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Semiclassical wave packet calculations on ion–molecule reactions:
Studies on B1(3Pu)1H2 reaction

Amrendra Vijay and G. D. Billing
Kemisk Laboratorium III, H. C. O” rsted Institute, University of Copenhagen,
DK-2100 Copenhagen O” , Denmark

~Received 27 February 1997; accepted 19 May 1997!

We present the investigations of nonadiabatic scattering processes ~reactive as well charge-transfer!
occurring in B1

1H2 reaction in the gas phase on the triplet electronic surfaces utilizing a mixed
quantum-classical approach to scattering of three particle systems in hyperspherical coordinates.
The time-dependent Schrödinger equation is solved in diabatic representation using wave packet
propagation method on a grid in two quantum dimensions. The potential-energy surfaces have been
obtained using the valence-bond diatomics-in-molecule approach. © 1997 American Institute of

Physics. @S0021-9606~97!00832-5#

I. INTRODUCTION

Nonadiabatic scattering processes occur frequently be-
tween molecular species, with the typical example being the
low-energy charge-transfer process between ions and mol-
ecules. These processes are of much interest because they are
encountered in many systems of major importance for ex-
ample, plasmas, combustion, fusion, atmospheric chemistry,
etc. Complete understanding of these complicated systems
requires a detailed information on the scattering processes in
the elementary systems at the microscopic level, e.g., rang-
ing from state-selected integral total cross section, state-to-
state integral cross section to state-to-state differential cross
sections. In this context we have recently in a series of pa-
pers formulated the nonadiabatic scattering problem for a
general triatomic system in diabatic representation within the
hyperspherical coordinate framework.1–11 As a general
scheme we have discussed the full quantum mechanical
problem and it is also possible to obtain ~within various lim-
its! a hierarchy of semiclassical schemes suitable for a large
spectrum of interesting problems. Within the semiclassical
framework we treat part of the system by classical means,
wherein classical degrees of freedom are governed by an
effective potential, which is an average over the remaining
quantum degrees of freedom in the system. This gives rise to
a class of hybrid theory in which classical and quantum me-
chanics are blended in a consistent manner. This approach is
sometimes also called the mixed quantum-classical
method.11 As the exact quantum mechanical treatment of
scattering processes of three particles involving several
coupled electronic surfaces is still rather elaborate and time
consuming, the mixed quantum-classical approach offers an
enormous possibility for treating such systems. In this paper
we report our study on B1

1H2 reaction using a class of
mixed quantum-classical approach on the triplet DIM ~di-
atomics in molecules! potential-energy surfaces. Within the
hyperspherical coordinate system of this approach we treat
the hyper-radius ~r! and the overall rotational motion de-
scribed by three Euler angles ~a, b, and g! and their conju-
gate momenta by classical means and the hyperangles ~u and
f! quantum mechanically. However, the introduction of hy-

perspherical coordinates allow the even-handed treatment of
all the rearrangement channels, this essentially transforms
the reactive scattering problem into an inelastic one. The
resulting equations are then convenient to use as they allow
for an asymptotic quantization of the vibrational and rota-
tional degrees of freedom of the diatomic fragments, whereas
the rotational projection quantum number is treated classi-
cally. Thus the initialization of the wave packet as well as
the final projection is carried out using asymptotic states
which are eigenfunctions of the asymptotic Hamiltonian. In
the quantum treatment of hyperangles the corresponding 2D
wave packet is propagated on a rectangular grid by the stan-
dard Lanczos scheme. A manifold of nine diabatic potential-
energy surfaces for the triplet electronic states has been con-
structed using the valence bond diatomics-in-molecules ~VB-
DIM! approach of Faist and Muckerman.12,13 Prior to this
work the dynamical calculations reported on B1(3Pu)1H2
system is the quasiclassical trajectory studies on the ground
state LEPS triplet surface fitted to ab initio points by Klimo
et al.14 On the experimental side product angular and energy
distribution of this reaction has been studied by Friedrich and
Herman.15 Emission spectroscopic studies on this reaction
has been reported by Ottinger and Reichmuth.16 The outline
of the paper is as follows: Section II presents a brief outline
of the theory and in Sec. III we present the derivation of
potential-energy matrix. The results are presented and dis-
cussed in Sec. IV.

II. THEORY

In this section we present a brief overview of the theory
we have employed for solving the scattering problem of
B1

1H2 system. For more complete discussion readers may
refer to Refs. 1–11. For a general multi-surface problem the
time-dependent Schrödinger equation for nuclear motion in
diabatic representation is written as

i\
]

]t
$Jk%5T̂$Jk%1V$Jk%, ~1!

where T̂ is the usual nuclear kinetic-energy operator and V is
the diabatic potential-energy matrix. The index k refers to
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the manifold of diabatic states and the braces denotes the
column vector. In the hyperspherical formulation of the A

1BC scattering problem the internal configuration of the
system is described by the hyper-radius r and the two hyper-
angles u and f. The orientation of the ABC triangle in the
space-fixed coordinate is described by the Euler angles a, b,
and g. We choose the external coordinate in such a way that
the momenta conjugate to a and b are constants of motion,
and hence only g enters the Hamiltonian. By introducing a
classical description of g, r and their conjugate momenta, Pg

and Pr , respectively, the semiclassical expression for the
kinetic-energy term T̂ expressed in these coordinates ~which
are closely related to those of Johnson17,18! takes the form

T̂5

Pr
2

2m
1Ĥ0~r ,u ,f !1Ĥ1~r ,u ,f ,t;J !1DV~r ,u !, ~2!

where

Ĥ052

2\2

mr2 F ]2

]u2 1

1

sin2 u

]2

]f2G , ~3!

Ĥ15

Pg@Pg24 cos u P̂f#

2mr2 sin2 u
1

PJ
2
2Pg

2

mr2 cos2 u

3~11sin u cos 2g !, ~4!

P̂f52i\
]

]f
, ~5!

DV52

\2

2mr2 F1

4
1

4

sin2 2uG , ~6!

and m5AmAmBmC /(mA1mB1mC) is the reduced mass for
three particles. The potential DV is called the extra potential
which arises from the kinetic-energy term when transforming
from the Cartesian ~or Jacobi! to the hyperspherical coordi-
nates, and thus it is independent of electronic states. In the
diabatic representation DV thus forms a diagonal ~constant!
matrix which is added to the real potential term in the present
discussion. The time-dependent Schrödinger equation @Eq.
~1!# is solved by using a 2D-grid representation of the wave
function and the Lanczos time propagator. The time depen-
dence arising out of the classical variables is obtained by
solving the equations of motion:

ġ5

]Heff~Pg ,g ,Pr ,r ,t !

]Pg
, ~7!

Ṗg52

]Heff~Pg ,g ,Pr ,r ,t !

]g
, ~8!

ṙ5

Pr

m
, ~9!

Ṗr52

]Heff~Pg ,g ,Pr ,r ,t !

]r
. ~10!

