies used in Shakti-MS. It also discusses the
key idea that prevents temporal and spatial attacks on stacks and
heaps. Section 3 elaborates the architecture and implementation of
Shakti-MS. This section also describes the compiler modification
along with the details of Micro-architectural implementation of
Shakti-MS. Section 4 presents some of the case studies demonstrat-
ing how the compiler changes were made, and how these changes
help thwart certain attacks. Section 5 reports some of the analy-
sis like runtime overheads and code size overheads of Shakti-MS.
Section 6 concludes the paper.

2 SHAKTI-MS : THE CRUX

This section describes the proposed solution and explains how
the system is protected against various memory related attacks.
Before diving into the solution, we first define the terminologies
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that will be used subsequently. We will then describe how spatial
and temporal attacks are prevented on stacks and heaps.

2.1 Terminologies

(1) Stack Frame Cookie (SFC) : It is a unique 64-bit random
number that is placed on the stack frame below all the vari-
ables of the current function as shown in Figure 2. This SFC
is unique for each function call and is used to provide tem-
poral safety for all variables and objects available within the
current stack frame. Moreover, the SFC is destroyed once
the function goes out of scope ensuring all pointers to be
invalid once the function returns.

(2) ROData Cookie (RODC) : Just like the SFC, it is also a
unique 64-bit random number, but unlike the SFC, it is placed
in the .bss region of the program’s memory. It is used to
protect the read only segment of memory thereby preventing
any kind of over-reads or invalid pointer accesses. The RODC
is used to provide temporal safety for both global and static
variables.

(3) ID_HASH : It is a 32-bit unsigned number computed either
from the cookies of stacks or heaps. It is also one of the four
fields of the fat-pointer. The value of id_hash is computed
with the help of a new "hash" instruction which is described
in Section 3.1.1.

(4) BASE : It is a 32-bit value indicating the base address of the
respective cookie. It is one of the four fields of the fat-pointer
which is used for computing hash values and for checking
lower bounds.

(5) BOUND : It is a 32-bit address indicating the absolute bound
of the object. It is the maximum permissible range that the
fat-pointer can access.

(6) Safe Malloc : It is a wrapper function (similar to the malloc
function) that allocates 8 more bytes than the requested size
of malloc, as shown in Figure 1.b, and returns a fat-pointer
corresponding to the allocated region. In this extra 8-bytes
we store a unique 64-bit random number (a cookie) which
helps us to protect against temporal attacks. This cookie
is used to craft fat-pointers for all pointers pointing to the
allocated region of memory.

(7) Safe free : It is a wrapper function (similar to the free func-
tion) that accepts fat-pointers instead of normal memory
pointers as its input. The method safefree first validates the
fat-pointer. On successful validation, it calls the free func-
tion (after converting the fat-pointer into a normal pointer
and passing it as the input) that deallocates the correspond-
ing memory region. This method also randomises the 64-bit
value stored along with the allocated region of memory, so
that any further reference to that region would result in an
invalid memory access.

(8) Craft : It is a function that is used to craft fat-pointers. It
accepts four 32-bit numbers i.e base, bound, id_hash, and the
pointer itself and then returns a 128-bit object by creating the
fat-pointer. Figure 1.a shows the structure of the fat-pointer
returned by the craft function.

Figure 2: Stack layout with and without fat-pointers

2.2 Preventing Temporal and Spatial attacks on

Stacks

Stack is often the primary target of spatial attacks primarily be-
cause overflowing local variables could potentially allow the return
address to be altered, thereby changing the control flow of the pro-
gram. Temporal attacks on the stack are not as prevalent as spatial
attacks, though they are not unheard of [12]. A dangling pointer
to the stack is a pointer of one function that is not deleted when
the function returns. This pointer could now potentially be used
to modify the stack of another function that later uses the same
region of memory. Moreover, spatial attacks like buffer overflow
have evolved over time and given rise to more sophisticated tech-
niques like return-to-libc [38] or Return Oriented Programming
(ROP) [37]. Many of these attacks have mitigations in place, such as
making the stack non-executable [40] or adding stack canaries [11]
to detect tampering of return address. One of the promising and
most widely used solution is Address Space Layout Randomization
(ASLR) [39]. Although ASLR has proven to be the most successful
solutions for preventing ROP, it does not address the underlying
issue of buffer overflow. There have also been attacks that bypass
ASLR [22]. Another, less prevalent solution is using fat-pointers
where every pointer is associated with some metadata that is used
to prevent various memory corruption attacks. In our proposed
solution, we use the concept of fat-pointers but differ in the imple-
mentation with respect to other existing fat-pointer solutions.

