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Abstract

The problem of multi-hypothesis testing with controlled sensing of observations is considered. The distribution of observations
collected under each control is assumed to follow a single-parameter exponential family distribution. The goal is to design a policy
to find the true hypothesis with minimum expected delay while ensuring that probability of error is below a given constraint. The
decision maker can control the delay by intelligently choosing the control for observation collection in each time slot. We derive
a policy that satisfies the given constraint on the error probability. We also show that the policy is asymptotically optimal in the
sense that it asymptotically achieves an information-theoretic lower bound on the expected delay.

I. INTRODUCTION

Sequential controlled sensing is a stochastic framework wherein a decision-maker collects observations from a set of controls

by sequentially choosing a control and obtaining an observation associated with that control. This paradigm is encountered in

information-gathering systems with multiple degrees of freedom that can be controlled adaptively to achieve a given statistical

inference task. In traditional control systems, the control is responsible for governing the state of the system. On the other

hand, in controlled sensing, the control governs the quality of observations.

Some applications of controlled sensing are target detection, tracking, classification and dynamic sensor selection. A widely

studied problem that can be considered as a special case of controlled sensing is that of anomaly detection. Some applications

of anomaly detection include identification of defective batches in manufacturing, detection of abnormal behaviour of machines,

and outlier detection in datasets. Another problem studied by the computer science community, which can also be considered

to be a special case of controlled sensing, is best arm identification in multi-armed bandits. Controlled sensing has potential

applications in diagnostic inference [2], particularly clinical decision support systems, which help clinicians in taking diagnostic

decisions. Taking measurements from medical sensors can be expensive and so a potential inference problem would be to find

a sequential policy to minimize the number of measurements taken to find the correct hypothesis related to a patient’s state of

health, with high probability.

We consider the problem of finding the true hypothesis from a finite set of composite hypotheses, with minimum expected

delay in a sequential controlled sensing setting, while ensuring that a constraint on the probability of error is satisfied. To

achieve this goal, the decision-maker has to intelligently choose a control at each time step in order to make best use of the

observations, decide when to stop, and find an appropriate estimate of the true hypothesis.

A. Related Work

Chernoff pioneered controlled sensing in his seminal work [3]. Chernoff considered the problem of composite binary

hypothesis testing in a sequential controlled sensing setting. He assumed that the distributions under both hypotheses were

parametrized and the two sets of parameters under the hypotheses were disjoint and finite. The set of controls was assumed

to be finite as well. Chernoff proposed a policy, known as ‘Procedure A’, and proved that it is asymptotically optimal under

certain positivity constraints on Kullback-Leibler divergences. Albert [4] extended Chernoff’s results to the case where the

parameter space is infinite with certain restrictions. Bessler [5] also generalized Chernoff’s work to multiple hypothesis and

an infinite set of controls, but with a finite parameter space. In these papers, the authors named the control sensing problem

as ‘sequential design of experiments’.

Nitinawarat et al. [6] studied the problem of controlled sensing for multihypothesis testing in a setting where the distributions

were assumed known, and provided an asymptotically optimal policy without the positivity assumption of prior work, and with

strict guarantees on the probabilities (risks) of choosing the hypotheses incorrectly. Naghshvar et al. [7] considered controlled

sensing for sequential multihypothesis in the non-asymptotic regime and analyzed a dynamic programming solution to find

the structure of the optimal test, and also studied the problem where the number of hypotheses goes to infinity. The authors

of [7] term the controlled sensing problem as ‘active sequential hypothesis testing’.

We now discuss related work in anomaly detection, which is a special case of controlled sensing. Li et al. [8] studied

outlier hypothesis testing in a setting where there is no control and all processes (taking values in finite sets) are sampled

together, and provided a universally exponentially consistent policy when both anomalous and non-anomalous distributions

A part of this work was presented at the 2018 Asilomar Conference on Signals, Systems, and Computers under the title ‘Controlled Sensing for Composite
Multihypothesis Testing with Application to Anomaly Detection’ [1].

ar
X

iv
:1

91
0.

12
69

7v
1 

 [
m

at
h.

ST
] 

 2
4 

O
ct

 2
01

9



are unknown. Cohen et al. [9] considered the problem of anomaly detection with control when both anomalous and non-

anomalous distributions are known, and provided an asymptotically optimal deterministic test. Vaidhiyan et al. [10] studied

the problem of detecting an odd process among a group of Poisson point processes, in a setting where parameters of the odd

and non-odd processes were unknown, and provided an asymptotically optimal policy. Prabhu et al. [11] generalized [10] to

vector-exponential families and also considered switching costs.

Best arm identification in multi-armed bandits is a problem well studied by the computer science community. The framework

of multi-armed bandits is similar to that of controlled sensing. Kaufmann et al. [12] studied the complexity of identifying best

arms in a multi-armed bandit. Garivier et al. [13] provided an asymptotically optimal policy for best arm identification in

multi-armed bandits where the distributions on the arms were assumed to belong to a single-parameter exponential family, and

the parameters of these distributions were unknown.

B. Paper Outline

In Section II we introduce the problem model. In Section III we provide a lower bound on the expected delay of policies in

the class of interest. In Section IV, we give an overview of results and some applications. In Section V, we discuss a proposed

policy. In Section VI, we provide some simulations and numerical results. Proofs of all results can be found in Appendices

A, B and C.

II. PROBLEM MODEL

A. Single parameter exponential family

The single parameter exponential family is a collection of probability distributions whose probability density/mass functions

can be expressed as

p(y; θ) = h(y) exp(θT (y)−A(θ)), (1)

where θ is the parameter, (also known as the natural parameter) from some parameter set Ψ ⊂ R, T : R → R represents the

statistic, A : Θ → R is a convex function, known as the log-partition function. A(θ) can be expressed as

A(θ) = log

∫ ∞

−∞
h(y) exp(θT (y))dy. (2)

The distribution can also be parametrized by the expectation parameter κ which is the expected value of the statistic,

κ = Eθ[T (Y )] = Ȧ(θ), (3)

where ḟ is used to represent the derivative of a real-valued function f , that is, ḟ = df
dy . It is known that A is infinitely

differentiable over the domain Ψ.

Let b be the convex conjugate function of A,

b(κ) = sup
θ
(κθ −A(θ)). (4)

Then θ corresponding to κ is given by

θ = ḃ(κ). (5)

The dual relationship between κ and θ is given by

κ = Ȧ(θ) and θ = ḃ(κ). (6)

The KL-divergence between two distributions having natural parameters θ and θ′ respectively is given by :

D(θ||θ′) :=
∞
∫

−∞

f(y; θ) log
f(y; θ)

f(y; θ′)
dy (7)

= A(θ′)−A(θ)− Ȧ(θ)(θ′ − θ). (8)



B. Problem setup

We consider a set of controls denoted by the finite set

U = {1, 2, 3, . . . , |U|}. (9)

The state of nature is denoted by a vector of parameters θ. In the general setting of controlled sensing, the observations under

a control, say u, are assumed to follow a non-specific distribution with density, which we denote by p(y;θ, u), with respect

to some common measure µ. In this work, we assume that θ =
(

θ1, θ2, . . . , θ|U|
)

is a |U|-dimensional vector and that the

distribution of the observations under control u is a member of a single-parameter exponential family with parameter as the

u-th coordinate of θ, represented as θu ∈ Ψu, where Ψu ⊂ R. Let the domain of θ be denoted as:

Ω = Ψ1 ×Ψ2 × . . .Ψ|U|. (10)

The probability density/mass function of observation y under control u and given parameters θ is given by

p(y;θ, u) = hu(y) exp[θuTu(y)−Au(θu)], (11)

where Tu is the statistic function and Au is the log-partition function of the exponential family associated with control u. Let

bu be the convex conjugate function of Au. The KL-divergence between between the distributions under control u and u′, for

control parameters θ and θ′ is

Du(θ||θ′) :=

∞
∫

−∞

p(y;θ, u) log
p(y;θ, u)

p(y;θ′, u)
dµ(y) (12)

= Au(θ
′
u)−Au(θu)− Ȧu(θu)(θ

′
u − θu). (13)

The set of hypothesis is denoted by

M = {1, 2, 3, . . . ,M}. (14)

Under hypothesis m ∈ M, θ ∈ Θm, where Θm ⊂ Ω. Let ‖.‖ be a norm on R
|U|. We assume the following structure on the

sets Θm.