Here dot denotes the time derivative. The effective Hamil-
tonian Heff is obtained as the expectation value of the Hamil-
tonian, that is

Heff5
Pr

2

2m
1(

k
^JkuĤ0uJk&1(

k
^JkuĤ1uJk&

1Veff~r !, ~11!

where brackets denote average values over u and f and the
effective potential Veff(r) is given as

Veff~r !5^$Jk%
T@V1IDV#$Jk%&. ~12!

The initial values of the classical variables are

r large, Pr52A2m~E2^~Ĥ01V1IDV !&2^Ĥ1& !,

g between 0 and 2p, Pg between2PJ to 1PJ ,
~13!

where the brackets indicate that the expectation value is be-
ing taken. Since for a given total energy and angular momen-
tum the values of g and Pg5Jz are not specified, the state to
state probabilities are averaged over a number of trajectories
~typically several hundred! with appropriately selected initial
values of g and Pg . To this end we have implemented a
Monte Carlo sampling scheme for the selection of g and Pg

within the largest specified value of Jz5Jmax ~vide infra!.
Such a procedure represents an average over the initial and a
sum over the final projection quantum numbers. For each
selected values of g and Pg a trajectory is propagated in r
inwards, it reaches a turning point and moves out again. It is
then terminated at a large value of r ~6 Å or more!. The
distribution of g is not uniform in the above range @cf. Eq.
~13!# and thus the values of Pg and g have to be compatible
with the constraint that uku ~vide infra! be smaller than j .

A. Initialization

The initial wave function is taken as a product of a
Morse vibrational and an Arthurs–Dalgarno state Y j l

jm for
the internal motion of the diatomics. The initial wave func-
tion determines the ‘‘K-component’’ of the wave packet ex-
pressed in terms of the hyperspherical coordinates

JJ5(
2J

J

JK
J ~u ,f;r !DMK

J ~a ,b ,g !, ~14!

where DMK
J are the rotation matrix elements. If the vibra-

tional and rotational degrees of freedom are treated as sepa-
rable, we can write the wave function of the diatomic mol-
ecule BC as

§
v jm~r ,h ,j !5g

v
~r !Y jm~h ,j !, ~15!

where g is the vibrational wave function and Y is a spherical
harmonic function. In the present semiclassical approxima-
tion the Euler angles are treated classically. As a result, the
angle j ~which is related to the Euler angles!, that is, the
rotational projection states are also treated classically and
hence the eigenstates of BC molecule may be labeled by v

and j only. We thus write the wave function of the diatomic
molecule BC as

§
v j~r ,h;k !5

1

Ax
g

v j~x !P j
k~cos h !Asin h . ~16!
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The significance of index k, quantity x and other factors will
be explained later. Here P j is the normalized Legendre func-
tion. Thus the total wave function put on the two-
dimensional grid is given as

J~u ,f;r !5r§
v j~r ,h;k !. ~17!

Now we discuss the asymptotic mapping of the Hamiltonian
leading to different arrangement channels. The asymptotic
mapping can be obtained by introducing two variables x and
h such that

u5

p

2
2

x

r
sin h , ~18!

f5f01

x

r
cos h , ~19!

where f0 is a channel dependent angle and the variable x is
related to the diatomic internuclear distance r

r5

d ix

2
, ~20!

where d i
2
5(m i /m)(12m i /M ) and the index i refers to the

channel. Here M5mA1mB1mC is the total mass of the
system. On inserting the above representation of u and f in
Eqs. ~2!–~6! the total nuclear Hamiltonian, Ĥnu @cf. Eq. ~1!#
transforms to

Ĥnu→

Pr
2

2m
2

2\2

m S ]2

]x2 1

1

x

]

]x
2

1

4x2D1V~x !

2

2\2

mx2 S ]2

]h2 1

1

4 sin2 h
1

1

4 D
1

PJ
2
2Pg

2

mx2 sin2 h
@11cos~2g !# . ~21!

Now it is fairly straightforward to verify that the diatomic
wave function z

v j @Eq. ~16!# is the eigen function of the
above asymptotic Hamiltonian. We therefore come to the
conclusion that the nuclear wave function J can be labeled
asymptotically by the vibrational quantum number v of a one
dimensional oscillator and by a rotational quantum number
j . Hence a quantum mechanical treatment of the hyper-
spherical variables u and f asymptotically corresponds to a
quantum treatment of the vibrational and rotational motion,
whereas the rotational projection is treated classically. It can
be shown4 that h in the definition of wave function @Eq. ~16!#
is the angle between the distance from the atom A to the
center of mass of the diatomic molecule BC and the r axis
and is given as

h52arccosS sin u sin f

A12sin2 u cos f
D . ~22!

Note that the inclusion of factor r and Asin(h) in the defini-
tion of wave function @Eqs. ~16! and ~17!# ensures the correct
volume element in terms of the hyperspherical variables. The

index k in the definition of the wave function @Eq. ~16!# is a
continuous quantity obtained from the solution to the differ-
ential Eq. ~21! and is given as

k5

cos g

\
APJ

2
2Pg

2 . ~23!

In the actual implementation we select k randomly between
2( j1

1
2) and 1( j1

1
2) and Pg between 2PJ and 1PJ and

obtain

g5arccos~\k/APJ
2
2Pg

2 !. ~24!

The weight of a given K state, where Pg5\K is given as

wK5

1

p
E

g
2

g
1

dg

5

1

p
arcsinS k

A~ J1
1
2! 2

2K2D U
2~ j1

1
2!

1~ j1
1
2!

, ~25!

where g2 and g1 are the extremes corresponding to the two
limiting values of k, i.e., 6( j1

1
2). Thus we have

wK5

2

p
arcsinS j1

1
2

A~J1
1
2!

2
2K2D . ~26!

Now in the limit of large values of j we can also approxi-
mate the Legendre function as follows:

P j
k
5A 2

p sin h
cosF S j1

1

2 Dh2

p

4
1

kp

2 G . ~27!

In the present study we take g @cf. Eq. ~16!# as Morse oscil-
lator function. Finally we note that the asymptotic wave
function J will also be characterized by the arrangement
channel c ~1 for B1H2, 2 for Hb1BHa , and 3 for Ha

1HbB!. We start the calculation after initializing the wave
packet at large r (;6 Å) on the ground 3A8 potential sur-
face. We note that the lowest two DIM surfaces are degen-
erate in the entrance channel (B1

1H2), and hence the ini-
tialization consists of the linear combination of the two
surfaces. Thus the initial wave function is put on the equi-
distant grid ~of size 128332 for f3u! using the relation
~16!. The classical equations of motion for r, Pr , g, and Pg

are solved simultaneously with the wave packet propagation.

B. Asymptotic projection

The outgoing wave packet carries the scattering informa-
tion for all arrangement channels. The analysis is performed
at large value of r when the coupling is assumed to be neg-
ligible. In order to obtain the scattering amplitudes for spe-
cific vibrational–rotational transitions we have to evaluate
the following integral:
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a
v j5E duE df J*~u ,f;r !

