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The presence of undesirable large-amplitude self-sustained oscillations in combustors resulting
from thermoacoustic instability can lead to performance loss and structural damage to compo-
nents of gas turbine and rocket engines. Traditional feedback controls to mitigate thermoacoustic
instability possess electromechanical components, which are expensive to maintain regularly and
unreliable in the harsh environments of combustors. In this study, we demonstrate the quenching
of thermoacoustic instability through self-coupling – a method wherein a hollow tube is used to
provide acoustic self-feedback to a thermoacoustic system. Through experiments and modeling, we
identify the optimal coupling conditions for attaining amplitude death, i.e., complete suppression
of thermoacoustic instabilities, in a horizontal Rijke tube. We examine the effect of both system
and coupling parameters on the occurrence of amplitude death. We thereby show that the para-
metric regions of amplitude death occur when the coupling tube length is close to an odd multiple
of the length of the Rijke tube. The optimal location of the coupling tube for achieving amplitude
death is near the anti-node of the acoustic standing wave in the Rijke tube. Furthermore, we find
that self-coupling mitigates thermoacoustic instability in a Rijke tube more effectively than mutual
coupling of two identical Rijke tubes. Thus, we believe that self-coupling can prove to be a simple,
cost-effective solution for mitigating thermoacoustic instability in gas turbine combustors.

I. INTRODUCTION

The presence of undesirable self-sustained oscillations
in many practical systems has been a matter of concern
for researchers over the years. Notorious examples of
such oscillations include wobbling bridges [1], fluttering
aircraft wings [2], rumbling combustors [3, 4], oscillatory
prey-predator populations [5, 6], and stock market fluc-
tuations [7]. The presence of these oscillations can have
catastrophic consequences such as destruction of bridges,
structural damage to aircraft and combustors, extinction
of species, and financial crisis, respectively. It is thus
vital to develop methods to quench these oscillations.
In the present study, we investigate the mitigation of

thermoacoustic instability, which refers to the occurrence
of ruinously high amplitude self-sustained oscillations in
a combustor due to the reinforcing interaction between
the heat release rate fluctuations from the heat source
and the acoustic field of the combustor [3, 8]. The man-
ifestation of thermoacoustic instability can have several
catastrophic consequences. It can cause thrust oscilla-
tions in rocket engines, which could jeopardize space mis-
sions. Thermoacoustic instability can cause rocket and
gas turbine engine components to vibrate at high ampli-
tudes, leading to catastrophic structural damage. The
increased heat transfer due to thermoacoustic instability
can overwhelm the thermal protection system and the
large amplitude acoustic oscillations can damage elec-
tronic components in the engines [8, 9].
Traditionally, control strategies to suppress thermoa-

coustic instability are classified into passive and active
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controls [3, 9–12]. Passive control strategies reduce the
sensitivity of the combustor to acoustic disturbances by
altering the geometry of the combustor or by installing
components such as baffles and Helmholtz resonators
[3, 13]. However, these strategies are effective only over
a limited range of frequencies and the design changes
involved in their implementation are costly and time-
consuming. On the other hand, in most active control
strategies, an actuator perturbs the system dynamics and
breaks the coupling between the pressure and heat re-
lease rate fluctuations in the combustor, thereby leading
to the suppression of thermoacoustic instability [11]. In
this method, if the parameters of the forcing are con-
trolled by the operator and are not directly dependent
on the performance of the combustor, the control strat-
egy is referred to as an open-loop control [14]; otherwise
it is referred to as closed-loop control.

In closed-loop control, also known as active feedback
control, the pressure signal acquired from a thermoacous-
tic system is processed and used as input for a controller,
which then accordingly instructs an actuator to modify
system parameters (such as the inlet boundary condi-
tions or the fuel flow rate). This, in turn, disrupts the
flame-acoustic coupling and quenches thermoacoustic in-
stability in the system [15, 16]. The processing of the in-
put pressure signal commonly involves phase-shifting and
amplification. Though several studies have demonstrated
the effectiveness of active feedback control in quench-
ing thermoacoustic instability in various thermoacous-
tic systems [11, 15–17], the design, implementation, and
maintenance of active feedback control systems is highly
cumbersome. Moreover, the applicability of the feedback
control method is restricted due to the lack of reliabil-
ity of sensors and actuators for operating in the harsh
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environment of practical combustors, limited space for
installing actuators, and high power requirements for op-
erating feedback control units [12].

The aforementioned disadvantages of traditional pas-
sive and active control methodologies make it clear that
there is a need to develop a control strategy that is cheap,
simple to implement on practical combustion systems,
and is effective in mitigating thermoacoustic instability.
Towards this purpose, we propose the method of self-
coupling in which we provide acoustic self-feedback using
a tube. We refer to the quenching of limit cycle oscilla-
tions to a common fixed point due to the coupling of one
or more oscillators as ‘amplitude death’ (AD) [18, 19].
In self-coupling, the acoustic wave takes a finite time
to propagate through the coupling tube and affect the
acoustic field of the Rijke tube [20]. This leads to a delay
in the self-feedback of acoustic oscillations of the sys-
tem. Such delayed self-feedback has generally been im-
plemented in the past to stabilize steady states in several
systems, including the Van der Pol oscillator [21], the
Rössler oscillator [22], and in electrochemical and op-
tomechanical [23, 24] systems. However, the practical
implementation of these self-feedback techniques involve
electronic components to capture the delayed signal and
to amplify and feed it back to the system. This is re-
solved in the method of self-coupling used in our study
where the acoustic pressure signal from a thermoacoustic
system is directly fed to itself, without any explicit signal
processing or modifying the inlet flow conditions. Thus,
this method completely removes the requirement for any
electro-mechanical components such as signal processors,
sensors, and actuators used in traditional active and self-
feedback controls. Additionally, the connecting tube is
easier to design and implement as compared to tradi-
tional passive controls. Though methods similar to self-
coupling, such as the Herschel-Quincke tube and the In-
finity tube have been used in the past to suppress electri-
cally driven acoustic pressure oscillations [20, 25], their
application in thermoacoustic systems is yet to be exam-
ined.

