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Abstract: Charged lepton flavor violation is forbidden in the Standard Model but pos-

sible in several new physics scenarios. In many of these models, the radiative decays

τ± → ℓ±γ (ℓ = e, µ) are predicted to have a sizeable probability, making them particularly

interesting channels to search at various experiments. An updated search via τ± → ℓ±γ us-

ing full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1,

is reported for charged lepton flavor violation. No significant excess over background pre-

dictions from the Standard Model is observed, and the upper limits on the branching

fractions, B(τ± → µ±γ) ≤ 4.2 × 10−8 and B(τ± → e±γ) ≤ 5.6 × 10−8, are set at 90%

confidence level.
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1 Introduction

Charged lepton flavor violation (CLFV) is forbidden in the Standard Model but occurs with

a yet unobservably small probability, O(10−40), via neutrino oscillations [1]. However, it is

enhanced in theories beyond the Standard Model (BSM) such as Minimal Supersymmetric

Standard Model, grand unified theories and seesaw mechanisms [2–4]. Several BSM models

predict CLFV processes occurring at an observable level in experiments. An observation

of CLFV would be a clear signature of BSM, making the search for this phenomenon one

of the high-priority physics tasks.

In several models [2–4], the radiative decays τ± → ℓ±γ (ℓ = e, µ) have a sizeable

probability, making them highly motivated channels. In the past, searches for τ± → ℓ±γ

were performed by the Belle and BaBar experiments [5, 6]. Belle used 535 fb−1 data

corresponding to 477 × 106 tau pairs (Nττ ) delivered by the KEKB asymmetric-energy

e+e− collider1 and set upper limits on the branching fractions at the 90% confidence level:

B(τ± → µ±γ) < 4.5 × 10−8 and B(τ± → e±γ) < 1.2 × 10−7 [5]. Similarly, BaBar set

upper limits by using 516 fb−1 data equivalent to Nττ = 480 × 106 delivered by the PEP-II

asymmetric-energy e+e− collider [9]: B(τ± → µ±γ) < 4.4 × 10−8 and B(τ± → e±γ) <

3.3 × 10−8 [6].

In this paper, an update search for τ± → ℓ±γ decays at the Belle experiment is

reported. Since the tau pairs are produced via the e+e− → τ+τ− process, we use all

Υ(nS) resonance data corresponding to a luminosity of 5.7 fb−1 at Υ(1S), 24.9 fb−1 at

Υ(2S), 2.9 fb−1 at Υ(3S), 711 fb−1 at Υ(4S), and 121.4 fb−1 at the Υ(5S) resonance [10]. In

addition, a data sample recorded 60 MeV below the Υ(4S) resonance is used [10]. The total

integrated luminosity is 988 fb−1, which corresponds to Nττ = 912 × 106 [10]. This sample

represents the largest number of tau-pair events recorded by a single e+e− experiment.

The Belle detector was a large-solid-angle magnetic spectrometer consisting of a sil-

icon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel

1See ref. [7] and other papers included in this Volume. See also ref. [8] and references therein.

– 1 –
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threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintilla-

tion counters (TOF), and an electromagnetic calorimeter (ECL) comprising CsI(Tl) crys-

tals. All these components are located inside a superconducting solenoid coil that provides

a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented with

resistive plate chambers to detect K0
L mesons and muons (KLM). The detector is described

in detail elsewhere [11].

This analysis uses Monte Carlo (MC) simulated samples to optimize event selec-

tion as well as to estimate signal and background contributions. Signal MC samples

and generic τ+τ− processes are generated by KKMC and TAUOLA [12]. Other back-

ground processes, namely, e+e−γ (e+e− → e+e−γ), µ+µ−γ (e+e− → µ+µ−γ), two-

photon (e+e− → e+e−ℓ+ℓ−), and qq̄ (e+e− → qq̄, q = u, d, s, c, b) events are generated

by BHLUMI [13], KKMC [12], AAFH [14], and EvtGen [15], respectively. Signal MC sam-

ples are τ+τ− pair events with one of the taus decaying to the ℓ±γ final state and the other

generically. The detector simulation is done using GEANT3-based program [16].