3

r

Ax
Asin hg

v
~x !P j

k~cos h !, ~28!

where x and h are functions of u and f. Due to coarse grid
used in the present study it was not possible to resolve the
rotational state distribution, and therefore, we have obtained
the rotationally averaged vibrational cross sections by a re-
cently proposed projection scheme.1 In this scheme we
project the scattered wave function onto the rotationally
summed product vibrational states and compute the transi-
tion probabilities1 as

P
v
52r2E duE dfE du8E df8 J*~u ,f;r !

3J~u8,f8;r !g
v
~x8!g

v
~x !

d~h2h8!

Axx8
. ~29!

The interesting feature of this projection scheme is the pres-
ence of delta function ~which appears as a result of taking the
limit large jmax tending to `! which reduces the above four-
dimensional integral to a three-dimensional one and since the
main contribution comes from u;u8 and f;f8, the above
integral becomes actually a two-dimensional one. As we
show in Fig. 1 two potential-energy surfaces asymptotically
cross each other at some point, and thus while computing the
reaction probabilities one has to account for this. To this end
we have followed the scheme as discussed in Ref. 4. In brief,
the scattered wave packet is first transformed to the adiabatic
representation by diagonalizing the potential-energy matrix
at each grid point and using the corresponding eigenvectors.
And while computing the total probability on an individual
surface, we reverse the contribution at the crossing point as it
is easy to identify the surface characteristics for different
species. Finally the scattered wave packet on different sur-
faces are projected onto the asymptotic states of the corre-
sponding product species.

Total reaction probabilities are obtained by integrating
the square of the scattered wave function over regions of the

grid corresponding to the different channels—this method is
also called ‘‘grid summation.’’ For this purpose we partition
the grid in f space into three parts corresponding to three
different arrangement channel. We have obtained the correct
point of partition in the f space by examining the potential-
energy surface in the region. In the present case, two ar-
rangement channels are equivalent for symmetry reason and
thus the final cross sections have to be added. The so called
grid summation method is particularly useful because the
problem of resolving highly excited states on a coarse
grained grid is avoided, of course at the cost of losing infor-
mation on the product internal energy distribution.

III. POTENTIAL-ENERGY SURFACES

We have constructed the diabatic potential-energy sur-
faces for the triplet states of B1

1H2 system using the VB-
DIM scheme of Faist and Muckerman.12,13 As we have ex-
plained in the Appendix the final equation to obtain the
potential-energy matrix for a three particle system reads as
follows:

HDIM5(
p

(
q.p

H̃pq
2~N22 !(

p
H̃p, ~30!

where

H̃pq
5F ~pq !

†
QpqHCpqQpq

† F ~pq ! ,
~31!

H̃p
5F ~p !

†
HCpF ~p ! .

Here the indices p and q refer to the atoms in the molecule.
We use the DIM Eq. ~31! in its semiempirical framework
wherein we substitute HCn in Eq. ~24! by the information
externally obtained from other sources. The required infor-
mation is the atomic energies and various diatomic potential-
energy curves. In the following we briefly describe how to
obtain the fragment matrices H̃n with a few illustrative
tables. The possible atomic fragments (p) in the present mol-
ecule are H1, B1, B, Ha , and Hb where we have labeled the
two hydrogen atoms by a and b , respectively. For diatomic
fragments (pq) we have the possibilities: H2, BHa , BHb ,
BHa

1 , BHb
1 , and H2

1. The idea behind the DIM method is to
construct the polyatomic wave function using the valence
bond ~VB! wave functions in such a manner that the poly-
atomic wave function correlates with the VB functions of the
fragments. The wave functions are properly antisymme-
trized, that is they are built of Slater determinants.

In order to construct the DIM potential-energy matrix we
have employed the following three basic structures:

~1 ! B1~1S !12H~1s !,

~2 ! B1~3P !12H~1s !,

~3 ! B~2P !1H~1s !1H1,

which gives rise to a manifold of nine diabatic 3A8 states. In
the construction of valence bond polyatomic basis functions
(pb f ) we align the pz spin–orbital of the B atom to be
directed towards Ha and the px spin–orbital of the B atom be
contained in the plane of the molecule ~Cs point group!.

FIG. 1. DIM 3A8 potential-energy surface in the entrance channel
(B1

1H2).
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Further we assume that the use of one electron spin–orbitals
through only the valence shell is appropriate for the purpose.
Designating the 1s orbital of the hydrogen atoms by the
letter a and b , and the 2s , 2px , and 2pz atomic orbitals of B

atom by the letter s , x , and z , respectively, Table I shows the
nine possible primitive pb f for the (BH2)

1 system. In the
sequel we present the basis sets for the different fragments in
Tables II–V. In the following we illustrate the construction
of the transformation matrix F (n) for one fragment BHa . For
other fragments these matrices are constructed in a similar
fashion and thus they are not reproduced here for brevity.

A. Fragment matrices

The construction of the matrix F (n) @cf. Eq. ~31!# follows
Ref. 13. We suppress the details and give only the final ex-
pression here

F ~n !5Cn
21G ~n ! . ~32!

If we compose a row vector f (n) of the n-fragment Slater
determinant then the transformation matrix G (n) is composed
of not-n slater determinant with a phase factor (21) l, where
l is the number of permutations required to reorder the elec-

trons and the matrix Cn connects the row vector f (n) to the
basis set of n fragment via a square transformation. We thus
have

C ~BHa!5 f ~BHa!CBHa
,

~33!
C ~pb f !5 f ~BHa!G ~BHa! .

We note that the matrix Cn is unitary under the ZOAO ~zero
overlap of atomic orbitals! approximation and hence Cn

21

5Cn
† . Referring to Table V we write the row vector f BHa

as
follows:

f ~BHa!5$uss̄s āu,usssau,uss̄p āu,usspau,uss̄au,uss̄su,

uss āu,uss̄au,u s̄sau,uss̄pu,usp āu,usp̄au,

u s̄pau,ussau,usssu,ussau,ussau,u s̄s āu,usspu,

uspau,uspau,u s̄p āu%. ~34!

TABLE II. Basis seta for hydrogen atom.

Basis set Symmetry species

1. a(b) 2Sg

2. ā( b̄) 2Sg

3. 1 1Sg

aSee the text for the meaning of the symbols.

TABLE I. Polyatomic basis functionsa of (BH2)
1.