In the present study, we address the following ques-
tions: (i) Can self-coupling mitigate thermoacoustic in-
stability? (ii) What are the optimal values of coupling
parameters (length, diameter, and location of the cou-
pling tube) for attaining amplitude death in a thermoa-
coustic system? (iii) How does the amplitude of the limit
cycle oscillations prior to introducing self-coupling affect
its quenching? (iv) What is the nature of the transition
between steady state and oscillatory state in the self-
coupled thermoacoustic system? Towards this purpose,
we systematically perform experimental and theoretical
investigation on a horizontal Rijke tube subjected to self-
coupling.

The Rijke tube is a convenient prototype of a thermoa-
coustic oscillator traditionally used to study the occur-
rence and mitigation of thermoacoustic instability [26–
28]. It consists of a duct with a heat source (e.g., an
electrically heated wire mesh) present inside. The in-

teraction between the heat released by the heat source
and the acoustic field of the Rijke tube can lead to ther-
moacoustic instability. Through experiments, numer-
ical simulations, and approximate analytical solutions,
we demonstrate that self-coupling can mitigate thermoa-
coustic instability in a horizontal Rijke tube at optimal
conditions. We observe that self-coupling causes ampli-
tude death for wider parametric regions when the length
of the coupling tube is close to an odd multiple of the
length of the Rijke tube. The occurrence of amplitude
death is easier for larger diameters of coupling tube and
smaller amplitude of limit cycle oscillations prior to cou-
pling. We show that the transition between the states
of limit cycle oscillations and amplitude death due to
self-coupling is explosive and hysteretic for a Rijke tube
that exhibits subcritical Hopf bifurcation in the absence
of coupling. We formulate a model for the self-coupled
Rijke tube which qualitatively captures the experimental
findings. We also find that the optimal coupling loca-
tion for attaining amplitude death is around the centre
of the Rijke tube, which corresponds to the antinode of
the standing acoustic pressure wave developed in the Ri-
jke tube prior to coupling.
Recent studies have demonstrated the occurrence of

amplitude death by mutual coupling of two Rijke tubes
using one or two connecting tubes [29–32]. Here, we also
compare the effectiveness of suppressing limit cycle os-
cillations in a single Rijke tube via self-coupling against
that obtained via mutual coupling of two identical Rijke
tubes. We demonstrate that limit cycle oscillations of
significantly greater amplitudes can be easily suppressed
through self-coupling of a single Rijke tube as compared
to mutual coupling of two such identical Rijke tubes.
The rest of the paper is organized as follows. In Sec. II,

we provide details of the experimental setup. Following
this, Sec. III presents our results and discussions on the
self-coupled Rijke tube. Within Sec. III we experimen-
tally investigate the effect of self-coupling on the miti-
gation of thermoacoustic instability in a horizontal Rijke
tube in Sec. III A. Subsequently, in Sec. III B, we present
a model of the self-coupled Rijke tube and investigate it
numerically and analytically. In Sec. III C, we compare
the quenching of limit cycle oscillations due to the self-
coupling of a Rijke tube with that obtained through mu-
tual coupling of two such identical Rijke tubes. Finally,
we present our conclusions from the study in Sec. IV.

II. EXPERIMENTAL SETUP OF THE

SELF-COUPLED RIJKE TUBE

In Fig. 1, we show a schematic representation of the
horizontal Rijke tube used in the present study. The
Rijke tube is a long duct with a rectangular cross section
of 9.3 cm × 9.4 cm and a length (Lduct) of 104 cm, similar
to the ones used in [29, 30, 33]. An electrically heated
wire mesh, powered by an external DC power supply,
acts as a compact heat source. The heated wire mesh is
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FIG. 1. Schematic of a horizontal Rijke tube self-coupled
using a connecting tube. The axial location (normalized by
the length of the Rijke tube, Lduct) of the heater mesh and
the connecting tube are denoted by xf and xc, respectively.
Ball-type coupling valves are manually opened to establish
acoustic feedback in the system.

located at 27 cm downstream from the inlet in the duct.
Air flow is supplied to the Rijke tube through a mass flow
controller (MFC, Alicat Scientific) of uncertainty ±(0.8%
of the measured reading + 0.2% of the full scale reading).
A decoupler of dimensions 102 cm × 45 cm × 45 cm is
attached to the inlet of the Rijke tube. The decoupler is a
large chamber used to dampen out the fluctuations in the
incoming air flow so that a steady air flow enters the Rijke
tube. During experiments, the heater power supplied to
the wire mesh is increased so that the system behavior
transitions from steady state to limit cycle oscillations
via subcritical Hopf bifurcation for the given air flow rate
[34].