2 Event selection

Photon candidates are selected from ECL clusters that are consistent with an electromag-

netic shower but not associated with any charged tracks. This analysis uses a photon with

energy from 100 MeV to 6 GeV, and is thus sensitive to the photon energy resolution over

a broad energy range. We have revised the photon-energy calibration method using the

e+e− → µ+µ−γ events for the first time at Belle. The photon energy resolution is evaluated

by subtracting the recoil energy of the µ+µ− system from the photon energy measured in

the ECL for data and MC simulation. Figure 1 shows the energy resolution obtained as a

function of the reconstructed photon energy in the e+e− → µ+µ−γ events. The calibrated

resolution in simulation agrees with that in data as well as is compatible with the test-beam

result [17]. This is a major improvement with respect to the previous analysis [5].

Muon candidates are identified using a likelihood ratio, Lµ, which is based on the

difference between the range of the track calculated from the particle momentum and

that measured in the KLM. This ratio includes the value of χ2 formed from the KLM hit

locations with respect to the extrapolated track. The muon identification efficiency for the

selection applied Lµ > 0.95 is 90%, with a pion misidentification probability of 0.8% [18].

Identification of electrons uses an analogous likelihood ratio, Le, based on specific ionization

from the CDC, the ratio of the energy deposited in the ECL to the momentum measured

by the CDC and SVD combined, the shower shape in the ECL, hit information from the

ACC, and matching between the position of the charged track and the ECL cluster. The

electron identification efficiency for the selection applied Le > 0.9 is 95%, with a pion

misidentification probability of 0.07% [19].

We follow a blind analysis approach in this search, where the data in the interesting

kinematic region remain hidden until the selection criteria and background estimation

strategy are finalized. All selection criteria are optimized in order to maximize the search

sensitivity, ǫ/
√

Nbkg, where ǫ is the overall signal efficiency and Nbkg is the number of

– 2 –
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Figure 1. Energy resolution as a function of the reconstructed photon energy in the e+e− → µ+µ−γ

events. Black (Blue) points are the photon energy resolution with (without) the calibration applied.

Error bars are the statistical uncertainties.

background events. Since we use all Υ(nS) resonance data with different center-of-mass

energy
√

s, some of the selection variables are scaled by
√

s.

The following preselection criteria are applied in this search. Exactly two oppositely

charged track are required to make the event’s net charge zero to suppress qq̄ events.

Candidate events are retained if both tracks have pCM ≤ 0.43
√

s GeV/c, pT ≥ 0.1 GeV/c

and −0.866 < cos θtrack < 0.956 in order to reduce e+e−γ, µ+µ−γ, and two-photon events

Here, θtrack is the polar angle of the track in the laboratory frame. For the search of

τ± → e±γ decays, the tracks that go through gaps between ECL crystals must be rejected

to avoid misidentification of electrons. Thus, the tracks are required to lie within the

ECL acceptance, cos θtrack ∈ [−0.907, −0.652] ∪ [−0.602, 0.829] ∪ [0.854, 0.956]. Photons

are required to have an energy Eγ > 0.1 GeV within the region, −0.625 < cos θγ < 0.846,

where θγ is the polar angle of the photon in the laboratory frame.

A τ+τ− pair event is divided into two hemispheres in the CM frame using a thrust

vector [20, 21]: signal- and tag-side tau. The signal-side tau decays to a muon (electron)

and a photon for the τ± → µ±γ (τ± → e±γ) search. The number of photons in the signal

side should be exactly one, which must have Eγ > 0.5 GeV and −0.602 < cos θγ < 0.829 to

suppress misreconstructed photons.

The tag-side tau is assumed to undergo one-prong decays such as τ → eνν̄, µνν̄, πν,

and ρν. If the track in the tag side is identified as an electron or a muon, the event is

classified as a leptonic channel. Otherwise, the event is classified as a π or ρ channel. If

there are no photons in the tag side, the event is classified as a π channel. Otherwise, it is a

ρ channel. In order to reduce the µ+µ−γ (e+e−γ) contamination, an extra muon (electron)

is vetoed using the criterion, Lµ < 0.1 (Le < 0.1) for τ± → µ±γ (τ± → e±γ) search.

After preselecting events, the following selection criteria are applied to further suppress

background events. The total visible energy in the CM frame, ECM
total/

√
s, is required to be

smaller than 0.93 for the leptonic channel, 0.86 for the π channel, and 0.94 for the ρ channel.