Basis set Symmetry description

1. 1

&
$uss̄ab̄u1uss̄ābu%

B1(1Sg)1H2(3Su
1)

2. 1

&
$us̄z̄abu2uszāb̄u%

B1

z(
3Pu)1H2(3Su

1)

3. 1

&
$usz̄ab̄u1us̄zab̄u2usz̄ābu2us̄zābu%

B1

z(
3Pu)1H2(1Sg

1)

4. 1

&
$us̄x̄abu2usxāb̄u%

B1

x(3Pu)1H2(3Su
1)

5. 1

&
$usx̄ab̄u1us̄xab̄u2usx̄ābu2us̄xābu%

B1

x(3Pu)1H2(1Sg
1)

6. 1

&
$uss̄zāu1uss̄z̄au%

Bz(
2Pu)1H2

1(2Sg)

7. 1

&
$uss̄xāu1uss̄x̄au%

Bx(2Pu)1H2
1(2Sg)

8. 1

&
$uss̄zb̄u1uss̄z̄bu%

Bz(
2Pu)1H2

1(2Sg)

9. 1

&
$uss̄xb̄u1uss̄x̄bu%

Bx(2Pu)1H2
1(2Sg)

aSee the text for the meaning of the symbols.

TABLE III. Basis seta for H2 fragment.

Basis set Symmetry species

1. 1

&
$uab̄u2uābu%

1Sg
1

2. 1

&
$uab̄u1uābu%

3Su
1

3. uabu 3Su
1

4. uā b̄u 3Su
1

5. 1

&
$a1b%

2Sg

6. 1

&
$ā1b̄%

2Sg

7. 1

&
$a2b%

2Sg

8. 1

&
$ā2b̄%

2Sg

aSee the text for the meaning of the symbols.

TABLE IV. Basis seta for boron atom.

Basis set Symmetry species

1. uss̄zu B(2Pu)
2. uss̄xu B(2Pu)
3. uss̄ z̄u B(2Pu)
4. uss̄ x̄u B(2Pu)
5. uss̄u B1(1Sg)
6. 1

&
$usz̄u1us̄zu%

B1(3Pu)

7. uszu B1(3Pu)
8. u s̄ z̄u B1(3Pu)
9. 1

&
$usx̄u1us̄xu%

B1(3Pu)

10. usxu B1(3Pu)
11. u s̄ x̄u B1(3Pu)

aSee the text for the meaning of the symbols.
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By using Eq. ~33! and ~34! and referring to Tables I and V
we obtain the matrices CBHa

and GBHa
for the BHa fragment

and they are given in Tables VI and VII, and thus we evalu-
ate the matrix FBHa

according to Eq. ~32!. For the other
fragment BHb we need to account for the directional nature
of the p orbitals of B atom as discussed in the Appendix. The
transformation matrix Q needed for this purpose is easily
obtained by aligning the Hb atom such that the s orbital is
along the BHb bond. This amounts to the rotation through the
angle w ~which is the angle between BHa and BHb bonds in
the molecule! as follows:

@sb ,pb#5@2pz,2px#F cos w 2sin w

sin w cos w
G . ~35!

Thus the complete rotation matrix which is block diagonal
and square ~22322 in the present case! can easily be con-
structed by referring to Table V and we do not reproduce it

here. Before we finally construct the fragment matrices let us
briefly discuss the fragment Hamiltonian (HCn) in Eq. ~31!.

If the basis set of a fragment is composed of functions
with the different spin and spatial symmetry then the corre-
sponding Hamiltonian matrix is diagonal, and this is the case
for all the atomic fragments ~B and H! and the diatomic
fragment H2. For these fragments we substitute the Hamil-
tonian (HCn) by the appropriate atomic state energies and
the diatomic potential curves. The experimental values for
the atomic energies were obtained from the standard atomic
energy tables available in the literature.19 Other relevant data
for the present purpose were obtained from Ref. 20. The zero
of energy for (BH2)

1 was chosen to be the energy of iso-
lated B1(1Sg) and two hydrogen atoms and the energies of
the other atomic states are measured with repect to these two.
However the fragment matrices corresponding to the diatom-
ics BH require much more work to construct. We notice
from Table V that the basis functions 5–7 (2S), 8 and 9
(2P), 10–12 (2S) and 13 and 14 (2P) form subgroups with
same spin symmetry, and hence the Hamiltonian matrix
would contain the off-diagonal terms within these subgroups
and the structure of rest of the matrix would be diagonal. The
resulting Hamiltonian matrix would thus be block diagonal.
We take the adiabatic potential-energy surfaces for the states
of a BH fragment which are not coupled. In order to mix the
2S and 2P states of BH1 separately we carry out adiabatic–
diabatic transformation within these subgroups.21 For the 2P
states which form a 232 sub-matrix let us denote the adia-
batic energies as L1 and L2 . The mixing of these two states
is carried out as follows:

FP11

P12

P12

P11
G5Fcos q

sin q

2sin q

cos q GFL2

0
0

L1
G

3F cos q

2sin q

sin q

cos q G , ~36!

where q is the mixing angle which is generally a compli-
cated function of bond distance. The 2S subgroup of BH
fragment involve three electronic states, and thus three dif-
ferent mixing angles are required to carry out the transfor-
mation. The data for mixing angles as a function of bond
distance we have taken from Ref. 20. We are now ready to
construct all the fragment matrices. We present the final ex-
pression for the DIM matrix for (BH2)

1 in Table VIII. This
would be useful for the future work if one needs to incorpo-
rate an improved fragment data set.

B. Features of PES

For the analysis purpose we can obtain the adiabatic
potential-energy surfaces by diagonalizing the DIM matrix
~Table VIII!. For this system we find that in the entrance
channel four lowest potential surfaces form two degenerate
sets corresponding to B1(3P)1H2(

1Sg
1), and B(2P)

1H2
1(2Sg

1) asymptotes and the remaining five upper sur-
faces are repulsive in nature ~see Fig. 1!. In the reactive
channel potential surfaces of interest are those corresponding
to the products BH1(X 2S1), BH1(B 2S1), and
BH(X 1S1). In the discussion of reaction dynamics it is

TABLE V. Basis seta for BH fragment.b

Basis set Symmetry species

1. 1

&
$uss̄sāu2uss̄s̄au%

BH(1S0)

2. 1

&
$uss̄pāu2uss̄p̄au%

BH(1P0)

3. 1

&
$uss̄sāu1uss̄s̄au%

BH(3S0)

4. 1

&
$uss̄pāu1uss̄p̄au%

BH(3P0)

5. uss̄au BH1(X 2S1/2
1 )

6. uss̄su BH1(3 2S1/2
1 )

7. 1

A6
$2uss āu2uss̄au2u s̄sau%

BH1(B8
2S1/2

1 )

8. uss̄pu BH1(2 2P1/2)
9. 1

A6
$2usp āu2usp̄au2u s̄pau%

BH1(A 2P1/2)

10. uss̄āu BH1(2S21/2)
11. uss̄s̄u BH1(2S21/2)
12. 1

A6
$2u s̄s̄au2uss̄ āu2u s̄s āu%

BH1(2S21/2)

13. uss̄p̄u BH1(2P21/2)
14. 1

A6
$2u s̄p̄au2usp̄ āu2u s̄p āu%

BH1(2P21/2)

15. 1

)
$ussāu1uss̄au1us̄sau%

BH1(4S3/2
1 )