In order to quench the limit cycle oscillations, we im-
plement self-coupling to acoustically couple the Rijke
tube to itself using a single vinyl tube of length L and
internal diameter d. The self-coupling tube is attached to
two sides of the Rijke tube at an axial distance of 57 cm
from the inlet of the Rijke tube (the axial location of the
connecting tube on normalizing by Lduct is xc = 0.55),
unless otherwise specified. Ball-type valves are manually
operated to control the self-coupling in the system. The
length of the connecting tube (L) is varied from 92 cm
to 362 cm in steps of 5 cm. Coupling tubes of diameters
(d) 4 mm to 12 mm in steps of 2 mm are considered in
this study.

To measure the acoustic pressure fluctuations in
the system, a piezoelectric pressure transducer (PCB
103B02, sensitivity 217.5 mV/kPa, uncertainty ±0.15
Pa) is mounted along the length of the duct at 57 cm
from the inlet. The pressure data is acquired from the
Rijke tube at a sampling rate of 10 kHz for a duration
of 3 s for each parametric condition using a data acquisi-
tion system (NI USB 6343). The resolution of frequency
in the power spectrum of the signal is equal to 0.2 Hz.
To measure the acoustic damping in the Rijke tube, we
send an acoustic pulse into the Rijke tube using a loud-
speaker in the absence of air flow and heating and cal-
culate its decay rate. We observe the decay rate for the
Rijke tube to be 15.8±2 s−1. To ensure consistency of the

experimental conditions and repeatability of the results,
the experiments are conducted only when the measured
acoustic decay rates lie in the aforementioned range.
Before starting any experiment, the Rijke tube is pre-

heated for 10 minutes in the steady state regime of opera-
tion by supplying DC power at 1 V to the wire mesh. The
preheating ensures a steady temperature profile inside
the Rijke tube. The experimental setup for the mutually
coupled Rijke tubes (discussed in Sec. III C) is similar to
the above description, except that we couple two identical
Rijke tubes with the connecting tube. For more experi-
mental details on mutually coupled Rijke tubes, readers
may refer to [29, 30].

III. RESULTS AND DISCUSSION

A. Experimental investigation of the self-coupled

Rijke tube

In this section, we first discuss the effect of self-
coupling on the bifurcation characteristics of the Rijke
tube as observed in our experiments. In Fig. 2(a), we
show the variation in the root-mean-square (RMS) value
of acoustic pressure fluctuations (in Pa) as a function of
the heater power (in W) in the absence of self-coupling
in the system. We denote the RMS value using p′0,rms for

FIG. 2. Variation of the RMS value of acoustic pressure fluc-
tuations with heater power in the forward and reverse paths
for (a) the uncoupled Rijke tube (p′0,rms) and (b) the self-
coupled Rijke tube (p′rms). The normalized length of the con-
necting tube is L/Lduct = 1.17 and its internal diameter is
d = 8 mm in (b). The introduction of self-coupling shifts the
Hopf point [marked as ‘H’ in (a)] and the fold point [marked
as ‘F’ in (a)] to higher values of heater power. Air flow rate
of 120 SLPM (or 0.002 m3/s) is maintained in the Rijke tube
for both the plots.
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FIG. 3. The amplitude response of the Rijke tube when self-coupling is induced for (a) p′0,rms = 120 Pa, and (b) p′0,rms = 320
Pa. The normalized change in the amplitude suppression ∆p′rms/p

′

0,rms is measured for different values of L/Lduct and d. A
large parametric region of amplitude death (AD) is observed for lower value of p′0,rms in (a); while for higher values of p′0,rms

in (b), the region of amplitude death shrink and is observed only for around L/Lduct ≈ 1 and L/Lduct ≈ 3. Air flow rate is
maintained at 80 SLPM (or 0.00133 m3/s) in the Rijke tube.

the uncoupled case and p′rms for the coupled case. In the
forward path (increasing heater power), we observe that
the transition from fixed point to limit cycle oscillations
of RMS value around 290 Pa happens via subcritical Hopf
bifurcation; while in the reverse path (decreasing heater
power), the system attains fixed point via fold bifurca-
tion when p′0,rms is around 200 Pa. Thus, the transition
between the steady state and the limit cycle oscillatory
state is explosive (subcritical) and hysteretic. In Fig.
2(a), ‘H’ denotes the Hopf bifurcation point and ‘F’ de-
notes the fold bifurcation point. We notice a bistable
region in between the two bifurcation points. When the
Rijke tube is self-coupled with a single coupling tube
of dimensions L/Lduct = 1.17 and d = 8 mm in Fig.
2(b), we observe that the system preserves the bifurca-
tion characteristics that we observed in the uncoupled
case [see Fig. 2(a)]. However, we notice that the in-
troduction of self-coupling shifts the Hopf and the fold
bifurcation points to higher values of the heater power
than those values observed for the uncoupled oscillator.
This, in turn, indicates that self-coupling enhances the
parameter space of steady state in the system; in other
words, it delays the transition to limit cycle oscillations
in the system.