– 3 –



J
H
E
P
1
0
(
2
0
2
1
)
0
1
9

Since the energy of neutrinos is different for these channels, the quantitative criteria are

accordingly changed for them. For the ρ channel, an energy sum of the two charged tracks

and the photon in the signal side, ECM
sum/

√
s, is also required to be smaller than 0.86 due

to extra π0 in the tag side, while no such requirement is applied for other channels. These

requirements further suppress the e+e−γ and µ+µ−γ events. The cosine of the angle

between the two tracks, cos θtrack(sig,tag), and that between the track and the photon in

the signal side, cos θℓγ , are required to be cos θtrack(sig,tag) < 0.0, and 0.4 < cos θℓγ < 0.8,

respectively, to reject τ+τ− background events that contain π0’s from tau decays.

The missing momentum is calculated by subtracting the sum of the three-momenta of

all charged tracks and photons from the sum of the beam momenta in laboratory frame.

Its magnitude |~pmiss| is required to be greater than 0.4 GeV/c. The cosine of the polar

angle of ~pmiss is required to be −0.866 < cos θmiss < 0.956. A criterion on the cosine

of the angle between ~pmiss and the tag-side track, 0.4 < cos θmiss,track(tag) < 0.98 (0.4 <

cos θmiss,track(tag) < 0.99) for τ± → µ±γ (τ± → e±γ) search is also required. These re-

quirements can suppress e+e−γ and µ+µ−γ events. We define the missing-mass-squared

on the tag side as m2
ν = (ECM

ℓγ − ECM
tag )2 − |~p CM

miss |2, where ECM
ℓγ (ECM

tag ) is the sum of the

energy of the signal (tag) side in the CM frame, to reduce background events. Here, the

natural unit c = 1 is used in the formula throughout the paper. Since τ+τ− events are

produced back-to-back in the CM frame and there are no neutrinos in the signal side for

τ± → ℓ±γ events, the energy of tag-side tau in the CM frame is taken as that of the

signal-side tau, ECM
ℓγ and the missing momentum of tag-side tau is taken as that of the

whole event. Figure 2 shows the distribution of m2
ν . The signal distribution is distinct from

background due to the kinematic difference. Since the distribution depends on the number

of neutrinos, a quantitative criterion is accordingly adjusted for each channel; the specific

requirements are 0.0 GeV2/c4 < m2
ν < 2.8 GeV2/c4 for the leptonic channel, −0.1 GeV2/c4

< m2
ν < 1.2 GeV2/c4 for the π channel, and −0.3 GeV2/c4 < m2

ν < 1.5 GeV2/c4 for the ρ

channel in order to reduce τ+τ− background events.

In order to improve search sensitivity, two more variables are introduced. The first

one is an energy asymmetry between the lepton and the photon in the signal side, |ECM
ℓ −

ECM
γ |/(ECM

ℓ + ECM
γ ). The signal events are two-body decays, while the main background

arises from three-body decays, τ± → ℓ±νℓντ . Thus, the energy asymmetry should be larger

in background events. We apply a requirement of |ECM
ℓ −ECM

γ |/(ECM
ℓ +ECM

γ ) < 0.65. The

second variable, ξ CM
τ(tag),track(tag) is defined as follows. The missing mass squared against a

charged track in the tag-side tau is written as

m2
miss.track(tag) = [pCM

τ(tag) − pCM
track(tag)]

2 (2.1)

= m2
τ(tag) + m2

track(tag) − 2[ECM
τ(tag)E

CM
track(tag) − ~p CM

τ(tag) · ~p CM
track(tag)],

where pCM
τ(tag) = [ECM

τ(tag), ~p CM
τ(tag)] and pCM

track(tag) = [ECM
track(tag), ~p CM

track(tag)] are the four-

momenta of tag-side tau and track in the CM frame. For the ρ channel, photons in the tag

side are considered in the calculation of the four-momentum of tag-side track. Substituting

ECM
τ(tag) =

√
s/2, mτ(tag) = mτ ∼ 1.78 GeV/c2 and m2

miss.track(tag) = m2
miss.ℓγ.track(tag), where

m2
miss.ℓγ.track(tag) is a missing mass squared of the event against the lepton and the photon

– 4 –
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Figure 2. Distribution of missing-mass-squared on the tag side (m2
ν
) for (a) τ± → µ±γ and

(b) τ± → e±γ channels. Events satisfying all selection criteria except for the m2
ν

requirement and

Mbc ∈ [1.73, 1.85] GeV/c2 are plotted. The background MC samples are normalized to the cross

section times integrated luminosity of 988 fb−1. The blue histograms show the signal MC samples

with an assumed branching fraction B(τ± → ℓ±γ) = 5.0 × 10−7.