1) Each Θm is a disjoint finite union of sets, that is Θm =
xm
⋃

i=1

Γ
(i)
m , where xm ∈ N and Γ

(i)
m ∩ Γ

(j)
m = φ, ∀i, j ∈ [xm] such

that i 6= j.

2) ∀m ∈ M, ∀i ∈ [xm],Γ
(i)
m is convex and open in its own affine hull, denoted by aff

(

Γ
(i)
m

)

.

3) ∀m1,m2 ∈ M such that m1 6= m2, we have Γ
(i)
m1 ∩ Γ

(j)
m2 = φ, ∀i ∈ [xm1

], ∀j ∈ [xm2
]. Note that this implies Θm’s are

mutually disjoint.

4) ∀m ∈ M, ∀i ∈ [xm], ∀θ ∈ Γ
(i)
m , ∆

(

θ,Γ
(j)
m′

)

> 0 for any m′ ∈ M, j ∈ [xm′ ] such that m′ 6= m or j 6= i, where

∆(x, A) : Ω → R is the distance of x ∈ Ω to the set A ⊂ Ω given by

∆(x, A) := inf{‖x− θ′‖ : θ′ ∈ A}. (15)

We consider a sequential setting where at each time step k = 1, 2, 3, . . . the controller selects a control Uk and gets an

observation Yk. All observations (Yk)k≥1 and all control selections (Uk)k≥1 are assumed to be defined on a common probability

space. Let Fn = σ(U1, Y1, U2, Y2, . . . , Un, Yn) be the sigma-algebra generated by the selected controls and observations up to

time n. Pθ[.] and Eθ[.] denote the probability and expectation respectively conditioned that the vector of parameters is θ. A

policy Φ = ({Un}, τ, m̂) is then defined by:

• a sequence of controls {Un}, where Un is Fn−1 measurable,

• a stopping rule τ , which is a stopping time with respect to U1, Y1, U2, Y2, . . . , and

• an Fτ -measurable decision m̂ which is the policy’s estimate of the true hypothesis.

Any such policy keeps taking observations by choosing controls based on past observations and chosen controls, until the

stopping time. At the stopping time, the policy stops taking any further observations and choosing any further controls, and

outputs an estimate of the true hypothesis. The goal is to design a policy to find the true hypothesis with minimum expected

delay Eθ[τ ] while ensuring that probability of error is below a given constraint α. Let

g(θ) := m if θ ∈ Θm. (16)

Definition 1 (ᾱ-correct policy). Let α ∈ (0, 1). A policy is called ᾱ-correct if ∀θ ∈
M
⋃

m=1
Θm, Pθ[τ < ∞] = 1 and Pθ[m̂ 6=

g(θ)] ≤ α.



For any state of nature parameters, an ᾱ-correct policy stops in finite time almost surely and detects the true hypothesis with

probability of at-least 1− α. We contribute a policy which we show to be ᾱ-correct and asymptotically optimal in the sense

that it achieves the aymptotic lower bound on expected delay as α → 0. We discuss this lower bound in the next section.

III. LOWER BOUND

We first establish a lower bound on the expected delay of any ᾱ-correct policy.

Lemma 1. Let α ∈ (0, 1). Then ∀θ ∈
M
⋃

m=1
Θm, any ᾱ-correct policy satisfies

Eθ[τ ] ≥
d(α||1− α)

D∗(θ)
, (17)

where D∗(θ) is defined as,

D∗(θ) := sup
q∈P

inf

θ′∈
M⋃

m=1
Θm\Θg(θ)

|U|
∑

u=1

quDu(θ||θ′). (18)

d(x||y) := x log
(

x
y

)

+ (1 − x) log
(

1−x
1−y

)

represents the binary relative entropy function and the supremum is taken over P ,

the set of all distributions over U .

Proof. The proof follows from Lemma 1 in [12], which is stated for multi-armed bandit models, but can be applied to the

case of sequential controlled sensing due to similarity in the paradigms.

We further analyze D∗(θ) to gain insights and discover properties which might help us in designing a good policy for the

problem in consideration.

Proposition 1. The supremum in (18) is a maximum and attained ∀θ ∈
M
⋃

m=1
Θm at

q∗(θ) = argmax
q∈P

inf

θ′∈
M⋃

m=1
Θm\Θg(θ)

|U|
∑

u=1

quDu(θ||θ′). (19)

Furthermore, q∗(θ) is continuous at each θ.

Proof. See Appendix A for the proof. We assume that the hypothesis sets are such that the maximum is unique. In the case

of best arm identification [Theorem 5, [13]] and anomaly detection [Proposition 3, [11]], the maximum is indeed unique.

Some remarks are in order: First, the lower bound in (17) is non-asymptotic in nature, and so it is a stronger result than the

asymptotic lower bounds generally seen in the literature on controlled sensing and anomaly detection, see, e.g., [3], [6] and

[9]. Taking the limit as α → 0, the asymptotic lower bound we get is

lim inf
α→0

Eθ[τ ]

|logα| ≥
1

D∗(θ)
, (20)

which has the same form as the asypmtotic lower bounds generally found in controlled sensing literature. Moreover, this lower

bound is applicable not just to single-parameter exponential distributions, but to general parametrized families. Intituively,

q∗u(θ) represents the optimal proportion of the number of times control u should be chosen by a policy that tries to achieve

the lower bound, and D∗(θ) represents the maximum possible rate of ‘information’ extraction in the worst case scenario.

IV. OVERVIEW OF RESULTS

We propose a policy, based on the policy given in [13], and show the following properties.

Theorem 1. The proposed policy is an ᾱ-correct policy for any given α ∈ (0, 1).

Theorem 2. [Almost-sure upper bound] For any state of nature θ ∈
M
⋃

m=1
Θm, the proposed policy satisfies

Pθ

[

lim sup
α→0

τ

|logα| ≤
1

D∗(θ)

]

= 1. (21)



Theorem 3. [Asymptotic optimality in expectation] For any state of nature θ ∈
M
⋃

m=1
Θm, the proposed policy satisfies

lim sup
α→0

Eθ[τ ]

|logα| ≤
1

D∗(θ)
. (22)

Proofs of the above theorems are given in Appendix B. Theorem 3 implies that the proposed policy is asymptotically optimal.

We now discuss two applications of composite multihypothesis controlled sensing. In both applications we assume that the

distributions of observations collected across all controls follow the same single-parameter exponential family.

1) Best-K arms identification in a multi-armed bandit: The problem of identification of best-K arms in a multi-armed bandit

with minimum expected delay under constraint on error probability, can be cast as a sequential controlled sensing problem

where each control corresponds to an arm and there are M =
(|U|
K

)

hypotheses, such that each hypothesis consists of a

unique combination of K arms which have the highest expectation parameters (we assume that the statistic T is identity

as in [13]). Since Ȧ is increasing, we can express any hypothesis set as

Θ =
⋃

π

{

θ′ ∈ Ω : θ′π(φ(1)) ≥ θ′π(φ(2)) ≥ · · · ≥ θ′π(φ(K)), ∀i /∈ {φ(1), φ2, . . . , φ(K)}
}

(23)

where {φ(1), φ2, . . . , φ(K)} denotes a unique combination of K controls and π denotes a permutation of this combination.

Note that each hypothesis set is open and convex. All hypothesis sets are mutually disjoint. Hence, Assumptions 1, 2

and 3 hold. It can be verified that Assumption 4 also holds. Thus the proposed policy can be applied in this scenario

and we get an asymptotically optimal policy.

2) Sequential controlled anomaly detection: The framework of controlled anomaly detection consists of multiple streams

of observations. All distributions are the same except for one stream, which we call as the anomalous stream. The

objective is to sequentially collect observations by choosing one stream in each time step, and find the anomalous stream

in minimum expected delay, while ensuring that the probability of error is bounded by a given constraint. We can cast

the anomaly detection problem as a controlled sensing problem where each control picks a unique stream to collect

observations, and the hypotheses are as follows. Let M = |U| and for m ∈ M,

Θm = {θ′ ∈ Ω : θ′i = θ, ∀i 6= m for some θ and θ′m 6= θ}. (24)

So, hypothesis m indicates that the mth stream is anomalous. Observe that each Θm is a 2-D plane (the degrees of

freedom being the anomalous and non-anomalous parameters) without the 1-D line given by

L =
{

θ′ ∈ Ω : θ′1 = θ′2 = · · · = θ′|U|

}

. (25)

Thus each Θm can be expressed as a union of two convex sets which are open in their own affine hulls, and all such

convex sets that form the hypothesis sets are mutually disjoint. Hence, Assumptions 1, 2 and 3 hold. It can be verified

that Assumption 4 also holds. Thus the proposed policy can be applied in this scenario and we get an asymptotically

optimal policy.