2.2.1 Preventing Spatial Attacks. : To prevent spatial attacks on
stack, each derived data type object is associated with a base and
bound. The bound represents the maximum accessible range the
pointer to an object can access, whereas the base represents the
base address of the SFC. Although the base here is not a strict lower
bound for the object but it prevents all overflows provided that there
are no pointer decrements. Even if there are pointer decrements
it can never overflow beyond the SFC. Moreover, a slighter loose
lower bound is chosen because it allows the same SFC to be used
for temporal checks. To understand the concept to protect against
spatial attacks let us take a look at the example below:

int x, a[10];
int *ptr = a;
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x = *(ptr + 5);
x = *(ptr + 10); // spatial check violation

Figure 2, shows the stack framewith andwithout the fat-pointers.
The shaded region represents the metadata for the stack frame. The
SFC represents the "Stack Frame Cookie" which is used to protect
the current stack frame and craft fat-pointers for the objects within
the current stack frame. The objects placed below the SFC, namely
fpr_a and fpr_ptr represents the fat-pointers for their respective
objects a and ptr. These fat-pointers are placed below the SFC to
ensure that there is no tampering of the metadata due to pointer
decrements. Moreover, when the pointer is assigned to point to
the array in the stack, the metadata of the array is copied to the
metadata of the pointer. Also, every load and store instructions
to this object are preceded by a validity check to ensure memory
safety. So in the above example, the pointer ptr can only access (ptr
+ 5) and would fail to access (ptr + 10).

2.2.2 Preventing Temporal Attacks. : Temporal attacks on stack
occur when a pointer to a local variable of a function is not deleted
after the function returns, allowing it to overwrite the stack of
any other function that occupies the region of the stack used by
the previous function. Consider the following code snippet that
demonstrates how a temporal attack can occur on stacks and how
the proposed solution mitigates such attacks:

int* q;
void foo() {

int a;
q = &a;

}
int main() {

foo();
... = *q; // temporal check violation

}

As mentioned before, each function has its own unique SFC
which is used to derive the id_hash of each pointer in the current
stack frame. Moreover, every pointer to objects in stack have its
own metadata associated with it. Relating this fact to the above
example, there are two functions which have their own unique SFC.
When the the global pointer q points to the variable a in function
foo, it has its id_hash derived from the SFC of function foo. As
soon as foo goes out of scope, SFC of that function is randomised.
Therefore when q gets dereferenced in main after returning from
foo, it results in a validation error.

2.3 Preventing Temporal and Spatial attacks on

Heaps

The heap is dynamically allocated region in memory that the pro-
gram uses at runtime to typically store program data. A heap over-
flow or an overrun is a type of buffer overflow that occurs in this
heap data area. Exploitations are performed by corrupting the heap
data in specific ways to cause programs to overwrite internal struc-
tures such as a linked list ormallocmetadata.Moreover, overflowing
buffers in heap can also change pointers that point to important
data. Attacks like use-after-free [43] and double-free [16] are quite
common in heaps which have led to critical system failures.

2.3.1 Preventing Temporal Attacks. There have been many solu-
tions proposed to mitigate temporal attacks [2, 3, 9, 10, 15, 29, 31, 32,

35, 41, 42]. They can be classified into two categories, namely, "lo-
cation based" and "identifier based". Location based [15, 17, 31, 41]
approaches use an extra data structure such as a tree or it uses
a hashtable/trie-based implementation of shadow memory space
to keep track of the allocated and deallocated memory regions.
This approach prevents most dangling pointers but fails to protect
against stale pointers which points to reallocated memory, as it uses
the object’s address to determine if the pointer is valid or not. In
contrast, the identifier based [25, 27, 29, 35, 42] approach uses meta-
data associated with each pointer or a lock-and-key mechanism to
prevent the exploitation of dangling pointers.

In Shakti-MS we use a lock-and-key based approach to miti-
gate all variants of temporal attacks. To protect against dangling
pointers, double-free and other temporal attacks, all calls to malloc
and free are replaced with safemalloc and safefree, which are wrap-
per functions that add metadata to heap-allocated objects. These
are the basic function calls in C that provide low level access to
memory. So protecting these functions are of prime importance.
The safemalloc function call allocates an extra 8 bytes of memory,
stores a unique 64-bit random number in it and returns a 128-bit fat-
pointer having the pointer metadata. In the metadata, the id_hash
field represents the key and the base represents the lock location.
Every pointer pointing to the allocated region will be transformed
into a fat-pointer with their respective id_hash and base. To ensure
temporal safety, the following check is performed on dereferencing
a pointer:

if ( id_hash != hash(memory[base]) )
abort ();// dangling pointers detected

The hash function is introduced because even if the lock location is
compromised due to implementation flaws or by any other means,
the hash function still remains unknown. This introduces an extra
level of difficulty for the attacker to craft any arbitrary fat-pointers.
Furthermore, all subsequent loads and stores on the fat-pointers
are prefaced by temporal safety checks. The safefree method ran-
domizes the 64-bit value stored at the start of the allocated region,
which further ensures that any pointer dereference to that allocated
region after being deallocated would result in a validation error. The
other method which might cause a problem for dangling pointers
is realloc. To ensure safe handling of reallocations, the saferealloc
method replaces all realloc calls in the program. Saferealloc accepts
a 128-bit fat-pointer to an object and the reallocation size as param-
eters. It validates the accepted fat-pointer, allocates a new region
in heap, copies data over, frees the old region, and returns a valid
fat-pointer for the newly allocated region.