in signal side and tag-side track,

~p CM
τ(tag) · ~p CM

track(tag) =
m2

miss.ℓγ.track(tag) − m2
τ − m2

track +
√

sECM
track(tag)

2
. (2.2)

The ξ CM
τ(tag),track(tag) is defined as

ξ CM
τ(tag),track(tag) =

~p CM
τ(tag) · ~p CM

track(tag)

|~p CM
τ(tag)||~p CM

track(tag)|
. (2.3)

Here, the momentum of the tag-side tau can be written as ~p CM
τ(tag) = −~p CM

τ(signal) = −~p CM
γ −

~p CM
ℓ for signal events. The ξ variable corresponds to the cosine of the angle between the

tau and the tag-side track, cos θτ(tag),track(tag) for an ideal signal event. Figure 3 shows the

distribution of ξ CM
τ(tag),track(tag). The distribution for signal τ± → ℓ±γ events ranges from 0.0

to 1.0 except for detector resolution effect, whereas τ+τ− background events have a broad

distribution since eq. (2.2) is no more valid for background events. Therefore, a criterion

of 0.0 < ξ CM
τ(tag),track(tag) < 1.0 is applied to suppress τ+τ− background events.

The ℓγ pair has an invariant mass of mτ and the total energy in the CM frame of

ECM
ℓγ =

√
s/2. The signal region is defined by two kinematic variables: the beam-energy-

constrained mass, Mbc, and the normalized energy difference, ∆E/
√

s, given as

Mbc =
√

(ECM
beam)2 − |~p CM

ℓγ |2, (2.4)

∆E/
√

s = (ECM
ℓγ −

√
s/2)/

√
s, (2.5)
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Figure 3. Distribution of ξ CM
τ(tag),track(tag) for (a) τ± → µ±γ and (b) τ± → e±γ channels.

Events satisfying all selection criteria except for the ξ CM
τ(tag),track(tag) requirement and Mbc ∈

[1.73, 1.85] GeV/c2 are plotted. The background MC samples are normalized to the cross sec-

tion times integrated luminosity of 988 fb−1. The blue histograms show the signal MC samples

with an assumed branching fractions B(τ± → ℓ±γ) = 2.0 × 10−6.

where ECM
beam =

√
s/2 and ~p CM

ℓγ is the sum of the lepton and photon momenta in the CM

frame. Figure 4 shows the two-dimensional distribution of ∆E/
√

s vs. Mbc. The signal

events have Mbc ∼ mτ and ∆E/
√

s ∼ 0 and in order to select them, an elliptical region

around their expected values is adopted as follows:

(Mbc − µMbc
)2

(2σMbc
)2

+
(∆E/

√
s − µ∆E/

√
s)2

(2σ∆E/
√

s)2
< 1.0, (2.6)

σMbc
= 0.5(σhigh

Mbc
+ σlow

Mbc
),

σ∆E/
√

s = 0.5(σhigh
∆E/

√
s

+ σlow
∆E/

√
s).

Here, σ
high/low
Mbc

and σ
high/low

∆E/
√

s
are the widths on the higher/lower side of the peak obtained by

fitting the signal distribution to an asymmetric Gaussian function [5]. The estimated resolu-

tions are σ
high/low
Mbc

= 11.08±0.08/7.46±0.23 MeV/c2 and σ
high/low

∆E/
√

s
= (5.6±0.4)/(4.2±0.2)×

10−3 for τ± → µ±γ events, and σ
high/low
Mbc

= 11.55±0.27/10.59±0.19 MeV/c2 and σ
high/low

∆E/
√

s
=

(6.1 ± 0.7)/(4.4 ± 0.3) × 10−3 for τ± → e±γ events. The mean values of the signal distribu-

tions are µMbc
= 1.78 MeV/c2 and µ∆E/

√
s = −0.6×10−3 for τ± → µ±γ events, and µMbc

=

1.79 MeV/c2 and µ∆E/
√

s = −1.0 × 10−3 for τ± → e±γ events. The overall signal efficiency

estimated using the above signal region is 3.7% for τ± → µ±γ and 2.9% for τ± → e±γ.

The most dominant background in the τ± → µ±γ (τ± → e±γ) search arises from

τ+τ− events decaying to τ± → µ±νµντ (τ± → e±νeντ ) with a photon coming from initial-

state radiation or beam background. The µ+µ−γ and e+e−γ events are subdominant, with
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Figure 4. Two-dimensional distributions of ∆E/
√

s vs. Mbc for (a) τ± → µ±γ and (b) τ± → e±γ

events. Black points are data, blue squares are τ± → ℓ±γ signal MC events, and magenta ellipses

show the signal region used in this analysis (±2σ region).

their contributions falling below 5%. Other backgrounds such as two-photon and qq̄ are

negligible in the signal region.