V. PROPOSED POLICY

Recall that a policy has three essential components: a decision, a control law and a stopping rule. We discuss these components

in detail, after introducing the required notation.

Let Nu(n) be the number of times control u is chosen up to time n.

Nu(n) =
n
∑

k=1

✶{Uk=u}. (26)

Let Su(n) be the sum of sufficient statistics of control u up to time n.

Su(n) =

n
∑

k=1

Tu(Yk)✶{Uk=u}. (27)

For all hypothesis i, j ∈ M, we define the Generalized Likelihood Ratio Test Statistic as

Zi,j(n) := log

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

sup
θ′′∈Θj

|U|
∏

u=1
p(Y u(n);θ′′, u)

, (28)



where Y u(n) = (Yk : Uk = u, k ≤ n) is the collection of observations from control u. Let

Zi(n) := min
j 6=i,j∈M

Zi,j(n) and Z(n) := max
i∈M

Zi(n). (29)

Let θ∗(n) ∈ Ω be the global maximum likelihood estimate of θ,

θ∗(n) := argmax
θ′∈Ω

|U|
∏

u=1

p(Y u(n);θ′, u). (30)

So, ∀u ∈ U ,

θ∗u(n) = bu

(

Su(n)

Nu(n)

)

. (31)

A. Stopping time

We adopt the approach in [13] and define the stopping time as follows.

τ := inf{n ∈ N : Z(n) ≥ β(n, α)}. (32)

β(n, α) is a dynamic threshold given by

β(n, α) = v(n) + w(α), (33)

where

w(α) = |logα|+
√

4|U||logα| (34)

and

v(n) = C + log
(

n(1 + log n)|U|+2
)

+
√

4|U| log
(

n(1 + log n)|U|+2
)

. (35)

Here C is a constant given by C = 2|U|
√

2 log 2|U|
e + 1

|U| log
2e|U|+1

|U||U| + log 2e|U|+1

|U||U| .

The threshold β(n, α) is based on the deviation inequality given in Theorem 2 in [14], which is stated for Bernoulli

distributions, but easily extendable to single-parameter exponential family distributions. For sake of completeness, we provide

this extension in Appendix C.

B. Decision

At each time step, the policy’s estimate of the true hypothesis will be called as the recommendation at that time step. The

recommendation r̂(n) is the nearest hypothesis set Θm to the global MLE θ∗(n).

r̂(n) ∈ argmin
m∈M

∆(θ∗(n),Θm). (36)

The decision is given by:

m̂ ∈ argmax
m∈M

Zm(τ). (37)

C. Control Law

For initialization, all controls are selected once. For the control law, we follow the approach used in the ‘track-and-stop’

strategy, proposed in [13]. The idea is to choose the control so as to get the empirical proportions
(

Nu(n)
n

)

close to the

optimal proportions q∗(θ). Since θ is unknown, we use the plug-in estimates q∗(θ̂(n)), where θ̂(n) is the nearest vector in

recommended hypothesis set Θr̂(n) to the global MLE θ∗(n).

θ̂(n) ∈ argmin
θ′∈Θr̂(n)

‖θ′ − θ∗(n)‖. (38)

If no minimizer exists, choose θ̂(n) to be ρ-closest of θ∗(n) in Θr̂(n), where ρ > 1 is fixed.
∥

∥

∥θ̂(n)− θ∗(n)
∥

∥

∥ ≤ ρ inf
θ′∈Θr̂(n)

‖θ′ − θ∗(n)‖ = ρ∆(θ∗(n),Θr̂(n)). (39)

Let qǫ(θ) be a L∞ projection of q∗(θ) onto {q ∈ P : ∀u ∈ U , qu ∈ [ǫ, 1]}. Then we select the control at time n+1 according

to

un+1 ∈ argmax
u∈U

n
∑

k=1

qǫku (θ̂(k))−Nu(n), (40)



where ǫk = 1
2 (|U|

2
+ k)−1/2. Note that this projection enforces exploration of the controls in the initial stages when the

estimates are not quite accurate. This forced exploration decays as time progresses.

Lemma 2 (Lemma 7, [13]). The control law ensures that ∀n ∈ N and ∀u ∈ U ,

Nu(n) ≥
√

n+ |U|2 − 2|U| (41)

and that

max
u∈U

∣

∣

∣

∣

∣

Nu(n)−
n−1
∑

k=0

q∗u(θ̂(k))

∣

∣

∣

∣

∣

≤ |U|(1 +
√
n). (42)

Observe that the GLRT statistic has a maximum likelihood in the numerator, which makes it difficult to find a constant

threshold such that probability of error can be constrained. In [10], for example, the authors circumvent this problem by

defining a modified GLRT statistic, which has a likelihood averaged over a prior in the numerator instead of the maximum

likelihood, and have a constant threshold policy.

VI. NUMERICAL RESULTS

We implemented the proposed policy in a general composite multi-hypothesis detection scenario. The set of controls is

U = {1, 2, 3, 4, 5}. The observations from the controls follow normal distributions with means µ = {1, 2, 12, 8, 15} and

variances σ2 = {1, 1, 16, 4, 9}. The variances are assumed to be known. In this case, the true parameter for control u is

θu = µu

σu
. So, the true vector of parameters is θ = {1, 2, 3, 4, 5}. The hypothesis are as follows:

Θ1 = {0 ≤ θ1 ≤ 2, 1 ≤ θ2 ≤ 3, 2 ≤ θ3 ≤ 4, 3 ≤ θ4 ≤ 5, 4 ≤ θ5 ≤ 6} (43)

Θ2 = {0 ≤ θ1 ≤ 2,−2 ≤ θ2 ≤ 0, 4 ≤ θ3 ≤ 6, 3 ≤ θ4 ≤ 5, 7 ≤ θ5 ≤ 9} (44)

Θ3 = {−2 ≤ θ1 ≤ 0, 1 ≤ θ2 ≤ 3, 2 ≤ θ3 ≤ 4, 5 ≤ θ4 ≤ 7, 2 ≤ θ5 ≤ 5} (45)

Θ4 = {−2 ≤ θ1 ≤ 0, 3 ≤ θ2 ≤ 5, 0 ≤ θ3 ≤ 2, 3 ≤ θ4 ≤ 5, 4 ≤ θ5 ≤ 6}. (46)

Fig. 1 shows the plot of the ratio of empirical mean stopping time to |log(α)| versus |log(α)|, in comparison with the lower

bound 1
D∗(θ) = 2.2601. The empirical mean stopping time is the average of the stopping times obtained in 100 independent

iterations. Observe that the ratio of the empirical mean stopping time to | log(α)| approaches the lower bound 1
D∗(θ) , as α

decreases, thereby demonstrating the asymptotic optimality of the proposed policy.

APPENDIX A

Proof of proposition 1. Let θ ∈
M
⋃

m=1
Θm be fixed, and Θ =

M
⋃

m=1
Θm \Θg(θ). Let f(q) : P → R, such that

f(q) = inf
θ′∈Θ

|U|
∑

u=1

quDu(θ||θ′). (47)

Note that the map (q,θ′) 7→
U
∑

u=1
quDu(θ||θ′) is bounded below by 0, and Θ is non-empty, so f(q) is well-defined. Let

PS := {q ∈ P : ∀u ∈ S, qu > 0 and ∀u /∈ S, qu = 0}, (48)

for S ∈ 2U \ {φ}. Let S = 2U \
{

{φ}
|U|
⋃

u=1
{u}
}

. Note that

P =
⋃

S∈2U\{φ}
PS =

⋃

S∈S
PS

|U|
⋃

u=1

P{u}. (49)



Fig. 1. Performance of proposed policy in a general composite hypothesis setting

Note that f is concave on P , since it is an infima of an affine family of functions. Hence, we have that f is concave on P .