Next, we study the effect of variation in the parameters
of the connecting tube (i.e., length L and diameter d) and
the RMS value of limit cycle oscillations in the uncoupled
state (p′0,rms) on the suppression characteristics in the
self-coupled Rijke tube oscillator. We note that prior
to implementing self-coupling, we establish limit cycle
oscillations in the system. As discussed in Sec. II, the
value of p′0,rms can be increased by increasing the value
of the heater power. To study the behavior of the self-
coupled Rijke tube over a larger range of p′0,rms than that
shown in Fig. 2(a), we maintain the air flow rate at a

value of 80 SLPM (or 0.00133 m3/s) in our subsequent
experiments. Lowering the air flow rate reduces the value
of p′0,rms at the Hopf point of the Rijke tube [34]. At this
air flow rate, we vary the value of p′0,rms for a larger range
of 120 Pa to 320 Pa by varying the heater power. We refer
to the dimensions of the coupling tube (i.e., L and d)
as coupling parameters and the RMS value (p′0,rms) and
frequency (f0) of limit cycle oscillations prior to coupling
as system parameters in the subsequent discussion of the
paper.

Figure 3 illustrates the amplitude response of the
self-coupled Rijke tube for different coupling parame-
ters. Here, we show the amplitude response in terms
of the normalized change in the RMS value of limit cy-
cle oscillations in the Rijke tube due to self-coupling,
∆p′rms/p

′

0,rms = (p′0,rms − p′rms)/p
′

0,rms, as a function
of L/Lduct and d. The color bar illustrates values of
∆p′rms/p

′

0,rms ranging from 0 to 1, where ∆p′rms/p
′

0,rms ≈
1 corresponds to complete suppression of limit cycle os-
cillations (i.e., amplitude death) and ∆p′rms/p

′

0,rms ≈ 0
indicates the absence of any suppression of limit cycle
oscillations in the Rijke tube due to self-coupling. We
study the response of the self-coupled Rijke tube oscilla-
tor for two different RMS values of limit cycle oscillations
in the uncoupled state: p′0,rms = 120 Pa [see Fig. 3(a)],
and p′0,rms = 320 Pa [see Fig. 3(b)].

In Fig. 3(a), we note that when the RMS value of
the limit cycle oscillations is low (p′0,rms = 120 Pa), self-
coupling of the Rijke tube causes a significant reduction
in the amplitude of acoustic pressure oscillations for a
vast parametric region of coupling parameters. However,
as the value of p′0,rms is increased to a higher value of 320
Pa in Fig. 3(b), we observe the region of amplitude death
only around odd values L/Lduct (i.e., L/Lduct ≈ 1 and
3). We also notice that the range of L/Lduct for which



5

FIG. 4. The suppression of acoustic pressure fluctuations in the self-coupled Rijke tube is shown for different values of the
normalized length of connecting tube (L/Lduct) and the RMS value of oscillations in the uncoupled state (p′0,rms) when the
internal diameter of coupling tube (d) is fixed at (a) 4 mm, and (b) 8 mm. Air flow rate is maintained at 80 SLPM (or 0.00133
m3/s) in the Rijke tube.

the Rijke tube exhibits amplitude death increases as the
internal diameter of the coupling tube (d) is increased.

Next, we examine in detail the amplitude response
of the self-coupled Rijke tube on variation of the RMS
value of the limit cycle oscillations in the uncoupled state
(p′0,rms) and the normalized length of the connecting tube
(L/Lduct). The internal diameter of the coupling tube
is kept constant at 4 mm and 8 mm in Fig. 4(a) and
4(b), respectively. Note that the ordinate representing
the p′0,rms values is unevenly distributed. In Fig. 4, we
observe that limit cycle oscillations of low RMS values
(i.e., for p′0,rms ≤ 140 Pa), and thus low amplitudes, can
be easily suppressed for a large range of L/Lduct. As
p′0,rms is increased above 140 Pa, we notice that the am-
plitude death region shrinks and occurs only in a narrow
range of L/Lduct. For a low value of d in Fig. 4(a), we
observe amplitude death to occur near L/Lduct = 1 when
p′0,rms is greater than 140 Pa. In contrast, we notice two
distinct regions of amplitude death in Fig. 4(b) when
the value of d is increased to 8 mm. Here, the two re-
gions of amplitude death occur at around L/Lduct = 1
and 3, respectively, which is similar to what we observed
in Fig. 3(b). Thus, from Figs. 3 and 4, we infer that
self-coupling can quench small amplitude limit cycle os-
cillations for a large range of coupling parameters. On
the other hand, the quenching of large amplitude limit
cycle oscillations is possible only for a critical range of
the length of the coupling tube and it is comparatively
easy when the diameter of the coupling tube is bigger.

So far, we have investigated the behavior of the self-
coupled Rijke tube for a fixed location of the coupling
tube. We next examine how varying the coupling loca-
tion affects the quenching of limit cycle oscillations by
tracking the temporal variation of acoustic pressure os-
cillations in the system. We observe that as compared to

the uncoupled state [depicted in Fig. 5(a)], coupling the
Rijke tube at a location towards the end of the duct does
not cause significant suppression of limit cycle oscillations
[Fig. 5(b)]. On the other hand, when the location of the
coupling tube along the duct of the Rijke tube is closer
to the center [Fig. 5(c)], the oscillations are quenched
and amplitude death is achieved. This suggests that the
optimal axial location of the coupling tube for mitigat-
ing thermoacoustic instability is around the center of the
Rijke tube. We discuss this behavior of the self-coupled
Rijke tube through modeling in the next section.