2.3.2 Preventing Spatial Attacks. : Spatial attacks, as the name sug-
gests, involves accessing regions of memory beyond the legitimate
and intended scope of the code. These attacks are often accom-
plished by overflowing buffers in memory or reading beyond the
limits of an object. To ensure spatial safety on the heaps, we use
fat-pointer to restrict memory access of a pointer within a base and
bound address. As discussed in the previous section each malloc’d
region is now associated with a unique 64-bit random number and
every pointer pointing to the malloc’d region has been transformed
into a fat-pointer. Every pointer now has its own base and bound
associated with it, where the base points to the start of the allocated
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region and the bound points to the end of the allocated region,
referring the absolute memory address the pointer can access. All
pointer dereferences undergoes a base and bound check, ensuring
spatial safety.

For better clarity on the proposed solution, consider the follow-
ing sample code:

1. int *p,*q,*r;
2. p = malloc (10* sizeof(int ));
3. q = r = p ;
4. int value = *(r+10); // spatial safety violation
5. free(p);
6. ... = *q; // temporal safety violation

The pseudo code equivalent of the above block after the compiler
transforms:

1. __int128 fpr_p ,fpr_q ,fpr_r;
2. fpr_p = safemalloc (10* sizeof(int ));

// safemalloc returns a __int128 object
// consisting of base ,bound ,id_hash and pointer

3. fpr_q = fpr_r = fpr_p ;
4.1 validate (fpr_r +10); // Spatial violation detected
4.2 int value = *(fpr_r +10);
5 safefree(fpr_p);
6.1 validate fpr_q; // Temporal violation detected
6.2 ... = *fpr_q;

As shown above in line numbers 2 and 5, the compiler replaces
every malloc/free calls with safemalloc and safefree wrapper func-
tions. Moreover, the compiler also inserts validity checks before
every pointer dereferences as shown in line numbers 4.1 and 6.1,
ensuring both temporal and spatial safety.

3 ARCHITECTURE AND IMPLEMENTATION

OF SHAKTI-MS

In the previous section, we looked formechanisms to prevent spatial
and temporal attacks on stack and heap. In this section, we look
deeper into compiler and hardware instrumentation aspects of
Shakti-MS.

In order to provide security guarantees, the given code might
need to be instrumented. This can be done at the binary, compiler or
the source code level. Additionally, new hardware instructions can
also be added to accelerate memory safety checks. Binary level code
instrumentation works to modify the source code after compilation.
This approach, however, limits the flexibility of code instrumenta-
tion. For example, one cannot add a new instruction in between,
without affecting the branch instructions that work on relative
addresses. Source code transformation, on the other hand, doesn’t
provide one with enough information to apply transformations. For
example, the stack organisation is not visible at the source code
level.

However, compiler based instrumentation does not have any of
the above mentioned drawbacks. Therefore, in our solution, we use
compiler based transformations to achieve code instrumentation.
Also, new hardware instructions are added to have minimal per-
formance overheads while performing these security checks. The
details of the implementation are given below.

3.1 ISA Extensions

This section describes the details of the two new instructions that
are added to the RISC-V ISA in order to support memory safety.

(1) hash Instruction : The hash instruction is used to compute
the id_hash field of the fat-pointer. The instruction receives
the base address of the SFC for stacks, the base address of
the RODC for global variables, or the base address of the
heap-allocated region. It returns a 32-bit hash of the value
stored at the memory location passed as an argument. The
instruction is in the form of

hash rd, rs1

where the base address resides in rs1 register and the com-
puted hash value is stored in the register rd. The instruction
computes

id_hash = hash(memory[base])

(2) val Instruction : The val instruction is used to validate the
fat-pointer. It takes two arguments, the lower 64-bit of the fat-
pointer and the higher 64-bit of the fat-pointer. It performs
temporal and spatial validity checks on the fat-pointer. The
val instruction is of the form

val rs1 , rs2

where rs1 represents the higher 64-bit and rs2 represents
the lower 64-bit. The val instruction performs the following
checks:

if(base == NULL) //Check 1
abort ();

if(id_hash != hash(memory[base]) //Check 2
abort ();

if(ptr < base || ptr >= bound) //Check 3
abort ();

Here, Check 1 and Check 2 ensure temporal safety by verify-
ing that id_hash stored along with the fat-pointer and hash
computed from value stored in the memory location pointed
by base are equal. Check 3 ensures spatial safety by verifying
that every pointer access is within the base and bound. This
prevents all manifestations of spatial and temporal memory
attacks.