Since for any S ∈ S , PS ⊂ P , f is concave on PS and thus continuous on relint(PS) = PS . We now show that f is lower

semi-continuous on P . Consider any S ∈ S . Let q0 ∈ PS . Consider a sequence {qn} ⊂ P such that qn → q0. So we have,

lim inf
n→∞

f(qn) = lim inf
n→∞

inf
θ′∈Θ

{

∑

u∈S

qn,uDu(θ||θ′) +
∑

u/∈S

qn,uDu(θ||θ′)

}

(50)

≥ lim inf
n→∞

{

inf
θ′∈Θ

∑

u∈S

qn,uDu(θ||θ′) + inf
θ′∈Θ

∑

u/∈S

qn,uDu(θ||θ′)

}

(51)

≥ lim inf
n→∞















(

∑

u∈S

qn,u

)

inf
θ′∈Θ

∑

u∈S

qn,u
(

∑

u∈S

qn,u

)Du(θ||θ′) +
∑

u/∈S

qn,u inf
θ′∈Θ

Du(θ||θ′)















. (52)



Since ∀u /∈ S, qn,u → q0,u = 0, we consequently get
∑

u/∈S

qn,u inf
θ′∈Θ

Du(θ||θ′) → 0, (53)

∑

u∈S

qn,u → 1, (54)

∀u ∈ S,
qn,u

(

∑

u∈S

qn,u

) → q0,u, (55)

inf
θ′∈Θ

∑

u∈S

qn,u
(

∑

u∈S

qn,u

)Du(θ||θ′) → f(q0). (56)

Note that (56) follows from the continuity of f on PS . Applying (53) and (56) in (52), we get

lim inf
n→∞

f(qn) ≥ f(q0). (57)

Now consider the singleton element q0 ∈ P{v} for any v ∈ U . Note that q0,u = 1. Similarly as before, consider a sequence

{qn} ⊂ P such that qn → q0. So we have,

lim inf
n→∞

f(qn) = lim inf
n→∞

inf
θ′∈Θ

|U|
∑

u=1

qn,uDu(θ||θ′) (58)

≥ lim inf
n→∞

|U|
∑

u=1

qn,u inf
θ′∈Θ

Du(θ||θ′) (59)

= inf
θ′∈Θ

Dv(θ||θ′) (60)

= f(q0). (61)

Since f is lower semi-continuous on PS for any S ∈ S and on P{u} for any u ∈ U , f is lower semi-continuous on P . We

now show that f is upper semi-continuous on P . Consider a sequence {qn} ⊂ P such that qn → q0 ∈ P . From the definition

of f , it follows that ∃{θk} ⊂ Θ such that
|U|
∑

u=1

q0,uDu(θ||θk) → f(q0). (62)

So we get,

lim sup
n→∞

f(qn) = lim sup
n→∞

inf
θ′∈Θ

|U|
∑

u=1

qn,uDu(θ||θ′) (63)

≤ lim sup
n→∞

|U|
∑

u=1

qn,uDu(θ||θk) (64)

=

|U|
∑

u=1

q0,uDu(θ||θk). (65)

Note that this holds for all k ∈ N. Thus, taking limit k → ∞, we get

lim sup
n→∞

f(qn) ≤ f(q0). (66)

Hence, f is upper semi-continuous on P . Since f is both upper and lower semi-continuous on P , we conclude f is continuous

on P . Since P is compact, f achieves the maximum value D∗(θ) on P .

We now show that the function f0(q,θ) : P ×
M
⋃

m=1
Θm → R given by

f0(q,θ) = inf

θ′∈
M⋃

m=1
Θm\Θg(θ)

|U|
∑

u=1

quDu(θ||θ′), (67)



is continuous. Let m′ ∈ M, i ∈ {1, 2, ..., xm′}, and q ∈ P be fixed. First, we show that the functions f
(m)
j : Γ

(i)
m′ → R given

by

f
(m)
j (θ) = inf

θ′∈Γ
(j)
m

|U|
∑

u=1

quDu(θ||θ′) (68)

are continuous, where m ∈ M and j ∈ {1, 2, . . . , xm}. We show that f
(m)
j is convex as follows. Let θ1,θ2 ∈ Γ

(i)
m′ and

λ ∈ [0, 1]. So for any θ′
1,θ

′
2 ∈ Γ

(j)
m ,

f
(m)
j (λθ1 + (1− λ)θ2) ≤

|U|
∑

u=1

quDu(λθ1 + (1− λ)θ2||λθ′
1 + (1− λ)θ′

2) (69)

≤
|U|
∑

u=1

qu[λDu(θ1||θ′
1) + (1− λ)Du(θ2||θ′

2)] (70)

= λ

|U|
∑

u=1

quDu(θ1||θ′
1) + (1− λ)

|U|
∑

u=1

quDu(θ2||θ′
2) (71)

This holds due to the convexity of Du. Taking infimum over θ′
1 and θ′

2, we get

f
(m)
j (λθ1 + (1− λ)θ2) ≤ λf

(m)
j (θ1) + (1− λ)f

(m)
j (θ2). (72)

Thus, f
(m)
j is convex on Γ

(i)
m′ and hence continuous on Γ

(i)
m′ , since Γ

(i)
m′ = relint

(

Γ
(i)
m′

)

. This further implies that min
m 6=m′

min
j∈[xm]

f
(m)
j

is continuous on Γ
(i)
m′ . Since m′ ∈ M, i ∈ [xm′ ] were chosen arbitrarily and from assumption 4 on the structure of Θm’s, we

get that for a fixed q ∈ P , the function f∗ :
M
⋃

m=1
Θm → R given by

f∗(θ) = min
m 6=g(θ)

min
j∈[xm]

inf
θ′∈Γ

(j)
m

|U|
∑

u=1

quDu(θ||θ′) = inf

θ′∈
M⋃

m=1
Θm\Θg(θ)

|U|
∑

u=1

quDu(θ||θ′) (73)

is continuous on its domain. We prove the continuity of f0(q,θ) by using the continuity of f(q) and f∗(θ). Consider a

sequence {qn} ⊂ P such that qn → q0 ∈ P and a sequence {θn} ⊂
M
⋃

m=1
Θm such that θn → θ0 ∈

M
⋃

m=1
Θm. Let q0 ∈ PS .

Note that ∃N1 such that ∀n ≥ N1, θn ∈ Θg(θ0). Given ǫ ∈
(

0,min
u∈S

q0,u
2

)

, ∃N2 such that ∀u ∈ U , ∀n ≥ N2, qn,u ≥ q0,u − ǫ.

Let Θ =
M
⋃

m=1
Θm \Θg(θ0). Thus ∀n ≥ max(N1, N2),

f0(qn,θn) ≥ (1− |S|ǫ) inf
θ′∈Θ

∑

u∈S

q0,u − ǫ

1− |S|ǫDu(θn||θ′). (74)

By continuity of f∗, we get

lim inf
n→∞

f0(qn,θn) ≥ lim inf
n→∞

(1− |S|ǫ) inf
θ′∈Θ

∑

u∈S

q0,u − ǫ

1− |S|ǫDu(θn||θ′) (75)

= (1− |S|ǫ) inf
θ′∈Θ

∑

u∈S

q0,u − ǫ

1− |S|ǫDu(θ0||θ′). (76)

By continuity of f and letting ǫ → 0, we get

lim inf
n→∞

f0(qn,θn) ≥ inf
θ′∈Θ

∑

u∈S

q0,uDu(θ0||θ′) = f0(q0,θ0). (77)

Let {θ′
k} ⊂ Θ such that

|U|
∑

u=1

q0,uDu(θ0||θ′
k) → inf

θ′∈Θ

|U|
∑

u=1

q0,uDu(θ0||θ′) = f0(q0,θ0). (78)



Thus,

lim sup
n→∞

f0(qn,θn) ≤ lim sup
n→∞

|U|
∑

u=1

qn,uDu(θn||θ′
k) (79)

≤
|U|
∑

u=1

q0,uDu(θ0||θ′
k). (80)

Taking limit as k → ∞, we get

lim sup
n→∞

f0(qn,θn) ≤ f0(q0,θ0). (81)

Hence, we conclude that f0 is continuous everywhere on its domain. Continuity of q∗ follows from Berge’s maximum theorem.