16. 1

)
$uspāu1usp̄au1us̄pau%

BH1(4P3/2)

17. 1

)
$us̄s̄au1uss̄āu1us̄sāu%

BH1(4S23/2)

18. 1

)
$us̄p̄au1usp̄āu1us̄pāu%

BH1(4P23/2)

aSee the text of the meaning for the symbols.
bHere s and p refer to the p z and px orbitals, respectively, of the B atom.
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useful to construct a correlation diagram showing the corre-
lation between the reactant and product states. Here we dis-
cuss the correlation pertinent to the present study only. On
the 3A8 potential surfaces the reactant B1(3P)1H2(

1Sg
1)

correlate with the ground-state product BH1(X 2S1)
1H(2Sg). This qualitatively means that if the scattering
takes place only on the lowest adiabatic surface then
BH1(X 2S1) would be the only outcome. However, if the
scattering event is nonadiabatic in nature there would be the
possibility of charge transfer giving rise to the B(2P)
1H2

1(2Sg
1) product. Now B(2P)1H2

1(2Sg
1) channel also

correlate with the BH1(B 2S1)1H(2Sg) asymptote. Hence

if the scattering is nonadiabatic and the charge transfer step
is an efficient one, there would be much possibility of the
formation of excited-state product BH1(B 2S1) in compari-
son to that of the ground-state product BH1(X 2S1). As we
shall see later this is the outcome of the present calculations.
In Fig. 2 we give the contour plot of the potential-energy
surfaces obtained presently in the hyperspherical variables.
We show the contour in u and f space at small r ~2 Å!
which approximately corresponds to the classical turning
point in the r motion for this reaction ~Fig. 2!. The present
reaction is an example of exothermic one without any bar-
rier. In Fig. 3 we plot the potential surfaces for the collinear

TABLE VI. The matrix Cn for the BHa fragment.

1

&

0 1

&

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

1

&

0 1

&

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1

&

0 1

&

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
2

1

&

0 1

&

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2

A6

0 0 0 0 0 0 0 1

)

0 0 0

0 0 0 0 0 0
2

1

A6

0 0 0 0 0 0 0 1

)

0 0 0

0 0 0 0 0 0
2

1

A6

0 0 0 0 0 0 0 1

)

0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2

A6

0 0 0 0 0 0 1

)

0 0

0 0 0 0 0 0 0 0
2

1

A6

0 0 0 0 0 0 1

)

0 0

0 0 0 0 0 0 0 0
2

1

A6

0 0 0 0 0 0 1

)

0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2

A6

0 0 0 0 1

)

0

0 0 0 0 0 0 0 0 0 0 0
2

1

A6

0 0 0 0 1

)

0

0 0 0 0 0 0 0 0 0 0 0
2

1

A6

0 0 0 0 1

)

0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2

A6

0 0 0 1

)

0 0 0 0 0 0 0 0 0 0 0 0 0
2

1

A6

0 0 0 1

)

0 0 0 0 0 0 0 0 0 0 0 0 0
2

1

A6

0 0 0 1

)
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approach. We note that the third electronic state in Fig. 3,
which gives the excited-state product BH1(B 2S1), has a
barrier in the exit channel.

IV. RESULTS AND DISCUSSION

We have performed the 2D wave packet calculations
from the ground ro-vibrational state of B1

1H2 on the triplet

surface at a range of energies from 0.5ê to 7.0ê (1 ê

5100 KJ/mol). As we discussed earlier for a given total
energy the values of g and Pg are not specified, we have
therefore taken average over a number of trajectories with
different initial g and Pg in order to obtain the scattering
amplitudes. Note that for each trajectory one has to solve the
full 2D quantum problem. In order to obtain the converged
result with respect to J we have carried out calculations in
several batches for a given range Jmin<J<Jmax ~the range
containing typically 50 values! and introduce a random se-
lection of Pg between 2PJ and PJ , and the values of g are
obtained from the random selection of the quantity k @cf. Eq.
~24!#. For each range of J values we average over typically
50–100 trajectories which was sufficient to obtain the con-
vergence within the range. And finally the contribution from
different range of J values to the reaction cross sections were
added. For a given energy typically 0<J<350 range con-
tributes to the scattering amplitudes, though for lower energy
we obtain the convergence for a smaller range only. The
initial condition of the reaction here represents the B1(3P)
atom colliding with the H2 molecule in its ground state. The
propagation was carried out in the diabatic representation
with continuous coupling between different electronic states.
The evaluation of the quantum part of the system makes use
of standard FFT method on an evenly spaced grid. As the
wave packet must be zero for both u50 and p/2 on the grid
it is not necessary to determine the time evolution of the
wave packets for these values of u. We note that at these
values of theta the extra potential term DV is singular and
the large values of V1DV makes the numerical calculation
somewhat unstable. This deficiency was overcome by limit-
ing the value of the potential to a fixed value in the strongly
forbidden classical region where the wave packet never
reaches, and hence for the first few values of theta we put the
wave packet to zero. The time-dependent Schrödinger equa-
tion is solved by the standard short time iterative Lanczos
method with a fixed time step 0.005t (1t510 fs). Typically
10–15 Lanczos iterations were required to obtain a good
accuracy in the calculations. Along the r coordinate we carry
out the classical propagation from large r inward and the
system reaches the classical turning point ~typically at r
;2 Å! and then it comes out. At the end of the collision we
have the scattered wave packets on all the electronic surfaces
which contain all the information of collision. The scattered
wave packets are analyzed as explained earlier. For illustra-
tion in Fig. 4 we give the probability amplitude plot of the
scattered wave packet at 1 ê energy on different electronic
states at the end of collision. We note, for example from Fig.
1, that some of the surfaces are repulsive in nature and there-
fore we should not expect any probability contribution to
these surfaces. In practice, however, there is small contribu-
tion of probability to the closed channels ~in the present case
it is negligible compared to the open channels!, and this is
due to the semiclassical nature of the method we have uti-
lized presently.

We present the total cross sections vs energy for differ-
ent products in Table IX. As is clearly seen from the Table

TABLE VII. The matrix G (n) for the BHa fragment.