3 Signal and background estimation

To estimate the number of events in the signal region, we perform an unbinned maximum-

likelihood fit with probability density functions (PDFs) depending on Mbc and ∆E/
√

s.

The likelihood function is defined in terms of the signal PDF (S), background PDF (B),

and the number of signal events (s) and background events (b) as

L =
e−(s+b)

N !

N
∏

i=1

(sSi + bBi), (3.1)

where N is the total number of observed events, i denotes the event index, and s and b are

the free parameters. The fit is performed to candidate events in the signal region defined by

eq. (2.6). The signal PDF is obtained by smoothening the corresponding MC distribution

and the background PDF uses the function described below.

Since the distributions of Mbc and ∆E/
√

s are well modeled for the τ+τ− and µ+µ−

background events, the corresponding PDFs are determined using MC simulation. The

PDFs of e+e−γ events are extracted from the data by applying an electron identification

requirement, Le > 0.1, to the track in the tag side. This is the same approach as in the

previous publication [5]. Since Mbc and ∆E/
√

s are almost independent of each other, the

background PDF is written as

B(Mbc, ∆E/
√

s) = B(Mbc) × B(∆E/
√

s). (3.2)
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Figure 5. ∆E/
√

s distribution in the sideband. The black points with error bars are the data and

red curves show the fit result of the background PDF.

As the background events do not exhibit any peak and are rather flat in the Mbc distribu-

tion, a constant function is applicable to B(Mbc). In order to determine the B(∆E/
√

s)

distribution, the requirement on Mbc is relaxed until enough statistics have been ob-

tained. The background MC events with Mbc ∈ [1.74, 1.83] GeV/c2 for τ+τ− events and

Mbc ∈ [1.60, 1.90] GeV/c2 for µ+µ−γ events are used in the case of τ± → µ±γ search. For

the τ± → e±γ search, the background MC events with Mbc ∈ [1.70, 1.88] GeV/c2 for τ+τ−

events and Mbc ∈ [1.73, 1.85] GeV/c2 for e+e−γ events are used. The ∆E/
√

s distribution

for τ+τ− background is described by a sum of Landau and exponential functions for both

τ± → µ±γ and τ± → e±γ searches. The distribution for µ+µ−γ and e+e−γ is described

by a sum of Landau and Gaussian functions [5].

The total background PDFs (Btot
0 , Btot

1 ) are obtained by combining each background

function:

Btot
0 = C0Bττ + C1Bµµγ , (3.3)

Btot
1 = C2Bττ + C3Beeγ , (3.4)

where Bττ , Bµµγ , and Beeγ are the PDFs for τ+τ−, µ+µ−, and e+e−γ background events,

and C0 to C3 are the free parameters determined by a fit. The fit is performed to the

sideband data defined as Mbc ∈ [1.60, 1.74] ∪ [1.83, 1.97] GeV/c2 for the τ± → µ±γ search

and Mbc ∈ [1.57, 1.75] ∪ [1.85, 2.00] GeV/c2 for the τ± → e±γ search. Figure 5 shows

∆E/
√

s distributions in the sideband. After performing the fit, we obtain C0 = 19.3 ± 1.8,

C1 = 1.0 ± 0.7 for the τ± → µ±γ search, and C2 = 19.7 ± 1.9, C3 = 0.2 ± 0.7 for the

τ± → e±γ search. The τ+τ− background events are dominant for both search channels

and consistent with the MC expectation. The expected number of background events is

5.8 ± 0.4 for the τ± → µ±γ search and 5.1 ± 0.4 for the τ± → e±γ search.
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Source τ± → µ±γ τ± → e±γ

Track reconstruction efficiency 0.7 0.7

Photon reconstruction efficiency 2.0 2.0

Photon energy calibration 3.2 3.2

Integrated luminosity 1.4 1.4

Trigger efficiency 2.1 3.4

Background PDF modeling 3.3 3.7

Table 1. Systematic uncertainties (in %) considered in this analysis.