Proposition 2. Let β0(n, α) satisfy the following equation.

eβ0(n,α) =
4e|U|+1

α|U||U| β0(n, α)
2|U|n(1 + log(n))|U|+2. (82)

An upper bound on β0(n, α) is β(n, α) as given in (33). Consequently,

eβ(n,α) ≥ 4e|U|+1

α|U||U| β(n, α)
2|U|n(1 + log(n))|U|+2. (83)

Proof. This result follows from Theorem 1 in [15] and expressing (82) in terms of the Lambert W-function.

APPENDIX B

In this Appendix, we prove the theorems stated in section IV. We first establish some asymptotic convergence results.

Proposition 3. Let θ ∈
M
⋃

m=1
Θm be the state of nature vector of parameters. Then the following holds for the policy that never

stops and uses the proposed policy’s recommendation and control law

θ∗(n)
a.s.→θ, (84)

r̂(n)
a.s.→ g(θ), (85)

θ̂(n)
a.s.→θ, (86)

q∗(θ̂(n))
a.s.→ q∗(θ), (87)

Nu(n)

n

a.s.→ q∗u(θ), ∀u ∈ U , (88)

(89)

Proof. We have from Lemma 2 that Nu(n)
a.s.→∞. By the Strong Law of Large Numbers and continuity of ḃu, we get that

∀u ∈ U
Su(n)

Nu(n)
→ Ȧu(θu) and ḃu

(

Su(n)

Nu(n)

)

a.s.→ θu. (90)

Thus, (84) holds. Note that ∆(x,Θm) is continuous at every x ∈ Ω for any m ∈ M. Consequently, (84) implies that

∆
(

θ∗(n),Θg(θ)

) a.s.→∆(θ,Θg(θ)) = 0, and (91)

∆(θ∗(n),Θi)
a.s.→∆(θ,Θi) > 0, ∀i 6= g(θ). (92)

Thus, (85) holds. Consequently, (86) follows from (84), (85), (91) and (39). Note that (87) holds due to (86) and continuity

of q∗ (proposition 1). Note that it follows from lemma 2 that ∀u ∈ U ,
∣

∣

∣

∣

∣

Nu(n)

n
− 1

n

n−1
∑

k=0

q∗u(θ̂(k))

∣

∣

∣

∣

∣

≤ |U|(1 +√
n)

n

a.s.→ 0. (93)

Using Cesaro’s lemma and (87), we have that ∀u ∈ U ,

1

n

n−1
∑

k=0

q∗u(θ̂(k))
a.s.→ q∗u(θ). (94)



Thus, (88) follows from (93) and (94).

Lemma 3. Let θ ∈
M
⋃

m=1
Θm be the state of nature vector of parameters. Then the following holds for the policy that never

stops and uses the proposed policy’s recommendation and control law

Zg(θ)(n)

n

a.s.→D∗(θ). (95)

Proof. Let E be the event given by

E =

{

∀u ∈ U , Su(n)

Nu(n)
→ Ȧu(θu)

⋂ Nu(n)

n
→ q∗u(θ)

}

. (96)

By the Strong Law of Large Numbers and (88), we have that Pθ[E ] = 1.

Claim 1. ∀i ∈ M,

1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

a.s.→ inf
θ′∈Θi

|U|
∑

u=1

q∗u(θ)Du(θ||θ′). (97)

Proof. Let i ∈ M. Since log is continuous and increasing, we have

1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

= inf
θ′∈Θi

1

n

|U|
∑

u=1

log
p(Y u(n);θ, u)

p(Y u(n);θ′, u)
(98)

= inf
θ′∈Θi

1

n

|U|
∑

u=1

θuSu(n)−Nu(n)Au(θu)− [θ′uSu(n)−Nu(n)Au(θ
′
u)] (99)

= inf
θ′∈Θi

|U|
∑

u=1

Nu(n)

n

[

Du(θ||θ′) + (θu − θ′u)

(

Su(n)

Nu(n)
− Ȧu(θu)

)]

(100)

= inf
θ′∈Θi

|U|
∑

u=1

Nu(n)

n
Du(θ||θ′) +W T

n (θ − θ′), (101)

where Wn is the |U|-dimensional vector such that Wn,u = Nu(n)
n

(

Su(n)
Nu(n)

− Ȧu(θu)
)

. Note that ∃{θk} ⊂ Θi such that

|U|
∑

u=1

q∗u(θ)Du(θ||θk) → inf
θ′∈Θi

|U|
∑

u=1

q∗u(θ)Du(θ||θ′). (102)

Thus on E , we get

lim sup
n→∞

1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

≤ lim sup
n→∞

|U|
∑

u=1

Nu(n)

n
Du(θ||θk) +W T

n (θ − θk) (103)

=

|U|
∑

u=1

q∗u(θ)Du(θ||θk). (104)

Note that this holds for all k ∈ N. Thus, taking limit k → ∞, we get

lim sup
n→∞

1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

≤ inf
θ′∈Θi

|U|
∑

u=1

q∗u(θ)Du(θ||θ′). (105)



Let q∗(θ) ∈ PS for some S ∈ 2U \ {φ}, where PS is as defined in (48), We then have,

inf
θ′∈Θi

|U|
∑

u=1

Nu(n)

n
Du(θ||θ′) +W T

n (θ − θ′) ≥ inf
θ′∈Θi

∑

u∈S

Nu(n)

n
Du(θ||θ′) +W T

n (θ − θ′). (106)

Let ǫ ∈
(

0,min
u∈S

q∗u(θ)/2

)

. Thus on E , ∃N ∈ N such that ∀u ∈ S, ∀n > N ,
Nu(n)

n ≥ q∗u(θ)− ǫ > 0. So ∀n ≥ N , R.H.S of

(106) is bounded below

inf
θ′∈Θi

∑

u∈S

(q∗u(θ)− ǫ)Du(θ||θ′) +W T
n (θ − θ′). (107)

Note that the function l : R|U| → R given by

l(w) = inf
θ′∈Θi

∑

u∈S

(q∗u(θ)− ǫ)Du(θ||θ′) +wT (θ − θ′) (108)

is well-defined and concave on R
|U| and thus continuous at 0. Using this we get that, on E ,

lim inf
n→∞

1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

≥ lim inf
n→∞

l(Wn) (109)

= l(0) (110)

= inf
θ′∈Θi

∑

u∈S

(q∗u(θ)− ǫ)Du(θ||θ′) (111)

= (1− |S|ǫ) inf
θ′∈Θi

∑

u∈S

q∗u(θ)− ǫ

1− |S|ǫ Du(θ||θ′). (112)

Note that this holds for any ǫ ∈
(

0,min
u∈S

q∗u(θ)/2

)

. Taking limit as ǫ → 0 and by continuity of f from proposition 1, we get

lim inf
n→∞

1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

≥ inf
θ′∈Θi

|U|
∑

u=1

q∗u(θ)Du(θ||θ′). (113)

From (105) and (113), we get the desired claim.



Now using claim 1, we get that

Zg(θ)(n)

n
= min

i 6=g(θ)

Zg(θ),i(n)

n
(114)

= min
i 6=g(θ)

1

n
log

sup
θ′′∈Θg(θ)

|U|
∏

u=1
p(Y u(n);θ′′, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

(115)

= min
i 6=g(θ)













1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′∈Θi

|U|
∏

u=1
p(Y u(n);θ′, u)

− 1

n
log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′′∈Θg(θ)

|U|
∏

u=1
p(Y u(n);θ′′, u)













(116)

a.s.→ min
i 6=g(θ)



 inf
θ′∈Θi

|U|
∑

u=1

q∗u(θ)Du(θ||θ′)− inf
θ′′∈Θg(θ)

|U|
∑

u=1

q∗u(θ)Du(θ||θ′′)



 (117)

= min
i 6=g(θ)

inf
θ′∈Θi

|U|
∑

u=1

q∗u(θ)Du(θ||θ′) (118)

= inf

θ′∈
M⋃

m=1
Θm\Θg(θ)

|U|
∑

u=1

q∗u(θ)Du(θ||θ′) (119)

= D∗(θ). (120)

We proceed to show that the proposed policy is a ᾱ-correct policy. Observe that from Proposition 3, we get that Z(n) is

at-least linear in n almost surely for large n. On the other hand, the threshold β(n, α) is O(log n). Therefore, the proposed

policy stops in finite time almost surely. To prove that the error probability is bounded by α, we use a concentration type

inequality tailored for single parameter exponential families (Refer to Appendix B for details). We now rigourously prove these

claims in the next theorem.