3.2 Compiler Based Instrumentation

The compiler based instrumentation needed in Shakti-MS is imple-
mented using the RISC-V LLVM [19] compiler infrastructure. The
LLVM toolchain converts the C-code to an intermediate represen-
tation (IR), runs certain passes on the intermediate representation
(for instrumentation or optimization) and finally compiles the IR
into machine code. The ability to write transformation passes that
operate at the IR level provides great flexibility in terms of making
changes at a logical level. To ensure spatial and temporal safety
from the compiler perspective, we wrote compiler passes to analyze
programs and understand the program behavior. We then wrote
transformation passes that operate on the IR to add metadata to
pointers and insert runtime checks.

In our solution, we have added support for two new machine
instructions, namely "hash" and "val", in RISC-V LLVM, with the
help of intrinsics. These intrinsics are represented as function calls
at the LLVM-IR level butwill be translated intomachine instructions
at the assembly level. As per LLVM’s documentation [20] adding a
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let TargetPrefix = "RISCV" in {
def int_riscv_hash : GCCBuiltin <"__builtin_riscv_hash">,
      Intrinsic<[llvm_i64_ty],  // returns 64-bit hash
          [llvm_i64ptr_ty],    //address to store cookie
          [ ],   // properties: nothing
          "llvm.RISCV.hash"> ;  // name or description
}

def riscv_hash : HashInst<(outs GPR64:$rd), (ins 
GPR64:$rs1) , "hash\t$rd, $rs1", [(set GPR64:$rd, 
(int_riscv_hash GPR64:$rs1))]>;

class HashInst<dag outs, dag ins, string 
asmstr, list<dag> pattern>
  : RISCV32Inst<outs, ins, asmstr, 
pattern, FrmI> {
  let Pattern = pattern;
  bits<5> rs1;
  bits<5> rs2;
  field bits<32> Inst;

  let Inst{31-20} = 0;
  let Inst{19-15} = rs1;
  let Inst{14-12} = 0;
  let Inst{11-7} = rs2;
  let Inst{6-2} = 2;
  let Inst{1-0} = 3; }

Figure 3: Code for adding "hash" intrinsic in RISC-V LLVM

new instruction directly changes the bit code format, and would
require a considerable amount of effort to maintain compatibility
with the previous versions. Thus, we have proceeded with adding
a new intrinsic to the compiler instead of an instruction. The code
for adding a new intrinsic in RISC-V LLVM is shown in Figure 3.

To explain the process of implementing the IR transformation
pass, we divide it into a set of tasks (not necessarily in an order)
that were performed.

(1) Handling Global variables and global pointers : This
part of the transformation pass deals with handling global
variables and global pointers which might cause a potential
threat. Since these variables neither reside in the stack nor on
the heap so we cannot directly craft a fat-pointer using the
SFC or the metadata stored along with the malloc’d region.
These variables lie in the read only section of the memory
known as .bss. To prevent overflow or read-past-bounds
attacks on global pointers, we have crafted fat-pointers using
the RODC instead.

(2) Replacing malloc calls and free calls with safemalloc
and safefree : This part of the transformation pass replaces
all malloc calls with safemalloc, free with safefree and realloc
with saferealloc. It also mutates the return type of the malloc
and realloc functions to fat-pointers.

(3) Adding the stack frame cookie : This transformation pass
inserts instructions to the first basic block of every function
in IR. The inserted IR code generates a SFC and places it
at the bottom of the stack frame every time the function
is called at runtime. Once the SFC is placed on the stack,
its hash value is computed using the hash instruction and
stored in some temporary register in LLVM. This hash value
is used to create fat-pointer for derived datatype objects on
stack. The transform also adds code to the last basic block of
the function which randomizes the SFC before the function
returns. This ensures that once the function goes out of
scope and returns to the calling function, any attempts to
use pointers to that stack frame will raise an exception.

(4) Handling pointer arguments/returns for function calls

within themodule and outside themodule : This part of
the pass operates on function calls and function prototypes
within the module and converts every pointer in the argu-
ments or return values to fat-pointers. However, system calls
like scanf, printf or function calls outside the module are left
untouched. Any fat-pointers passed to them as arguments

are first validated and collapsed into pointers. Additionally,
to protect against overflows caused by special library func-
tions like memcpy and strcpy, explicit checks are added to
ensure destination buffer length is greater than source buffer
length.