0 0 0 0 0 1

&

0 0 0

0 0 0 0 0 1

&

0 0 0

0 0 0 0 0 0 1

&

0 0

0 0 0 0 0 0 1

&

0 0

b̄

&

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
b̄

&

0

0
2

b̄

&

0 0 0 0 0 0 0

0 0 b̄

2

0 0 0 0 0 0

0 0 b̄

2

0 0 0 0 0 0

0 0 0 0 0 0 0 0
b̄

&

0 0 0
2

b̄

&

0 0 0 0 0

0 0 0 0 b̄

2

0 0 0 0

0 0 0 0 b̄

2

0 0 0 0

b

&

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
b

&

0

0
b

&

0 0 0 0 0 0 0

0 0
2

b

2

0 0 0 0 0 0

0 0
2

b

2

0 0 0 0 0 0

0 0 0 0 0 0 0 0
b

&

0 0 0
b

&

0 0 0 0 0

0 0 0 0
2

b

2

0 0 0 0

0 0 0 0
2

b

2

0 0 0 0

2981A. Vijay and G. D. Billing: Semiclassical wave packet calculations

J. Chem. Phys., Vol. 107, No. 8, 22 August 1997
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.216.129.208 On: Fri, 05 Dec 2014 14:14:48



IX the cross section for all the products fall as the energy
increases. This is typical of exothermic reaction without any
energy barrier. We also note that the charge transfer process
leading to the formation of H2

1 is the most efficient process
at all energies. This clearly indicates that this system is a
typical example of ion–molecule reaction where the nona-
diabatic effect is quite important. There is a strong coupling
between the lower surfaces in the entrance channel ~corre-
sponding to H2 and H2

1! and as the reaction proceeds much
of the wave packets go to the charge transfer state leading to
B1H2

1. This also explains why we have obtained much
smaller cross sections for the ground-state product
BH1(X 2S1) in comparison to that of the excited state one
BH1(B 2S1). This observation is further substantiated by
the correlation properties of ground and excited surface as
discussed earlier. The experimental support of the formation
of BH1 in its excited state comes from the beam chemilumi-
nescence experiment on this reaction by Ottinger and
Reichmuth16 where a new emission was ascribed to this
product. Finally, we have obtained significant cross section
for the product BH(1S1) also. Thus it appears that on this

triplet surface the reaction proceeds predominantly via two
steps, that is the charge transfer leading the system to the
excited state, and then reaction takes place mostly from the
excited state and the ground state product comes out as a
minor one. Finally, Figs. 5 and 6 show the product vibra-
tional distribution for the various product species. We find
that the formation of BH1 in the ground state is accompanied
with significant vibrational excitation which is to be ex-
pected for this type of reaction. For all the product ions the
vibrational cross sections in general decreases with the in-
crease of energy.

Prior to the present study the QCT calculations have
been reported on this reaction.14 However, a direct compari-
son of the QCT results with the present calculations is ren-
dered difficult as the QCT calculations were carried out only
on the lowest surface, ignoring thus the possible nonadia-
batic effects in the reaction which has been found to be quite
important here. In fact, the QCT studies predicted very small
lifetimes of the collision complex in comparison to the ex-
periment and one of the reasons for this discrepancy was
conjectured to be the nonadiabatic transitions. As a result the

TABLE VIII. The DIM potential-energy matrixa for (BH2)
1.

H~1,1!52S11~BHa)1
2S11(BHb)1

3Su
1(HaHb)2

1Sg(B)2
2Sg(Ha)2

2Sg(Hb)
H(1,6)52cos w 2S12(BHb)
H(1,7)52sin w 2S12(BHb)
H(1,8)5

2S12(BHa)

H(2,2)5
2
3@2S33(BHa)1cos2 w 2S33(BHb)1sin2 w 2P22(BHb)#1

1
3@4S(BHa)1cos2 w 4S(BHb)1sin2 w 4P(BHb)#1

3Su
1(HaHb)2

3Pu(B)2
2Sg(Ha

2
2Sg(Hb)

H~2,3!5

&

3
@$2S33~BHa!2

4S~BHa!%2$cos2 w 2S33~BHb!1sin2 w 2P22~BHb!%1$cos2 w 4S~BHb!1sin2 w 4P~BHb!%#

H(2,4)5
2
3 cos w sin w@2S33(BHb)2

2P22(BHb)#1
1
3 cos w sin w@4S(BHb)2

4P(BHb)#

H~2,5!52

&

3
cos w sin w@$2S33~BHb!2

2P22~BHb!%2$4S~BHb!2
4P~BHb!%#

H(3,3)5
1
3@2S33(BHa)1cos2 w 2S33(BHb)1sin2 w 2P22(BHb)#1

2
3@4S(BHa)1cos2 w 4S(BHb)1sin2 w 4P(BHb)#1

1Sg
1(HaHb)2

3Pu(B)2
2Sg(Ha)

2
2Sg(Hb)

H~3,4!52

&

3
cos w sin w@$2S33~BHb!2

2P22~BHb!%1$4S~BHb!2
4P~BHb!%#

H(3,5)5
1
3 cos w sin w@$2S33(BHb)2

2P22(BHb)%12$4S(BHb)2
4P(BHb)%#

H~4,4!5

&

3
@2P22~BHa!1sin2 w 2S33~BHb!1cos2 w 2P22~BHb!#1

1
3@4P~BHa!1sin2 w 4S~BHb!1cos2 w 4P~BHb!#1

3Su
1~HaHb!2

3Pu~B!2
2Sg~Ha!

2
2Sg~Hb!

H~4,5!5

&

3
@$2P22~BHa!2

4P~BHa!%2$sin2 w 2S33~BHb!1cos2 w 2P22~BHb!%1$sin2 w 4S~BHb!1cos2 w 4P~BHb!%#

H(5,5)5
1
3@2P22(BHa)1sin2 w 2S33(BHb)1cos2 w 2P22(BHb)#1

2
3@4P(BHa)1sin2 w 4S(BHb)1cos2 w 4P(BHb)#1

1Sg
1(HaHb)2

3Pu(B)2
2Sg(Ha)

2
2Sg(Hb)

H(6,6)5
3S0(BHa)1cos2 w 2S22(BHb)1sin2 w 2P11(BHb)1

1
2@2Sg(HaHb)1

2Su(HaHb)#2
2Pu(B)2

2Sg(Ha)2
1Sg(Hb)

H(6,7)5cos w sin w@2S22(BHb)2
2P11(BHb)#

H(6,8)5
1
2@2Sg(HaHb)2

2Su(HaHb)#

H(7,7)5
3P0(BHa)1sin2 w 2S22(BHb)1cos2 w 2P11(BHb)1

1
2@2Sg(HaHb)1

2Su(HaHb)#2
2Pu(B)2

2Sg(Ha)2
1Sg(Hb)

H(7,9)5
1
2@2Sg(HaHb)2

2Su(HaHb)#

H(8,8)5
2S22(BHa)1cos2 w 3S(BHb)1sin2 w 3P(BHb)1

1
2@2Sg(HaHb)1

2Su(HaHb)#2
2Pu(B)2

1Sg(Ha)2
2Sg(Hb)

H(8,9)5cos w sin w@3S(BHb)2
3P(BHb)#

H(9,9)5
2P11(BHa)1sin2 w 3S(BHb)1cos2 w 3P(BHb)1

1
2@2Sg(HaHb)1

2Su(HaHb)#2
2Pu(B)2

1Sg(Ha)2
2Sg(Hb)

aThe symbol w refers to the angle between B–Ha and B–Hb bonds in the molecule. S i j and P i j refer to the elements of diabatized sub-blocks corresponding
to the BH1(2S) and BH1(2P) fragments ~see the text!. See Tables I–V for other symbols. The potential-energy matrix is symmetrical and matrix elements
not listed here as zero.
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outcome of the present calculations are understandably in
conflict with the QCT ones. For example, the QCT results
have shown a fairly large cross sections for the ground-state
BH1(2S1) product. On the contrary, the cross sections as
found in the present study for BH1(2S1) is quite small in
comparison to those of the excited states because of the pro-
found nonadiabatic transitions in the entrance channel ~see
Table IX!. Moreover, in the present study the ground state
product BH1(2S1) is predicted to come out vibrationally
hot ~see Fig. 6! and the distribution of vibrational quantum
numbers is qualitatively different from that found in the QCT
calculations.