Theorem 1. The proposed policy is a ᾱ-correct policy.

Proof. We first prove that the proposed policy described has a finite stopping rule almost surely. Let g(θ) = i. Consider the

event E =
{

Zi(n)
n → D∗(θ)

}

. From Lemma 3, we have that this event is of probability 1, that is Pθ[E ] = 1. Let α ∈ (0, 1).

Let ǫ > 0. On E , ∃N ∈ N such that ∀n > N ,

Z(n) ≥ Zi(n) ≥
nD∗(θ)

(1 + ǫ)
. (121)

Consequently,

τ = inf{n ∈ N : Z(n) ≥ β(n, α)} (122)

≤ N ∨ inf

{

n ∈ N :
nD∗(θ)

(1 + ǫ)
≥ β(n, α)

}

(123)

≤ N ∨ inf

{

n ∈ N :
nD∗(θ)

(1 + ǫ)
≥ v(n) + w(α)

}

(124)

where v and w are as given in proposition 2. Note that lim
t→∞

v′(t) = 0. Hence,

inf

{

n ∈ N :
nD∗(θ)

(1 + ǫ)
≥ v(n) + w(α)

}

< ∞. (125)



Consequently, τ < ∞. Since Pθ[E ] = 1, we get Pθ[τ < ∞] = 1. We first establish an upper bound on Zj,i for any j ∈ M

Zj,i(n) = log

sup
θ′∈Θj

|U|
∏

u=1
p(Y u(n);θ′, u)

sup
θ′′∈Θi

|U|
∏

u=1
p(Y u(n);θ′′, u)

(126)

≤ log

sup
θ′∈Ω

|U|
∏

u=1
p(Y u(n);θ′, u)

|U|
∏

u=1
p(Y u(n);θ, u)

(127)

=

|U|
∑

u=1

Nu(n)D(θ∗u(n)||θu). (128)

We now proceed to prove that error probability is bounded by chosen α.

Pθ[m̂ 6= i] ≤ Pθ

[

∃n ∈ N,min
j 6=i

Zj,i(n) ≥ β(n, α)

]

(129)

≤ Pθ

[

∃n ∈ N, ∃j ∈ M \ i : Zj,i(n) ≥ β(n, α)

]

(130)

≤
∞
∑

n=1

Pθ

[ |U|
∑

u=1

Nu(n)D(θ∗u(n)||θu) ≥ β(n, α)

]

(131)

≤
∞
∑

n=1

2e−β

(

β⌈β log n⌉
|U|

)|U|
e|U|+1 (132)

≤ α

∞
∑

n=1

1

2n(1 + log n)2
(133)

≤ α. (134)

The inequality (132) follows from Theorem 4 and (133) follows from Proposition 2.

Theorem 2 (Almost-sure upper bound). Let θ ∈
M
⋃

m=1
Θm. The proposed policy satisfies

Pθ

[

lim sup
α→0

τ

|logα| ≤
1

D∗(θ)

]

= 1. (135)

Proof. Let g(θ) = i. Consider the event E =
{

Zi(n)
n → D∗(θ)

}

. From proposition 3, we have that this event is of probability

1, that is Pθ[E ] = 1. Let α ∈ (0, 1). Let ǫ > 0. On E , ∃N ∈ N such that ∀n > N ,

Z(n) ≥ Zi(n) ≥
nD∗(θ)

(1 + ǫ)
. (136)

Consequently,

τ = inf{n ∈ N : Z(n) ≥ β(n, α)} (137)

≤ N ∨ inf

{

n ∈ N :
nD∗(θ)

(1 + ǫ)
≥ β(n, α)

}

(138)

≤ N ∨ inf

{

n ∈ N :
nD∗(θ)

(1 + ǫ)
≥ v(n) + w(α)

}

(139)

where v and w are as defined in (35) and (34) respectively. Note that ∀t > 1, v′(t) > 0 and v′′(t) < 0. Also, lim
t→∞

v′(t) = 0.

Thus ∃N1 ∈ N such that ∀n ≥ N1,
nD∗(θ)
(1+ǫ) > v(n). Also, ∃N2 ∈ N such that ∀n ≥ N2, v′(n) ∈ ∗

− 0.5D∗(θ)
(1+ǫ)

,
0.5D∗(θ)

(1+ǫ)

. Let

N3 = max{N,N1, N2}. Note that N3 is not dependent on α. So, we get ∀n ≥ N3,

τ ≤ n+
w(α)

D∗(θ)
(1+ǫ) − v′(n)

. (140)



Consequently, ∀n ≥ N3,

lim sup
α→0

τ

|logα| ≤ lim sup
α→0

w(α)
[

D∗(θ)
(1+ǫ) − v′(n)

]

|logα|
. (141)

Note that lim
α→0

w(α)
|logα| = 1. This implies, ∀n ≥ N3,

lim sup
α→0

τ

|logα| ≤
1

D∗(θ)
(1+ǫ) − v′(n)

. (142)

Letting n → ∞, we get

lim sup
α→0

τ

|logα| ≤
(1 + ǫ)

D∗(θ)
. (143)

Now letting ǫ → 0, we get

lim sup
α→0

τ

|logα| ≤
1

D∗(θ)
. (144)

Theorem 3 (Asymptotic optimality in expectation). Let θ ∈
M
⋃

m=1
Θm.. The proposed policy satisfies

lim sup
α→0

Eθ[τ ]

|logα| ≤
1

D∗(θ)
. (145)

Proof. Let Bξ(θ
′) denote the ξ-neighbourhood of θ′, that is, Bξ(θ

′) = {θ′′ : ‖θ′′ − θ′‖ < ξ} for ξ > 0. Let Iξ(n) be the

event given by

Iξ(n) := {θ∗(n) ∈ Bξ(θ)}. (146)

Let g(θ) = m and θ ∈ Γ
(j)
m for some j ∈ [xm]. Since Γ

(j)
m is open in aff

(

Γ
(j)
m

)

, ∃ξ0 > 0 such that Bξ0(θ)∩ aff
(

Γ
(j)
m

)

⊂ Γ
(j)
m .

Let ξ′0 = min
m′ 6=m or i 6=j

∆(θ,Γ
(i)
m′) > 0. Thus ∀ξ ∈

(

0,min(ξ0,
ξ′0
2 )
)

,

Iξ(n) =⇒ r̂(n) = m (147)

=⇒
∥

∥

∥θ̂(n)− θ∗(n)
∥

∥

∥ ≤ ρ∆(θ∗(n),Θm) (148)

=⇒
∥

∥

∥
θ̂(n)− θ∗(n)

∥

∥

∥
≤ ρ‖θ − θ∗(n)‖ (149)

=⇒
∥

∥

∥θ̂(n)− θ∗(n)
∥

∥

∥ ≤ ρξ (150)

=⇒
∥

∥

∥θ̂(n)− θ∗(n)
∥

∥

∥+ ‖θ∗(n)− θ‖ ≤ (1 + ρ)ξ (151)

=⇒
∥

∥

∥θ̂(n)− θ

∥

∥

∥ ≤ (1 + ρ)ξ. (152)

From proposition 1 and (152), we get that given ǫ > 0, ∃ξ1(ǫ) ∈
(

0,min(ξ0,
ξ′0
2 )
)

such that

Iξ1(ǫ)(n) =⇒ max
u∈U

∣

∣

∣q∗u(θ̂(n))− q∗u(θ)
∣

∣

∣ < ǫ. (153)

Let N ∈ N and the event

EN (ǫ) =

N
⋂

n=N1/4

Iξ1(ǫ)(n). (154)

The following claim is a consequence of the ‘forced exploration’ by the control law which ensures that each control is chosen

at least around
√
n times at time n.