(5) Crafting fat-pointers : Since our solution is based on fat-
pointers, this part of the transformation pass deals with
transforming every derived data type objects on stacks to
fat-pointers. The fat-pointer is created by calling the function
named craft. Then all uses of the existing object are replaced
with the newly created fat-pointer to ensure memory safety.

(6) Transformations for various LLVM instruction : This
is the most important part of the transformation pass con-
verting pointers to fat-pointers and handling type mismatch
of all LLVM instructions. It is also responsible for adding val
instruction before every load and store instruction. It also
ensures that wherever a pointer is dereferenced, a validity
check is inserted just before it. The validity checks are only
inserted by the compiler in the form of a val instruction, but
the actual check is performed by the hardware at runtime.

(7) Warnings for Pointer Decrements : This is an analysis
pass used for identifying any decrement operation performed
on pointers within the program. As stated earlier, pointer
decrements on stacks might cause illegal access to other ob-
jects within the current stack frame, below the base element
of the pointer. Thus, this pass of the compiler is responsible
for throwing a warning whenever a pointer decrement is
encountered in the desired function or module. Currently,
no automated solution has been put in to fix this problem;
therefore, its the responsibility of the programmer to han-
dle this scenario. A possible solution can be to replace the
pointer decrement with a pointer plus offset for compiler-
enforced safety, or manually validate the safety and suppress
the warning.

3.3 Micro Architecture

The hardware and ISA extensions proposed for Shakti-MS have
been implemented over an existing baseline processor in order to
provide a fair comparison of the incurred area and performance
overheads. We have used the 64-bit 6-stage in-order Shakti C-64
design [14] as our baseline processor whose micro-architecture is
shown in Figure 4. This processor was designed using Bluespec Sys-
tem Verilog (BSV) [4]. Following is a brief outline on the functioning
of Shakti C-64:

(1) PC Generate Stage: This is the first stage of the pipeline.
This stage is responsible for generating the value of the
Program Counter (PC). The Branch Prediction Unit (BPU)
sends out the value of PC and the prediction bits. If the
prediction bits indicate that the branch is taken, the next PC
is the value that is given out by the BPU; else, the next PC
is computed as current PC + 4. This PC is then sent to the
instruction cache.

(2) Fetch Stage: The response of the instruction cache is read
in this stage. Once the instruction is received, it is then
sent to the branch predictor, and also enqueued inside the
IF (Instruction Fetch) - ID (Instruction Decode) Inter-Stage
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Figure 4: 6-stage pipeline processor depicting micro-architecture of Shakti-C

Buffer (ISB) provided there was no bus error or a misaligned
address exception.

(3) Decode Stage: The instruction from the IF-ID ISB is decoded
in this stage. The decoding process involves identification
of the type of instruction, the source operand registers, the
destination register, etc.. The results are then stored in the
ID - EXE (Execute) ISB.

(4) Execute Stage: In this stage, the operands are fetched from
the respective register file, or the operand forwarding path
and the instruction is executed using the ALU (Arithmetic-
Logic Unit) for all instructions except the Floating Point (FP)
instructions. The FP instructions go through the dedicated
FP Unit that are IEEE-754 2008 compliant. Additionally, for
a branch instruction, the prediction is validated in this stage,
and the result is then sent to the BPU where the prediction
bits (that decide if a branch is taken or not taken) are updated
accordingly. If the branch was mispredicted, then the IF-ID
ISB is invalidated and the PC is set to the correct address.
Also, for memory instructions, this stage simply calculates
the effective memory address. The results of this stage are
stored in the EXE - MEM (Memory) ISB.

(5) Memory Stage: In this stage, if the instruction executed
is found to be a load/store then the request is sent to the
data cache to perform the necessary memory/IO operation.
On completion of the memory/IO access, if there was no
bus error, the cache responds back with a valid data (for
load instructions) or a valid acknowledgement (for store
instructions). Memory operations could also return a mis-
aligned exception. This response is stored into the MEM -
WB (Writeback) ISB. However, if the instruction executed
did not require any memory accesses then the result from
the EXE-MEM ISB is simply buffered into the MEM-WB ISB.

(6) Writeback Stage: This stage is responsible for writing the
results back to the register file if no exception was generated.
Also, the result is forwarded via the operand forwarding path.
In case of an exception, a complete pipeline flush is initiated,
and the processor jumps to the exception handler routine.
Also, for instructions like store and branch, no operations
are performed in this stage.