V. CONCLUSION

We have demonstrated in this paper the feasibility of the
semiclassical wave packet methods in hyperspherical coordi-

nates to study the nonadiabatic processes occurring in three
particle molecular dynamics, even in the system involving
nine coupled electronic surfaces. Though we have not con-
sidered in the present study the present method could easily
be extended to the spin–orbit coupled system also without
much numerical effort as total computation scales only lin-
early with the number of surfaces. Compared to the tradi-
tional trajectory surface hopping scheme the present method
offers the clear advantage that it takes into account the nona-
diabatic effects in the molecular processes in a consistent
manner; for example, we do not have to make any assump-
tion of the transitions to be of Landau–Zener type and local-
ized in space, and also we have no problem with arbitrary
energy division among various degrees of freedom of the
jump. We have utilized a recently proposed scheme to obtain
the rotationally summed vibrational state distribution which

FIG. 2. Contour plot of the potential-energy surfaces near the classical turning point (r[2 Å). The contour spacing is 0.25 ê and starts from 210ê (1 ê
5100 kJ/mol).
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avoids the problem associated with the coarse nature of the
grid in the calculations. We have obtained the total cross
sections for all channels ~reactive as well as charge transfer!
simultaneously by the grid summation method. Though the
DIM potential-energy surfaces are admittedly approximate
the present study has clearly shown that B1(3Pu)1H2 reac-
tion cannot be treated as a single surface problem. The scat-
tering process appears to take place in two steps—charge
transfer leading to the formation of H2

1 which is an efficient
one, followed by the rearrangement step leading to reaction.
As a result we have obtained larger cross section for the BH1

product in the excited states in comparison to that of the
ground-state one. This has been substantiated by the beam
chemiluminescence experimental study. Energy dependence
of cross sections for various products show the typical be-
havior of exothermic reaction, and so also the product vibra-

tional distributions. To elucidate the mechanism further
much experimental work is required for this reaction.
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APPENDIX

We present a brief review of the DIM method for tri-
atomic molecules which we have utilized in the present
study. More complete descriptions of the method can be
found elsewhere.22–24 There are several equivalent formula-
tions of this method and in this paper we essentially follow
the scheme developed by Faist and Muckerman.12,13 In the
nonrelativistic Born–Oppenheimer scheme the electronic ei-
genvalue equation is

Ĥ~R !uxk~R !&5Vk~R !uxk~R !&, ~A1!

where Ĥ(R) is the electronic Hamiltonian operator which
depends parametrically on the nuclear configuration
R ,Vk(R) is the electronic energy which is a function of R

and uxk(R)& is the eigenvector for the kth electronic state
and this also depends parametrically on R . In the present
work we have not considered the spin–orbit interaction, and
therefore, the electronic eigenvalues are functions of three
internuclear distances only ~assuming three Euler angles
which define the orientation of the triangle with respect to a
space-fixed frame, are fixed at some convenient values!, and
thus here R represents only the internuclear distances. Since
the general nuclear configuration of a triatomic molecule
possesses only Cs symmetry we designate the energy levels
with the symmetry species A8 and A9 of the point group,
though at some special configurations ~belonging to C`v

8 and
C2v

point groups! energy levels could also be labeled by the
appropriate symmetry species.

The derivation of the DIM Hamiltonian follows the basic
ideas of ‘‘atoms in molecule’’ ~AIM! originally due to
Moffitt,25 and the general expression is given as

ĤDIM5(
p

(
q.p

Ĥpq
2~N22 !(

p
Ĥp, ~A2!

where N is the number of atoms in molecule and Ĥpq and
Ĥp are the Hamiltonian operator for the diatomic and
atomic fragments of the molecule, respectively. Hence the
total energy of the molecule within DIM framework is ex-
pressed as the sum of energies of all possible diatomic frag-
ments minus the sum of atom energies as many times as
necessary to correct for their multiple inclusion in the di-
atomic fragment energy sum. Thus for a general triatomic
ABC we have

ĤDIM5ĤAB
1ĤBC

1ĤAC
2ĤA

2ĤB
2ĤC. ~A3!

In the following we will drop the subscript DIM for the
notational convenience. In a practical scheme of solving Eq.
~1! we express uxk(R)& in a general complete basis $uC i&,
i51,M % and thus we write in a matrix form

FIG. 2. ~Continued!.
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x5CC , ~A4!

where the coefficient matrix C completely determines the
state ux&. On putting Eq. ~A4! into Eq. ~A1! and premultiply-
ing with ^Cu we obtain

HC5SCV , ~A5!

where H5^CuĤuC& is the matrix representation of the
Hamiltonian operator Ĥ in the uC& basis, S5^CuC&, is the
overlap matrix and V is the diagonal matrix containing the
energy eigenvalues. In the following we continue the deriva-

tion assuming the basis to be complete, though in practice
the basis is almost always truncated. The approximation in-
volved with the truncated basis may be cast in the projection
operator formulation which we will point out later. Since
$uxn&% is complete and orthonormal we can decompose unity
into the sum of elementary projectors as

15(
n

uxn&^xnu5xx†. ~A6!

FIG. 3. Plot of the first five potential-energy surfaces in the collinear
configuration @(B–H–H)1# .
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From Eqs. ~A4! and ~A6! we have

15CCC†C†
5CS21C†, ~A7!

where C5S21/2U† with U† as unitary matrix independent of
overlap. Using the elementary projector ~A7! we can write
the operation of Ĥ on C as

ĤC5CS21C†ĤC5CS21H . ~A8!

Now we introduce independent particle approximation, that
is each polyatomic basis function (pb f ) is composed of a
linear combination of antisymmetrized products of one elec-
tron spin–orbitals and each of the spin–orbitals is centered
on a specific nucleus according to the valence bond scheme.
Thus we have

C5Âc , ~A9!

where c is are the primittive unsymmetrized pb f and Â is the
usual antisymmetrization operator. The Hamiltonian opera-

tion on C within DIM framework can be written as

ĤC5ÂĤc

5(
p

(
q.p

ÂĤpqc2~N22 !(
p

ÂĤpc . ~A10!