Claim 2. ∃K,C which are constants that depend on ǫ and θ such that ∀N ≥ N ′ = 34|U|8 + 1,

Pθ[Ec
N (ǫ)] ≤ KN exp

(

−CN1/8
)

. (155)



Proof. Let N ≥ N ′. Thus, ∀n ∈ [
√
N,N ] ∩ N, we get ∀u ∈ U , Nu(n) ≥

√

n+ |U|2 − 2|U| > 0. Note that

Pθ[Ec
N (ǫ)] ≤

N
∑

n=N1/4

Pθ

[

θ∗(n) /∈ Bξ1(ǫ)(θ)
]

(156)

≤
N
∑

n=N1/4

|U|
∑

u=1

Pθ[θ
∗
u(n) /∈ (θu − ξ, θu + ξ)], (157)

for some ξ > 0. Using a union bound and Chernoff inequality, we get that ∀u ∈ U

Pθ[θ
∗
u(n) ≤ θu − ξ] = Pθ

[

θ∗u(n) ≤ θu − ξ,Nu(n) ≥ s(n) =

√

n+ |U|2 − 2|U|
]

(158)

≤
n
∑

k=s(n)

Pθ[θ
∗
u(n) ≤ θu − ξ,Nu(n) = k] (159)

≤
n
∑

k=s(n)

exp(−kDu(θ − ξ||θ)) (160)

≤ e−s(n)Du(θ−ξ||θ)

1− e−Du(θ−ξ||θ) , (161)

where θ + x is a vector given by (θ1 + x, θ2 + x, . . . , θ|U| + x) for any scalar x. Similarly, we get

Pθ[θ
∗
a(n) ≤ θu + ξ] ≤ e−s(n)Du(θ+ξ||θ)

1− e−Du(θ+ξ||θ) . (162)

Let

C = min
u∈U

(Du(θ − ξ||θ) ∨Du(θ + ξ||θ)) (163)

and

K =

|U|
∑

u=1

(

e2|U|Du(θ−ξ||θ)

1− e−Du(θ−ξ||θ) +
e2|U|)Du(θ+ξ||θ)

1− e−Du(θ+ξ||θ)

)

. (164)

Thus we get,

Pθ[Ec
N (ǫ)] ≤

N
∑

n=N1/4

K exp

(

−C

√

n+ |U|2
)

(165)

≤ KN exp

(

−C

√

N1/4 + |U|2
)

(166)

≤ KN exp
(

−C
√

N1/4
)

(167)

= KN exp
(

−CN1/8
)

. (168)

The next claim discusses the convergence of empirical proportions on EN (ǫ).

Claim 3. ∃Nǫ such that for N ≥ Nǫ, it holds that on EN (ǫ),

∀n ∈ [
√
N,N ] ∩ N, max

u∈U

∣

∣

∣

∣

Nu(n)

n
− q∗u(θ)

∣

∣

∣

∣

≤ 2ǫ. (169)



Proof. Using lemma 2 and (153), we get that on EN (ǫ), ∀n ∈ [
√
N,N ] ∩ N and ∀u ∈ U ,

∣

∣

∣

∣

Nu(n)

n
− q∗u(θ)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

Nu(n)

n
− 1

n

n−1
∑

k=0

q∗u(θ̂(k)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

n

n−1
∑

k=0

q∗u(θ̂(k))− q∗u(θ)

∣

∣

∣

∣

∣

(170)

≤ |U|(√n+ 1)

n
+

N1/4

n
+

1

n

n−1
∑

k=N1/4

∣

∣

∣
q∗u(θ̂(k))− q∗u(θ)

∣

∣

∣
(171)

≤ 2|U|
N1/4

+
1

N1/4
+ ǫ (172)

=
2|U|+ 1

N1/4
+ ǫ (173)

≤ 2ǫ (174)

when N ≥
(

2|U|+1
ǫ

)4

= Nǫ.

Note that the GLRT statistic can be bounded below as follows.

Z(n) = max
i∈M

min
j 6=i

Zi,j(n) (175)

≥ min
i 6=g(θ)

Zg(θ),i(n) (176)

= min
i 6=g(θ)

log

sup
θ′∈Θg(θ)

|U|
∏

u=1
p(Y u(n);θ′, u)

sup
θ′′∈Θi

|U|
∏

u=1
p(Y u(n);θ′′, u)

(177)

≥ log

|U|
∏

u=1
p(Y u(n);θ, u)

sup
θ′′∈Ω

|U|
∏

u=1
p(Y u(n);θ′′, u)

(178)

= log

|U|
∏

u=1
p(Y u(n);θ, u)

|U|
∏

u=1
p(Y u(n);θ∗(n), u)

(179)

= n

|U|
∑

u=1

Nu(n)

n

[

Du(θ||θ∗(n)) + (θu − θ∗u(n))

(

Su(n)

Nu(n)
− Ȧu(θu)

)]

(180)

= n

|U|
∑

u=1

Nu(n)

n

[

Du(θ||θ∗(n)) + (θu − θ∗u(n))
(

Ȧu(θ
∗
u(n))− Ȧu(θu)

)]

(181)

= np

(

θ∗(n),

(

Nu(n)

n

)|U|

u=1

)

, (182)

where p : Ω× P → R is the function given by,

p(θ′, q) :=

|U|
∑

u=1

qu

[

Du(θ||θ′) + (θu − θ′u)
(

Ȧu(θ
′
u)− Ȧu(θu)

)]

. (183)

Let

C∗
ǫ = inf

θ′:‖θ′−θ‖≤ξ1(ǫ)

q:‖q−q∗(θ)‖≤2ǫ

p(θ′, q). (184)

By the definition of Iξ1(ǫ)(n) and claim 3, for N ≥ Nǫ, on the event EN (ǫ), it holds that ∀n ∈ [
√
N,N ] ∩ N,

Z(n) ≥ nC∗
ǫ . (185)



Let N ≥ Nǫ. On the event EN (ǫ),

min(τ,N) ≤
√
N +

N
∑

n=
√
N

✶τ>n (186)

≤
√
N +

N
∑

n=
√
N

✶Z(n)≤β(n,α) (187)

≤
√
N +

N
∑

n=
√
N

✶nC∗
ǫ ≤β(n,α) (188)

≤
√
N +

β(N,α)

C∗
ǫ

. (189)

We define

N0(α) := inf

{

N ∈ N :
√
N +

β(N,α)

C∗
ǫ

≤ N

}

. (190)

So ∀N ≥ max(N0(α), Nǫ), on EN (ǫ), we get

min(τ,N) ≤ N (191)

which implies

τ ≤ N. (192)

Thus ∀N ≥ max(N ′, N0(α), Nǫ),
EN (ǫ) ⊆ (τ ≤ N) (193)

and consequently,

Pθ[τ > N ] ≤ Pθ[Ec
N ] ≤ KN exp

(

−CN1/8
)

. (194)

So, we can upper bound the expectation of stopping time as

Eθ[τ ] ≤ N0(α) +N ′ +Nǫ +
∞
∑

N=1

KN exp
(

−CN1/8
)

. (195)

We now upper bound N0(α) as follows.

N0(α) ≤ inf

{

N ∈ N :
√
N +

v(N) + w(α)

C∗
ǫ

≤ N

}

, (196)

where v(n) and w(α) are as defined in (35) and (34) respectively. Let v1(t) =
√
t + v(t)

C∗
ǫ

. Note that ∀t > 1, v′1(t) > 0 and

v′′1 (t) < 0. Also, lim
t→∞

v′1(t) = 0 Thus, ∃N1 ∈ N such that ∀n ≥ N1, n > v1(n). Also, ∃N2 ∈ N such that ∀n ≥ N2,

v′1(n) ∈ (− 1
2 ,

1
2 ). Let N3 = max{N1, N2}. Note that N3 is independent of α. Thus, ∀n ≥ N3,

N0(α) ≤ n+

w(α)
C∗

ǫ

1− v′1(n)
(197)

Consequently ∀n ≥ N3,

lim sup
α→0

N0(α)

|logα| ≤
1

C∗
ǫ (1− v′1(n))

, (198)

since lim
α→0

w(α)
|logα| = 1. Letting n → ∞ we get,

lim sup
α→0

N0(α)

|logα| ≤
1

C∗
ǫ

. (199)

Using this in the inequality (195) as α → 0 we get,

lim sup
α→0

Eθ[τ ]

|logα| ≤
1

C∗
ǫ

. (200)

By the continuity of p, we get

lim
ǫ→0

C∗
ǫ = D∗(θ). (201)



So letting ǫ → 0 we get,

lim sup
α→0

Eθ[τ ]

|logα| ≤
1

D∗(θ)
. (202)

APPENDIX C

In this section we extend the result in Theorem 2 in [14], stated for Bernoulli distributions, to single-parameter exponential

family distributions.