As far as the hardware implementation of the two new instruc-
tions are concerned, the PC Generate, Fetch and Decode stages
for both of them work similar to that of any other arithmetic in-
struction. Actions performed in the remaining stages are described
below:

(1) Hash instruction

• Execute stage: In the execute stage, the hash instruction
is treated similar to that of a load instruction. Here the
effective address is resolved by retrieving the address from
the rs1 register. Moreover, an extra piece of information
is passed onto the memory stage to distinguish between
normal loads and the hash instruction.

• Memory stage: In this stage, memory access is performed
and the pipeline stalls until a response is obtained from
the memory subsystem. Once a response is obtained it is
checked for exceptions. If the response was a valid one,
then the hash of the read value is computed and written
ontoMEM-WB ISB. Additionally, the hash value computed
is forwarded via the operand forwarding path.

• Writeback stage: The writeback stage of a hash instruc-
tion is similar to that of a load instruction. The results are
forwarded via the operand forwarding path and also writ-
ten into the register file, provided there was no exception
generated.

(2) Val instruction
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• Execute stage: In this stage, two actions are performed
by the processor. First, the effective address is resolved
i.e. the address of the base is extracted from the operands.
To be more precise the address is the lower 32-bits of rs1
register. This address will be further used in the memory
stage to issue a load request to get the cookie. The second
action is to compare the value of the pointer with the val-
ues of base and bounds that are present in the fat-pointer.
If the pointer lies within its permissible limits, no excep-
tion is raised, else an exception bit is set and the result is
forwarded to the subsequent stages.

• Memory stage: The val instruction in this stage basically
performs three operations provided that the exception bit
was not set in the execute stage. Initially, it issues a load
request to the effective address that was computed in the
execute stage. Once the response is obtained, necessary
checks for exceptions are performed, and on valid response
only, the hash of the returned value is computed. Finally,
the computed hash is compared with the id_hash stored
along with the fat-pointer (id_hash stored in the upper 32-
bits of rs2). If these values match, then the load is treated
to be valid, else an exception bit is set to indicate invalid
memory accesses by the pointer. The results obtained in
this stage are then passed onto the writeback stage.

• Writeback stage: This stage reads the data from the pre-
vious stage and checks if the exception bit is set. If so, then
an Invalid_Pointer exception is raised; else no operation is
performed thereby indicating that the subsequent load or
store instruction is indeed a valid access.

4 CASE STUDY

This section provides a sketch of the generated LLVM-IR code (by
Clang) of different parts of a simple C-program, and also how the
transformation pass modifies the IR. Given below are some of the
examples of the transformation pass.

(1) Handling the SFC : Given below is the LLVM IR code to
insert the SFC and collapse it just before the function exits.
The keyword "alloca"is used to allocate a memory on the
stack and all variables with ’%’ sign represent a temporary
register. LLVM uses the concept of static single assignment
and has infinite number of registers for computation.

;insert this at the end of all
;alloca calls in a function
%stack_cookie = alloca i64
%2 = call i64 @random64 ()
store i64 %2, i64* %stack_cookie
;body of the function call
...
;insert this at the end of the function
%4 = call i64 @random64 ()
store i64 %4, i64* %stack_cookie
%stack_cookie_burn = call
i64 @llvm.RISCV.hash(i64* %stack_cookie)

Here@llvm.RISCV.hash represents the intrinsic call to our
function hash.

(2) Crafting fat-pointers : Crafting a fat-pointer is done by
calling a function named craft with four parameters namely
base, bound, id_hash and the pointer itself. The craft function

is a few lines of assembly code inserted during code lowering.
The call to craft function below is used to create a fat-pointer
to a character array of size 10.

...
%stack_cookie_32 = ptrtoint i64* %stack_cookie
to i32
...
%stack_hash = trunc i64 %stack_hash_long
to i32
%2 = alloca [10 x i8], align 1
%pti1 = ptrtoint [10 x i8]* %2 to i32
%absolute_bnd2 = add i32 %pti1 , 10
%fpr3 = call i128 @craft(i32 %pti1 ,
i32 %stack_cookie_32 , i32 %absolute_bnd2 ,
i32 %stack_hash)

(3) Validating Loads and Stores : As stated earlier every loads
and stores are prefaced by validity checks, so let us take a
single line of C code and see how the following code gets
transformed.

a[5] = *(ptr +3);

Here a is an array of size 10 and ptr is a pointer pointing to
the array. The code below is the LLVM IR representation of
the said line:

%2 = alloca [10 x i8], align 1
%3 = alloca i8*, align 8
%6 = load i8*, i8** %3, align 8
%7 = getelementptr inbounds i8 , i8* %6, i64 3
%8 = load i8 , i8* %7, align 1

%9 = getelementptr inbounds [10 x i8],
[10 x i8]* %2, i64 0, i64 5
store i8 %8, i8* %9, align 1

Assuming that fat-pointers exist for the variables a and ptr,
the different instructions get modified as follows :

...
;Fat -pointer to a
%fpr3 = call i128 @craft(...)
...
;Fat -pointer to ptr
%fpr6 = call i128 @craft(...)