B. Theoretical analysis of the self-coupled Rijke

tube oscillator

In this section, we theoretically analyze a model of
the self-coupled Rijke tube oscillator. We build on the
reduced-order model of the horizontal Rijke tube pro-
posed by Balasubramanian and Sujith [35]. We derive
the governing equations of the self-coupled Rijke tube
in the following manner. First, we consider the non-
dimensionalized linearized momentum and energy equa-
tions for the acoustic field of the duct by neglecting the
effect of mean flow (zero Mach number approximation
[36]) and mean temperature gradient:

γM
∂u′

∂t
+

∂p′

∂x
= 0, (1)

∂p′

∂t
+ γM

∂u′

∂x
+ ζp′ = (γ − 1)Q̇′δ(x− xf ) + Cδ(x− xc).

(2)

Here, x is the axial distance non-dimensionalized by
the length of the duct Lduct. t is the time non-
dimensionalized by the ratio Lduct/c0, where c0 is the
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FIG. 5. Schematics of the Rijke tube and the time series of the acoustic pressure fluctuations (p′) depict the effect of
coupling location on the suppression of thermoacoustic instability for: (a) the uncoupled Rijke tube, (b,c) and the self-coupled
Rijke tube when the coupling tube is fixed at a distance (xc) of 0.82 and 0.55 from the inlet, respectively. All distances are
non-dimensionalized by the length of the Rijke tube, Lduct = 1.04 m. Other parameters are maintained as p′0,rms = 200 Pa,
Lduct = 95 cm, and d = 4 mm in all of the plots.

speed of sound. u′ and p′ are the acoustic velocity
and acoustic pressure, non-dimensionalized by the steady
state velocity (u0) and pressure (p0), respectively, of the
air flowing through the Rijke tube. γ is the ratio of spe-
cific heats, while M is the Mach number (M = u0/c0).

ζ captures the damping in the model. Q̇′ is the non-
dimensional heat release rate fluctuations per unit area
from the heat source. C is the self-coupling term added
to account for the effects induced by the connecting tube.
Q̇′ is multiplied by a Dirac delta function to indicate that
the heat source is concentrated at the non-dimensional
heater location xf in the Rijke tube. Similarly, the two
ends of the connecting tube are located at the same cou-
pling location xc along the axial length of the Rijke tube.
We formulate Q̇′ using the correlation given by Heckl [37]:

Q̇′ =
2Lw(Tw − T0)

c0p0S
√
3

√

πλTCvu0ρ0rw

×

[
√

∣

∣

∣

∣

1

3
+ u′(x, t− τh)

∣

∣

∣

∣

−
√

1

3

]

,

(3)

where rw, Tw, and Lw are the radius, the temperature,
and the length of the heated wire, respectively. T0 and
ρ0 are the steady state temperature and density of the
medium. S is the cross-sectional area of the duct. λT and
Cv are the thermal conductivity and the specific heat at
constant volume of the medium, respectively. u′(x, t−τh)
is the acoustic velocity at time t−τh. Here, the time lag,

τh, accounts for the thermal inertia of heat transfer in
the medium [38].
We use time-delay coupling to capture the effect of de-

layed interaction of acoustic waves propagating through
the connecting tube with the acoustic field of the duct.
The coupling term is described by the following expres-
sion:

C = Kτ [p
′(x, t− τ)− p′(x, t)] , (4)

where Kτ is the coupling strength and τ is the coupling
delay characterizing the time it takes for the acoustic
waves to propagate through the connecting tube.
The normalized length of the connecting tube

(L/Lduct) in the experiment can be related to the cou-
pling delay (τ) in the model in the following manner:

τ =
τ̃

Lduct/c0
, (5)

where τ̃ is the dimensional coupling delay. Assuming
that the acoustic waves propagate through the connect-
ing tube at speed c0, the time taken by the sound waves
to travel through connecting tube is

τ̃ = L/c0. (6)

Hence,

τ =
L/c0

Lduct/c0
= L/Lduct. (7)
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Substituting Eq. (3) and (4) into the energy equation
Eq. 2, we get the following equation:

∂p′

∂t
+ γM

∂u′

∂x
+ ζp′

=
K

2

[
√

∣

∣

∣

∣

1

3
+ u′(t− τh)

∣

∣

∣

∣

−
√

1

3

]

δ(x− xf )

+Kτ [p
′(x, t− τ)− p′(x, t)] δ(x− xc), (8)

where K is the non-dimensional heater power given by:

K =
4(γ − 1)Lw

γMc0p0S
√
3
(Tw − T0)

√

πλTCvu0ρ0rw. (9)

We now employ the Galerkin technique [39] to decom-
pose the partial differential equations given by Eq. (1)
and (8) into a set of ordinary differential equations. To
that end, we choose the basis functions of u′ and p′ to
be the natural acoustic modes of the duct in the absence
of the heater [35]. The duct of the Rijke tube is open at
both ends, where the total pressure (p) must equal the
ambient pressure (p0). As a result, the acoustic pressure
fluctuations (p′ = p − p0) are absent at the ends of the
tubes. So, the basis functions must satisfy the boundary
conditions p′(0, t) = p′(1, t) = 0. Thus, u′ and p′ are
decomposed into their modes as:

u′(x, t) =

N
∑

j=1

ηj cos(jπx), (10)

p′(x, t) = −
N
∑

j=1

γM

jπ
η̇j sin(jπx), (11)

where ηj and η̇j are the time-varying coefficients of the
jth mode of u′ and p′, respectively, and N is the total
number of Galerkin modes considered in the expansion.
On employing the Galerkin technique, we obtain the set
of ordinary differential equations from the partial differ-
ential equations Eq. (1) and (8) as:

η̈j + 2ζjπη̇j + (jπ)2ηj

=− jπK

[
√

∣

∣

∣

∣

1

3
+ u′

f (t− τh)

∣

∣

∣

∣

−
√

1

3

]

sin(jπxf )

−
jπ

γM
Kτ [p

′

c(t− τ)− p′c(t)] sin(jπxc), (12)

where u′

f (t−τh) = u′(xf , t−τh) and p′c(t−τ) = p′(xc, t−
τ). ζj is the frequency dependent damping given by [28]:

ζj =
1

2π

(

c1
ωj

ω1

+ c2

√

ω1

ωj

)

, (13)

where c1 and c2 are the damping coefficients. Equa-
tion (12) represents the set of governing equations for
the self-coupled Rijke tube oscillator.

Before performing numerical simulations on the model,
we attempt to derive the conditions for attaining ampli-
tude death in the system analytically. Towards this pur-
pose, we determine the stability of the steady state in the
system and locate the parameter values where the solu-
tion ηj = 0 loses its stability. We first simplify Eq. (12) by
considering only the first mode and linearizing the heat
release rate term under the assumption of small ampli-
tudes [40]. We subsequently drop the subscript j and
perform algebraic manipulations to yield the following
differential equation:

η̈ + 2ζπη̇ + π2η = −
√
3

4
K sin(2πxf )η(t− τh)

+Kτ [η̇(t− τ)− η̇(t)] sin2(πxc). (14)

We now substitute a solution of the form η = eqt into
Eq. (14), where q = p + iω is an eigenvalue of the dif-
ferential equation. Here, p is the real part of the eigen-
value and it describes the rate at which perturbations to
the steady state decay or grow. ω is the imaginary part
of the eigenvalue and it describes the angular frequency
with which the perturbations oscillate while decaying or
growing in magnitude [41]. Thus, when p < 0, the steady
state is stable in the self-coupled system and so ampli-
tude death can be achieved. In this manner, we detect
the critical parameter values for which p changes its sign
(i.e., crossing p = 0) and obtain the expressions for the
boundary demarcating the amplitude death region as:

tan
(ωτ

2

)

=

√
3Kπ sin(2πxf ) sin(ωτh)− 8πζω√

3Kπ sin(2πxf ) cos(ωτh) + 4(π2 − ω2)
,

(15)

Kτ =
8πζω −

√
3Kπ sin(2πxf ) sin(ωτh)

4 sin2(πxc) (ω cos(ωτ)− 1)
, (16)

where ω is the imaginary part of q. Since the natural
frequency of the first mode of the duct in the absence of
the heater is π, we vary the value of ω around this value
to yield the parametric curve describing the boundary
of the amplitude death region, as illustrated later on in
Fig. 6(a).
To further simplify the conditions for obtaining AD, we

employ the method of averaging on the linearized equa-
tion Eq. (14) by assuming additionally small values of K,
Kτ , τh, and τ . This gives us the condition for amplitude
death as:

cos(ωτ) < 1−
√
3K sin(2πxf ) sin(ωτh)− 8πζ

4Kτ sin
2(πxc)

. (17)

We use the above condition subsequently in Fig. 6(c) to
demarcate the parametric regions of amplitude death and
compare it with our numerical and experimental results.
Next, we discuss the effect of self-coupling on the oc-

currence of amplitude death in the model of the hori-
zontal Rijke tube. We primarily vary four parameters in
the model: (i) coupling strength (Kτ ), (ii) coupling de-
lay (τ), (iii) non-dimensional heater power (K), and (iv)
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FIG. 6. (a) Two-parameter bifurcation plot between coupling strength (Kτ ) and coupling delay (τ) showing multiple regions
of amplitude death (AD) in the model of the self-coupled Rijke tube oscillator. The black curve denotes the boundary between
the regions of AD and limit cycle oscillatory state (LCO) determined using linear stability analysis. Inset containing a part of
the bifurcation plot shows the presence of LCO for low coupling strength. (b) One-parameter bifurcation plot between p′rms

and Kτ for τ = 1 illustrates the occurrence of explosive transition and hysteresis between LCO and AD in the system. The
non-dimensional heater power K is maintained at 1.2 in (a) and (b). (c) Two-parameter bifurcation between K and τ shows
the oscillating boundary of the amplitude death region with τ in the system. The black curve denotes the boundary between
the AD and LCO regions obtained analytically using the method of averaging. (d) One-parameter bifurcation plot between
p′rms and K for τ = 1. Kτ is maintained at 0.05 in (c) and (d).

coupling location (xc). We utilize the approximate ana-
lytical solutions shown in Eqs. (15)-(17) to visualize the
optimal conditions for achieving amplitude death in the
self-coupled Rijke tube. We also perform numerical simu-
lations by numerically integrating the governing equation
of the model Eq. (12) using the inbuilt function dde23 of
MATLAB® [42]. In all of our simulations, we measure
the dynamics of the acoustic pressure fluctuations in the
Rijke tube at the heater location xf . We use the first
5 modes for our numerical simulations since we observe
negligible changes in the dynamics of the system on con-
sideration of higher modes [43]. In Eq. (12), we fix the
values of τh, γ, c0, c1 and c2 at 0.2, 1.4, 340 m/s, 0.1 and
0.06, respectively, based on previous theoretical studies
[43, 44]. According to the experiments in the present
study, we maintain the value of M at 4.49×10−4 and xf

at 0.256. We restrict the range of our system parameter
K to 1.2 so that we primarily excite the first mode of the
Rijke tube and obtain period-1 limit cycle oscillations in
the uncoupled state of the system.