Lemma 4. Let a > 0, L ≥ 2. Let Z ∈ R
L be a random variable such that ∀ζ ∈ (R+)

L

P[Z ≥ ζ] ≤ exp

(

−a
L
∑

l=1

ζl

)

. (203)

Then ∀δ ≥ L/a,

P

[

L
∑

l=1

Zl ≥ δ

]

≤
(

aδe

L

)L

e−aδ. (204)

Lemma 5. For any u ∈ U , let 1 ≤ tu ≤ n. Let η > 0. Let E be the event given by

E =
⋂

u∈U
{tu ≤ Nu(n) ≤ (1 + η)tu}. (205)

Then for β ≥ (1 + η)(|U|+ log 2), we have

Pθ

[

✶E

∑

u∈U
Nu(n)Du(θ

∗(n)||θ) ≥ β

]

≤ 2

(

βe

|U|

)|U|
e−

β
(1+η) . (206)

Proof. We shall show that ∀ζ ∈ (R+)|U|,

Pθ

[

⋂

u∈U
{✶ENu(n)Du(θ

∗(n)||θ) ≥ ζu}
]

≤ 2 exp



−

∑

u∈U
ζu

(1 + η)



. (207)

Let ζ ∈ (R+)|U|. Let c(1) and c(2) be such that ∀u ∈ U , c
(1)
u < c

(2)
u and

tu(1 + η)Du(c
(1)||θ) = tu(1 + η)Du(c

(2)||θ) = ζu. (208)

Note that ∀u ∈ U ,

✶ENu(n)Du(θ
∗(n)||θ) ≥ ζu =⇒ ✶Etu(1 + η)Du(θ

∗(n)||θ) ≥ ζu (209)

=⇒ E
⋂

{{

θ∗u(n) ≥ c(2)u

}

∪
{

θ∗u(n) ≤ c(1)u

}}

. (210)

Now for a fixed λ, let

M(n) = exp

{

∑

u∈U
λuSu(n)−Nu(n)κu(λu)

}

. (211)

So ∀n′ ≤ n,

M(n′) = M(n′ − 1)
∏

u∈U
exp
{

✶{Un′−1=u}[λuTu(Yn′)− κu(λu)]
}

. (212)

Since ✶{Un′=u} is Fn′−1-measurable and Yn′ is conditionally independent of Fn′−1, we get

Eθ[M(n′)|Fn′−1] = M(n′ − 1). (213)

Hence, M(n) is a martingale and Eθ[M(n)] = 1. ∀u ∈ U , set λ
(1)
u = c

(1)
u − θu < 0 and λ

(2)
u = c

(2)
u − θu > 0, so that for

i ∈ {1, 2}, λ
(i)
u Ȧu(c

(i)
u )− κu(λ

(i)
u ) = Du(c

(i)||θ). Let

Mi(n) = exp

{

∑

u∈U
λ(i)
u Su(n)−Nu(n)κu(λ

(i)
u )

}

, (214)



for i ∈ {1, 2}. Hence,

Pθ

[

E
⋂

u∈U

{{

θ∗u(n) ≤ c(1)u

}

∪
{

θ∗u(n) ≥ c(2)u

}}

]

(215)

≤ Pθ

[

E
⋂

u∈U

{

Ȧu(θ
∗
u(n)) ≤ Ȧu(c

(1)
u )
}

]

+ Pθ

[

E
⋂

u∈U

{

Ȧu(θ
∗
u(n)) ≥ Ȧu(c

(2)
u )
}

]

(216)

≤
2
∑

i=1

Pθ

[

✶E

∑

u∈U
λ(i)
u Su(n) ≥

∑

u∈U
Nu(n)λ

(i)
u Ȧu(c

(i)
u )

]

(217)

≤
2
∑

i=1

Pθ

[

✶E

∑

u∈U
λ(i)
u Su(n)−Nu(n)κu(λ

(i)
u ) ≥

∑

u∈U
Nu(n)λ

(i)
u Ȧu(c

(i)
u )−Nu(n)κu(λ

(i)
u )

]

(218)

≤
2
∑

i=1

Pθ

[

✶EMi(n) ≥ exp

(

∑

u∈U
Nu(n)

(

λ(i)
u Ȧu(c

(i)
u )− κu(λ

(i)
u )
)

)]

(219)

=
2
∑

i=1

Pθ

[

✶EMi(n) ≥ exp

(

∑

u∈U
Nu(n)Du(c

(i)||θ)
)]

(220)

≤
2
∑

i=1

Pθ

[

✶EMi(n) ≥ exp

(

∑

u∈U
tuDu(c

(i)||θ)
)]

(221)

≤
2
∑

i=1

Eθ[✶EMi(n)]

exp

(

∑

u∈U
tuDu(c(i)||θ)

) (222)

≤
2
∑

i=1

Eθ[Mi(n)]

exp

(

∑

u∈U
tuDu(c(i)||θ)

) (223)

=

2
∑

i=1

exp

(

−
∑

u∈U
tuDu(c

(i)||θ)
)

(224)

= 2 exp

(

−
∑

u∈U

ζu
(1 + η)

)

. (225)

Thus,

Pθ

[

⋂

u∈U
{✶ENu(n)Du(θ

∗(n)||θ) ≥ ζu}
]

≤ 2 exp

(

−
∑

u∈U

ζu
(1 + η)

)

. (226)

Let Zu = ✶ENu(n)Du(θ
∗(n)||θ) and a = 1

1+η . Note that we have ∀ζ ∈ (R+)|U|,

Pθ[Z ≥ ζ] ≤ 2 exp

(

−a
∑

u∈U
ζu

)

. (227)

Let Z ′, ζ′ be such that ∀u ∈ U , Z ′
u = Zu − log 2

a|U| and ζ ′u = ζu − log 2
a|U| . Thus,

Pθ[Z
′ ≥ ζ′] ≤ 2 exp

[

−a
∑

u∈U

(

ζ ′u +
log 2

a|U|

)

]

(228)

= exp

(

−a
∑

u∈U
ζ ′u

)

. (229)

This holds for all ζ′ such that ∀u ∈ U , ζ ′u ≥ − log 2
a|U| . Hence, applying lemma 4 we get that ∀δ ≥ |U|

a ,

Pθ

[

∑

u∈U
Z ′
u ≥ δ

]

≤
(

aδe

|U|

)|U|
e−aδ. (230)



Thus, ∀δ ≥ |U|+log 2
a ,

Pθ

[

∑

u∈U
Zu ≥ δ

]

≤





a
(

δ − log 2
a

)

e

|U|





|U|

e−a(δ− log 2
a ) (231)

≤ 2

(

aδe

|U|

)|U|
e−aδ. (232)

Hence, we get that for any β ≥ (1 + η)(|U|+ log 2),

Pθ

[

✶E

∑

u∈U
Nu(n)Du(θ

∗(n)||θ) ≥ β

]

≤ 2

(

βe

|U|

)|U|
e−

β
(1+η) . (233)

Theorem 4.

Pθ

[

∑

u∈U
Nu(n)Du(θ

∗(n)||θ) ≥ β

]

≤ 2e−β

(

β⌈β log n⌉
|U|

)|U|
e|U|+1, (234)

for β ≥ |U|+ 1 + log 2.

Proof. Let β ≥ |U|+ 1 + log 2 and η = 1
β−1 . Let L =

⌈

logn
log(1+η)

⌉

. Let L = {1, 2, . . . , L}|U|
. Let G be the event

G =

{

∑

u∈U
Nu(n)Du(θ

∗(n)||θ) ≥ β

}

. (235)

Let Hl be the event

Hl =
⋂

u∈U

{

(1 + η)lu−1 ≤ Nu(n) ≤ (1 + η)lu
}

, (236)

for any l ∈ L. We have

G =
⋃

l∈L

G ∩Hl. (237)

Thus,

Pθ[G] ≤
∑

l∈L

Pθ[G ∩Hl]. (238)

Note that since β ≥ |U|+1+log 2 and η = 1
β−1 , we get β ≥ (1+η)(|U|+log 2). So, applying lemma 5, we get that ∀l ∈ L,

Pθ[G ∩Hl] ≤ 2

(

βe

|U|

)|U|
e−

β
(1+η) . (239)

Since |L| = L|U|,

Pθ[G] ≤ 2

(

Lβe

|U|

)|U|
e−

β
(1+η) . (240)

Note that log(1 + η) ≥ 1− 1
1+η = 1

β . Hence,

Pθ[G] ≤ 2e−β

(

β⌈β log n⌉
|U|

)|U|
e|U|+1. (241)
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