%fpr_low13 = trunc i128 %fpr6 to i64
%fpr_hi_big14 = lshr i128 %fpr6 , 64
%fpr_hi15 = trunc i128 %fpr_hi_big14 to i64
call void @llvm.RISCV.validate(i64 %fpr_hi15 ,
i64 %fpr_low13)
%ptr32_16 = and i64 %fpr_low13 , 4294967295
%ptrl = inttoptr i64 %ptr32_16 to i128*
%fpld = load i128 , i128* %ptrl , align 8

%zextarrayidx17 = zext i32 3 to i128
%arrayidx18 = add i128 %fpld , %zextarrayidx17
;validate arrayidx18
...
%ptrl23 = inttoptr i64 %ptr32_22 to i8*
%5 = load i8 , i8* %ptrl23 , align 1
%zextarrayidx24 = zext i32 5 to i128
%arrayidx25 = add i128 %fpr3 ,
;validate arrayidx25
...
%ptrs30 = inttoptr i64 %ptr32_29 to i8*
store i8 %5, i8* %ptrs30 , align 1

The above code also shows that all the getelementptr instruc-
tions have been transformed to offsets and added with the
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fat-pointers to point to the desired location of memory.

(4) Handling external function calls like strcpy : To handle
external function calls like strcpy, explicit checks for length
of the destination and source buffer need to be performed.
This is because we do not have any control of the external
function and these can cause overflows of buffer. Let us look
at the sample code below :

char a[10],b[10];
...
strcpy(a,b);

The LLVM representation of the following code is given
below:

...
%5 = getelementptr inbounds [10 x i8],
[10 x i8]* %2, i32 0, i32 0
%6 = getelementptr inbounds [10 x i8],
[10 x i8]* %3, i32 0, i32 0
%7 = call i8* @strcpy(i8* %5, i8* %6)

The modified LLVM-IR code is :

...
%zextarrayidx = zext i32 0 to i128
;fpr3 is the fat pointer to array "a"
%arrayidx = add i128 %fpr3 , %zextarrayidx
%zextarrayidx8 = zext i32 0 to i128
;fpr6 is the fat pointer to array "b"
%arrayidx9 = add i128 %fpr6 , %zextarrayidx8
%fpr_low10 = trunc i128 %arrayidx to i32
%ptrc11 = inttoptr i32 %fpr_low10 to i8*
%fpr_low12 = trunc i128 %arrayidx9 to i32
%ptrc13 = inttoptr i32 %fpr_low12 to i8*
%source_len = call i64 @strlen(i8* %ptrc13)
%check_len = icmp ule i64 10, %source_len
br i1 %check_len , label %5, label %7
...

In the above modified code, if the condition of the branch
instruction is true, then the code jumps to a basic block and
finally exits; else it executes normally
.

(5) Malloc : In LLVM IR the malloc call would get transformed
into a safemalloc call. Let us look at a simple example of how
the original IR looks and the modified IR is generated.

char *q = malloc (10);

The corresponding LLVM IR code would look something like
this:

%1 = alloca i8*, align 8
%2 = call i8* @malloc(i64 zeroext 10)
store i8* %2, i8** %1, align 8

where %1 refers to the allocation of variable q. Malloc allo-
cates 10 bytes of memory, and assigns it to q. The modified
IR code is given below :

%1 = alloca i128 , align 8
...
%fpr = call i128 @craft(i32 %pti ,
i32 %stack_cookie_32 , i32 %absolute_bnd ,
i32 %stack_hash)
%3 = call i128 @safemalloc(i64 zeroext 10)
;validate and store
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...
call void @llvm.RISCV.validate(i64
%fpr_hi , i64 %fpr_low)
...
store i128 %3, i128* %ptrs , align 8

(6) Free : Similar to themalloc call, a free call also gets modified
into safefree and it now accepts a 128-bit fat-pointer instead
of a normal pointer. Assuming that a variable q points to an
already malloc’d memory region, a call to free(q) is imple-
mented using the below LLVM instructions:

%3 = load i8*, i8** %1, align 8
call void @free(i8* %3)

where %1 represents the same variable shown in the malloc
code above. The modified LLVM code is:

;validate and load
...
call void @llvm.RISCV.validate(i64 %fpr_hi3 ,
i64 %fpr_low1)
...
%fpld = load i128 , i128* %ptrl , align 8
call void @safefree(i128 %fpld)

5 RESULTS

Shakti-MS has two implementation aspects, namely, hardware
design and compiler transformations. Hardware additions cause an
increase in the area of the chip, and also may increase the critical
path length. The compiler transformations, on the other hand, may
cause an increase in the code size and runtime overheads. This
section discusses the overheads in terms of all these aspects, and
also quantifies the effectiveness of the proposed solution.