First, we examine the effect of varying the coupling

strength (Kτ ) and coupling delay (τ) on the dynamical
behavior of the self-coupled Rijke tube. In Fig. 6(a), we
show the two-parameter bifurcation diagram between the
coupling parameters Kτ and τ for a high value of non-
dimensional heater power (K = 1.2). The coupling loca-
tion xc is fixed at 0.55, which is the same as in our exper-
iments. We observe that self-coupling can subdue high
amplitude thermoacoustic oscillations in the Rijke tube
for particular ranges of coupling delay and these ranges
are roughly centered around odd numbers of τ . Addi-
tionally, we notice that the islands of amplitude death de-
crease in size with an increase τ . We compare Figs. 3(b)
with 6(a) using the relation given in Eq. (7). This shows
that our model matches with the experimental observa-
tion that the optimal values of connecting tube length
for achieving amplitude death are odd multiples of the
length of the Rijke tube.

In Fig. 6(b), we track the variation of the RMS value of
the limit cycle oscillations (p′rms) in the self-coupled Rijke
tube over a small range of coupling strength for a fixed
value of coupling delay (τ = 1). We observe that the
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transition from limit cycle oscillatory state to amplitude
death occurs through fold bifurcation on increasingKτ in
the forward path, while the transition back to the state
of limit cycle oscillations occurs through subcritical Hopf
bifurcation in the reverse path. As a result, we observe
hysteresis or bistability between the states of limit cy-
cle oscillations and amplitude death in the self-coupled
Rijke tube. The bistable region surrounds each island
of amplitude death, as seen in Fig. 6(a). The bistable
zone is significantly wider for higher values of coupling
strength. The boundary demarcating the regions of am-
plitude death derived using linear stability analysis [ob-
tained from Eq. (15) and (16)] matches well with the
outer boundary of the bistable zone. This is because lin-
ear stability analysis predicts the local stability of the
fixed point η = 0, and thus finds the Hopf point of the
system [41]. Slight differences exist between the analyti-
cal and numerical results due to our assumption of single
mode.

We next examine how variation in the non-dimensional
heater power influences the behavior of the self-coupled
Rijke tube. Figure 6(c) demonstrates the effect of the
non-dimensional heater powerK on the acoustic pressure
fluctuations in the system as τ is varied for a particular
coupling strength (Kτ = 0.05). As we know, an increase
in K corresponds to an increase in the amplitude of limit
cycle oscillations in the uncoupled state. We observe am-
plitude death for lower values of K, i.e., for low ampli-
tudes of limit cycle oscillations in the uncoupled state.
For sufficiently high values of K, i.e., high amplitudes of
limit cycle oscillations in the uncoupled state, the oscilla-
tions continue to exist even on introducing self-coupling,
regardless of the value of τ . Furthermore, we observe that
the boundary of the region of amplitude death oscillates
with τ , with the peaks at around τ = 1, 3, 5, .... On
increasing K at these values of τ , the amplitude death
region tapers out and subsequently disappears at high
values. This behavior of the model qualitatively resem-
bles the experimental results presented in Fig. 4(b). We
also note that the transition between the states of limit
cycle oscillations and amplitude death on varying K is
explosive and hysteretic in Fig. 6(d), similar to what we
observe in experiments [refer to Fig. 3(b)]. In Fig. 6(c),
we see that the boundary of the amplitude death region
obtained using the method of averaging [from Eq. (17)]
matches well with the numerical results, especially for
small values of τ where our simplifying assumptions are
valid.

We now investigate the effect of the position of the
coupling tube along the length of a Rijke tube on the
suppression of limit cycle oscillations in the model. The
position of the coupling tube is denoted as xc in the right-
hand-side of Eq. (12). Figure 7 illustrates the change in
the RMS value of the limit cycle oscillations (p′rms) on
variation of xc while all other parameters are kept fixed
in the system. We observe a region of amplitude death
when the connecting tube is around midway along the
duct in the model. On the other hand, when xc is to-

FIG. 7. (a) One-parameter bifurcation plot depicting the
variation in p′rms with the location of the self-coupling tube
on the duct (xc) for the self-coupled Rijke tube. The black
(red) curve denotes the case when the Rijke tube is coupled
after (before) it reaches limit cycle oscillatory state. The re-
gion highlighted in yellow denotes the values of xc for which
amplitude death is achieved if the Rijke tube is coupled at
the start but not on coupling after oscillations are established.
(b) Standing wave pattern obtained by plotting the maximum
and minimum values of the acoustic pressure oscillations (p′0)
in the uncoupled Rijke tube at different positions (x) along
the duct. The antinode of the acoustic standing wave is ob-
served at the middle of the duct, which is the optimal coupling
location for achieving amplitude death in the self-coupled Ri-
jke tube, as seen in (a). Kτ = 0.05, τ = 1, and K = 0.8 are
maintained in both the plots.