Following Ellison26 we decompose Â into three different fac-
tors as

Â5Ân
~n !ÂnÂ ~n ! , ~A11!

where Ân antisymmetrizes only the electrons on n fragment,
Â (n) those not on n fragment, and Ân

(n) completes the iden-
tity. In putting Eq. ~A11! in Eq. ~A10! we have

FIG. 4. The 2D wave packet on different electronic surfaces (A – I) at the end of collision at 1 ê energy (1 ê5100 kJ/mol).
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ĤC5(
p

(
q.p

Âpq
~pq !ÂpqÂ ~pq !Ĥ

pqc

2~N22 !(
p

Âp
~p !ÂpÂ ~p !Ĥ

pc

5(
p

(
q.p

Âpq
~pq !ĤpqFpq

2~N22 !(
p

Âp
~p !ĤpFpq.

~A12!

with the following definition;

Fn[ÂnÂ ~n !c[YnF ~n ! . ~A13!

Here Yn is a row vector composed of antisymmetrized prod-
uct of functions of only those electrons in the n fragment and
F (n) is the transformation matrix of antisymmetrized func-
tions of the remaining electrons to complete the identity.
Now if $C i% is complete in the polyatomic space, $Y i

n% is
also complete in the n fragment space spanned by the frag-
ment Hamiltonian operator, Ĥn. Since Ĥn operates only on
the electrons associated with the n fragment, $F i

n% also spans
the subspace of Ĥn. Thus we have the following resolution
of identity @cf. Eq. ~A7!#

15FnSFn
21

Fn†, ~A14!

where

SFn5Fn†Fn

5F ~n !
† Yn†YnF ~n !

5F ~n !
†

SYnF ~n ! . ~A15!

Now we examine the action of Ĥn on Fn as required in Eq.
~A12! using the resolution of identity @cf. Eq. ~A14!#,

FIG. 4. ~Continued.!

TABLE IX. Energy dependence of cross sectionsa for various products.

Energyb H2 BH1(X 2S1) BH(X 1S1) BH1(B 2S1)

0.5 28.691 0.039 0.308 0.659
1.0 10.547 0.017 0.169 0.345
2.00 5.920 0.022 0.184 0.434
3.0 3.778 0.024 0.189 0.433
4.0 3.137 0.017 0.174 0.422
5.0 2.658 0.019 0.177 0.420
7.0 2.090 0.018 0.185 0.394

aIn units of Å2.
bIn units of ê(1 ê5100 kJ/mol).

FIG. 5. Energy dependence of the vibrational distributions for H2
1. From top

to bottom curves refer to 0.5ê , 1 ê , 2 ê , 3 ê , 4 ê , 5 ê , and 7 ê energies,
respectively, (1 ê5100 kJ/mol).

FIG. 6. Energy dependence of the vibrational distributions for
BH1(X 2S1) ~full lines!, BH(X 1S1) ~broken lines!, and BH1(B 2S1)
~dotted lines!. For each species from top to bottom curves refer to 0.5ê ,
1 ê , 2 ê , 3 ê , 4 ê , 5 ê , and 7 ê energies, respectively, (1 ê5100 kJ/mol).
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ĤnFn
5FnSFn

21
Fn†ĤnFn

5FnSFn
21

Hn, ~A16!

where Hn is given as follows @using Eq. ~A13!#.

Hn
5Fn†ĤnFn

5F ~n !
† Yn†ĤnYnF ~n !

5F ~n !
†

HYnF ~n ! . ~A17!

Here in Eq. ~A17! HYn is the Hamiltonian matrix for the pure
n fragment and the effect of integration implied by the F (n)
matrix is to couple the appropriate elements of HYn for use
in the polyatomic Hamiltonian. Now we substitute Eq. ~A16!
into Eq. ~A12! to obtain

ĤC5(
p

(
q.p

Apq
~pq !ĤpqFpq

2~N22 !(
p

Ap
~p !ĤpFp

5(
p

(
q.p

Apq
~pq !FpqSFpq

21
Hpq

2~N22 !

3(
p

Ap
~p !FpSFp

21
Hp

5(
p

(
q.p

CSFpq
21

Hpq
2~N22 !(

p
CSFp

21
Hp,

~A18!

where the last identity is obtained using Eqs. ~A9!, ~A11!,
and ~A13!. Multiplying on the left by C† on both sides we
obtain

C†ĤC5(
p

(
q.p

C†CSFpq
21

Hpq
2~N22 !

3(
p

C†CSFp
21

Hp, ~A19!

H5(
p

(
q.p

SSFpq
21

Hpq
2~N22 !(

p
SSFp

21
Hp. ~A20!

Directional orbitals

The orientation chosen in the pb f would not be opti-
mum for all fragment diatomics if the latter contains the
orbitals having the directional character, and hence the frag-
ment matrix HYn in Eq. ~A17! will reflect this deficiency. In
order to remedy this problem we define a transformation ma-
trix Qpq which relates the old basis $Y i

pq% to a new aligned
basis $Ȳi

pq% in such a way that in this new set all directional
orbitals are properly aligned:

Ypq
5ȲpqQpq. ~A21!

The Hamiltonian matrix for the diatomic fragment thus takes
the form @cf. Eq. ~A17!#

HYpq5Ypq†HpqYpq

5Qpq†Ȳpq†HpqȲpqQpq

5Qpq†H̄CpqQpq. ~A22!

Thus the final DIM equation is

HDIM5(
p

(
p.q

H̃pq
2~N22 !(

p
H̃p, ~A23!

where

H̃pq
5SSFpq

21
F ~pq !

†
Qpq

† H̄CpqQpqF ~pq ! ,

Hp
5SSFp

21
F ~p !

†
H̄CpF ~p ! . ~A24!

The fundamental DIM approximations are hidden in the
resolution of identity @cf. Eqs. ~A7! and ~A14!# which is true
only for the complete basis limit. The complete basis is al-
most always impractical and its implication has been found
to be the fact that the right hand side of Eq. ~A24! becomes
non-Hermitian. The origin of non-Hermitian character of Eq.
~A24! has been discussed in the literature.12,13 This problem
can be avoided in the practical approach of DIM. We first
introduce the so-called ZOAO ~zero overlap of atomic orbit-
als! approximation under which we have S5SFn for all the
fragments. Thus Eq. ~A24! reduces to

H̃pq
5F ~pq !

†
Qpq

† H̄CpqQpqF ~pq ! ,
~A25!

H̃p
5F ~p !

†
H̄CpF ~p ! .

The right-hand side of Eq. ~A25! is now clearly Hermitian
term by term. Further we follow the semiempirical approach
to DIM wherein all the diatomic and atomic fragment infor-
mation required in Eq. ~A25! is obtained empirically either
from experimental or other theoretical sources. This formally
completes the DIM scheme followed in this paper for obtain-
ing multidimensional potential-energy surfaces for (BH2)

1

molecular system. The construction of F (n) matrix has been
explained in Ref. 13 which, under ZOAO approximation is
given as

F ~n !5Cn
†G ~n ! . ~A26!

The construction of the transformation matrices Cn and G (n)
will be discussed in the text.
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