5.1 Runtime Overheads :

To calculate the runtime overheads we have used some of the SPEC
benchmarks that had successfully compiled using RISC-V LLVM
toolchain. We also used some of the buffer overflow benchmarks
given in SARD-dataset-88 [13], and some commonly used programs
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Figure 6: Graph demonstrating overheads of

different programs with respect to code size.

consisting of intensive pointer operations/arithmetic to estimate the
runtime overheads. The average runtime overhead is approximately
13%.

Figure 5 shows the cycle count overhead for some of the bench-
marks and other programs. The white bar in the graph indicates
cycle counts for execution if the programs are compiled with vanilla
RISC-V CLANG, while the black bar indicates the cycle count if the
programs are compiled with the modified compiler toolchain.

5.2 Overheads in the Code:

To estimate overheads in terms of code size, the hexdump of the
same set of programs were compared with and without the LLVM
transformation pass.

Figure 6 shows the code size of different programs. The white bar
indicates the code size of the program without the transformation
pass applied, whereas the black bar indicates the code size with the
transformation pass applied. The average increase in code size is
about 11%.

5.3 Hardware Overheads :

The modified microprocessor was synthesized on UMCIP’s open
55nm technology node, and also on a Virtex Ultrascale FPGA (part
number xcvu0095-ffva2104-2-e) using Xilinx Vivado 2016.1. The
RAMs of caches were treated as a black box for the ASIC synthesis.
Shakti-MS has an overhead of 4100 cells on ASIC, and 700 LUTs
on the FPGA. The critical path, which is in the execute stage, did
not change as the base and bounds check, and hash computation
are done in parallel with the existing circuit in that stage. Also, the
extra logic in the memory stage does not fall on the critical path.

5.4 Effectiveness :

To check the effectiveness of bounds checking and use after free
attacks, we have used the SARD-dataset-81 and SARD-dataset-
89 downloaded from SAMATE-NIST [13] website. We also devel-
oped our own test cases for more obscure memory corruption

Table 1: Comparative Study with Existing Works

Safety Check Instrumentation
Methods Metadata

Size

Performance
Overheads

Spatial Temporal Hardware Compiler Hardware Software
[33] ✓ × × ✓ 128*n NA NA
[27] ✓ ✓ × ✓ 256*n + 64 NA 29%
[25] ✓ ✓ ✓ ✓ 256*n + 64 NA 25%
[23] ✓ ✓ ✓ × 64*n + 128 0% NA
[7] ✓ × ✓ × 128*n NA 10%

Shakti-MS ✓ ✓ ✓ ✓ 128*n 0% 13%

attacks. Our test cases were developed to target the different uses
of dangling pointers for temporal safety checks, whereas the SARD-
dataset was used for spatial safety checks. The SARD dataset has
around 1100 programs consisting of both correct and vulnerable
ones. Our solution was able to detect all the vulnerabilities it was
designed to address. The issues relating to false negatives were
due to multi-threaded programs and nested sub-object protection.
However, issues relating to sub-objects are handled to ensure that
the overflow is never beyond the object’s scope. Since these are
very small tests that are written just to check for the effectiveness
of a solution, these have not been included in Figure 5. Nevertheless,
the runtime overheads that were observed for these programs were
negligible.

6 CONCLUSION

In this paper, we propose Shakti-MS, a RISC-V processor support-
ing both spatial and temporal memory safety. It is a light-weight
co-design approach with the compiler responsible for inserting
new instructions that perform memory checks and the hardware
responsible for executing them. Table 1 shows a comparative study
of the runtime overhead of the proposed solution with the existing
works. The low runtime overhead is achieved due to the fact that
the work is being divided between the compiler and the hardware.
The major contribution of the paper lies in the fact that we are
using stack based cookies instead of using object based id’s. The
proposed implementation of fat-pointer prevents both spatial and
temporal attacks on stacks and heaps with minimal storage and
runtime overheads. Another major advantage of Shakti-MS allows
existing RISC-V software and binaries to be run unmodified. This
means that any program compiled with an unmodified compiler
toolchain can still run on the modified processor and co-exist with
the protected programs.

Although we see that Shakti-MS works well for protecting
against both spatial and temporal attacks, but observing its ef-
fectiveness in case of sub-object protection and multi-threading
environment would be an interesting work. Moreover, since our
code transformation relies on the compiler to insert instructions,
different optimisation passes can be applied before and after our
own transformation pass. One example would be to run a pass and
figure out statically as to which pointers need to be transformed
into fat-pointers, and only transform those pointers to haveminimal
runtime and code size overheads.
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