wards the ends of the duct (i.e., xc is close to 0 or 1), we
notice that the self-coupled Rijke tube retains the state
of limit cycle oscillations. Thus, the model substantiates
our observations from experiments (Fig. 5 of Sec. III A)
where we noted the optimal coupling location for achiev-
ing amplitude death to be around the middle of the Rijke
tube.
In order to understand why the optimal value of xc

leading to amplitude death is around the middle of the
Rijke tube, we examine how the acoustic standing wave
pattern looks in the Rijke tube prior to coupling [refer
Fig. 7(b)]. Since the first acoustic mode is primarily
excited in the Rijke tube, the acoustic standing wave
pattern has nodes at the end of the duct and an antin-
ode at around the middle of the duct (at x ≈ 0.5).
Thus, on coupling the Rijke tube around the antinode
of the acoustic standing wave, the Rijke tube receives
the strongest acoustic feedback, easing the occurrence of
AD. In Fig. 7(a), we consider two cases of self-coupling:
(i) when we let the Rijke tube attain limit cycle oscil-
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FIG. 8. Trends in the relative suppression of the acoustic pressure oscillations (∆p′/p′0,rms) in two mutually coupled identical
Rijke tubes and in a self-coupled Rijke tube with change in (a) the normalized length of the connecting tube (L/Lduct) in
experiments (d = 8 mm and p′0,rms = 320 Pa) and (b) the coupling delay (τ) in the model (Kτ = 0.05 and K = 0.81).
The highlighted green region indicates the range of L/Lduct or τ where the self-coupled Rijke tube exhibits greater amplitude
suppression than the mutually coupled system.

lations and then induce self-coupling, and (ii) when we
couple the Rijke tube at the start when the transients are
small, i.e., before limit cycle oscillations are established
in the duct. We observe wider region of amplitude death
in the second case when self-coupling is induced to begin
with.
Thus, through experiments and modeling, we showed

that self-coupling can bring about amplitude death of
limit cycle oscillations in a thermoacoustic system for op-
timal values of coupling and system parameters. Recent
studies have exploited the method of mutual coupling to
quench limit cycle oscillations in two thermoacoustic os-
cillators [29–32, 44, 45]. Hence, we next compare how ef-
fective self-coupling is in quenching high amplitude limit
cycle oscillations in a thermoacoustic oscillator as com-
pared to mutual coupling of two such identical oscillators,
through both experiments and modeling.

C. Comparison between self-coupled and mutually

coupled Rijke tube oscillators

In order to compare the amplitude suppression charac-
teristics of limit cycle oscillations in a mutually coupled
system of identical Rijke tubes and a single self-coupled
Rijke tube, we set the same system and coupling parame-
ters and measure the fractional change in the RMS value
of limit cycle oscillations after coupling is induced in the
system (∆p′rms/p

′

0,rms). We repeat this for different val-
ues of the normalized coupling tube length (L/Lduct) in

experiments or the coupling delay (τ) in the model. In
both the experiments and the model [Fig. 8(a) and 8(b),
respectively], we observe that in the green regions present
around odd values of L/Lduct or τ , the self-coupled sys-
tem suppresses limit cycle oscillations to a greater ex-
tent than the mutually coupled system and even induces
amplitude death. Away from these optimal values of
L/Lduct or τ , the Rijke tube exhibits almost the same
magnitude of amplitude suppression for both self and
mutual couplings. Here, we note that previous studies
have introduced frequency mismatch to quench high am-
plitude limit cycle oscillations in mutually coupled Rijke
tubes [29, 30]. We do not consider such mismatch in the
current study. Thus, we emphasize that a self-coupled
system performs significantly better in suppressing the
oscillations in a nonlinear system, compared to the am-
plitude suppression in a mutually coupled system of iden-
tical oscillators.

IV. CONCLUSIONS

In this study, we demonstrated that limit cycle os-
cillations can be quenched in a thermoacoustic system
through the method of self-coupling, wherein we couple
the acoustic field of a thermoacoustic oscillator to itself
using a connecting tube. This method removes the need
for electromechanical components that are present in tra-
ditional feedback control strategies. Through experi-
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ments and modeling, we found that the optimal lengths
of the connecting tube to achieve amplitude death are
around odd multiples of the length of the Rijke tube. In-
creasing the diameter of the connecting tube increases
the ranges of the connecting tube length over which am-
plitude death can be achieved. Additionally, we ob-
served that oscillations of low amplitude are more easily
quenched as compared to those of high amplitude. Fur-
thermore, our experiments and model indicate the opti-
mal axial location of the connecting tube to be around
the antinode of the acoustic standing wave in the un-
coupled Rijke tube. We observed that the transition
between steady state and oscillatory state is explosive
and hysteretic in the self-coupled Rijke tube, similar to
the behavior of the uncoupled Rijke tube. Furthermore,
we demonstrated that self-coupling is more effective in
achieving amplitude death in a Rijke tube as compared
to mutual coupling of two such identical Rijke tubes.
Thus, we anticipate self-coupling to be a simple, cost-
effective alternative to traditional feedback controls for
mitigating thermoacoustic instability in single and mul-
tiple thermoacoustic systems, such as those practical gas

turbine and rocket combustors. It would be interesting
to explore the mitigation of thermoacoustic instability
through the combined application of self and mutual cou-
plings in multiple combustion systems. Quenching trans-
verse thermoacoustic instabilities in a combustor through
self-coupling is also a scope for future studies.
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