Header menu link for other important links
X
Self-association behaviour of atactic polymethacrylic acid in aqueous solution investigated by atomistic molecular dynamics simulations
Published in Taylor and Francis Ltd.
2015
Volume: 41
   
Issue: 13
Pages: 1110 - 1121
Abstract

The self-association behaviour of atactic poly(methacrylic acid) (a-PMA) in water was investigated by atomistic molecular dynamics (MD) simulations. Simulations show that interchain association of a-PMA occurs only in its un-neutralised form, by hydrogen bonding between -COOH groups, which is in agreement with the experimental observation. Chain conformations, dihedral angle distributions, hydration behaviour, scattering structure factor and enthalpy-of-hydration (i.e. aqueous solvation) were analysed as a function of concentration for un-neutralised PMA, across dilute to concentrated regimes. The average Rg of the chain remains unaffected in solution and also for amorphous undissolved a-PMA phase, confirming the occurrence of the approximate theta-solution condition for the first time, as revealed by simulations, in a polar hydrogen-bonding polymer aqueous solution. Chain hydration behaviour and scattering structure factor show significant changes in concentrated regime. Scattering intensity collapse occurs in concentrated PMA solution, due to the existence of the swollen regime captured for the first time by explicit-MD-simulations. The hydration of PMA is driven by H-bonding, specifically between H atoms of the COOH groups and O atoms of water molecules in the closest coordination shell. The enthalpy of hydration of PMA is dominated by PMA-water interactions (charges and H-bonding). The thermodynamic contributions of PMA-PMA and PMA-water interactions towards the electrostatics as well as the dispersion components of the total solvation-enthalpy become more favourable than water-water interactions. © 2014 Taylor & Francis.

About the journal
JournalData powered by TypesetMolecular Simulation
PublisherData powered by TypesetTaylor and Francis Ltd.
ISSN08927022
Open AccessNo
Concepts (23)
  •  related image
    Association reactions
  •  related image
    Atoms
  •  related image
    Chains
  •  related image
    Dihedral angle
  •  related image
    Enthalpy
  •  related image
    Hydration
  •  related image
    Hydrogen
  •  related image
    Molecular dynamics
  •  related image
    Molecules
  •  related image
    Polymers
  •  related image
    Quantum theory
  •  related image
    Solvation
  •  related image
    Statistical mechanics
  •  related image
    Thermodynamics
  •  related image
    AQUEOUS
  •  related image
    Atomistic molecular dynamics
  •  related image
    Atomistic molecular dynamics simulations
  •  related image
    Hydrophilic polymers
  •  related image
    POLY (METHACRYLIC ACID)
  •  related image
    POLYMER AQUEOUS SOLUTION
  •  related image
    SELF-ASSOCIATIONS
  •  related image
    Watersoluble polymers
  •  related image
    Hydrogen bonds