The total number of observed events is 5 in both the τ± → µ±γ and τ± → e±γ

searches, as shown in figure 4. By using the aforementioned signal and background PDFs,

we perform the likelihood fit defined in eq. (3.1). The results of the likelihood fit are

s = −0.3+1.8
−1.3, b = 5.3+3.2

−2.3 for τ± → µ±γ, and s = −0.5+4.4
−3.6, b = 5.5+5.2

−4.1 for τ± → e±γ.

We estimate the systematic uncertainties associated with track and photon reconstruc-

tion efficiencies, photon energy calibration, luminosity, trigger efficiencies, and background

PDF modeling. A summary of these systematic uncertainties is given in table 1.

The uncertainty in track reconstruction efficiencies is estimated with partially recon-

structed D∗+ → D0π+, D0 → K0
Sπ+π− events. The systematic uncertainty of 0.35%

is assigned per track, and thus a total uncertainty of 0.7% is estimated for our analysis.

The efficiencies of photon reconstruction are estimated with radiative Bhabha events. The

efficiencies in MC simulation agree with that in data, and the associated uncertainty is

2.0%. As discussed earlier, the uncertainty due to photon energy calibration is estimated

with e+e− → µ+µ−γ events, and amounts to 3.2%. The uncertainty in the integrated

luminosity is 1.4%. The trigger efficiencies are evaluated by comparing the data sideband

and MC simulation, and estimated to be 2.1% for τ± → µ±γ and 3.4% for τ± → e±γ

analysis. These are the uncertainties related to overall signal efficiency. The uncertainty

due to background PDF modeling is evaluated by varying the fixed PDF parameters. By

changing each of the fixed parameters by ±1σ, the number of signal events obtained from

the fit is checked, and the relative difference from the nominal value is assigned as the

systematic uncertainty. The estimated uncertainty is 3.3% for τ± → µ±γ and 3.7% for

τ± → e±γ. The uncertainties due to limited MC statistics and particle identification are

negligible compared to the other uncertainties described above.

4 Result

Since no significant excess of the signal events is observed in data, the upper limits at

the 90% confidence level (CL) are evaluated using toy MC simulations. We generate toy

signal and background events based on their PDFs while fixing the number of background

events (b̃) and varying the number of signal events (s̃). For every assumed s̃, 10,000

pseudoexperiments are generated following Poisson statistics with the means s̃ and b̃ for

signal and background, respectively. In order to obtain the expected (observed) upper
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limits on the branching fraction at 90% CL, the s̃ value that gives a 90% probability for s̃

larger than zero (fitted signal yield) is taken: s̃90. The method to incorporate the systematic

uncertainties into a branching fraction discussed in ref. [22] is adopted in this analysis: the

uncertainties related to overall signal efficiency and background PDF modeling are treated

separately. The likelihood defined in eq. (3.1) is convolved with a Gaussian function of

width equal to the systematic uncertainty, so the s̃ and b̃ values are smeared accordingly.

The uncertainties inflate the upper limits on the branching fraction by ∼2-3%; this effect

is not large and consistent with the past results [5]. The expected upper limits on the

branching fraction B(τ± → ℓ±γ) at 90% CL is calculated as B(τ± → µ±γ) < 4.9 × 10−8

and B(τ± → e±γ) < 6.4 × 10−8. Our expected limits are 1.6–1.8 times more stringent

compared to the previous Belle results [5].

The toy MC simulation provides an observed upper limit on signal at the 90% CL as

s̃90 = 2.8 (s̃90 = 3.0) events from the fit for τ± → µ±γ (τ± → e±γ). The observed upper

limits on the branching fractions are

B(τ± → µ±γ) <
s̃90

2ǫNττ
= 4.2 × 10−8, (4.1)

B(τ± → e±γ) <
s̃90

2ǫNττ
= 5.6 × 10−8, (4.2)

where Nττ = (912 ± 14) × 106, and the signal efficiencies are ǫ = 3.7% and 2.9% for

τ± → µ±γ and τ± → e±γ, respectively.

5 Summary

In this paper, a search conducted for the charged-lepton-flavor-violating decays, τ± → µ±γ

and τ± → e±γ, at the Belle experiment is reported. It uses 988 fb−1 of data, about

twice the size used in the previous Belle analysis [5]. In addition, requirements with

new observables of energy asymmetry and beam-energy-constrained mass are introduced

to further reduce background events. The selection is optimized by taking into account

the different tag-side modes to maximize search sensitivities. Lastly, the photon energy

is calibrated using radiative muon events. Thanks to those improvements and 1.9 times

data, our expected limits are 1.6–1.8 times more stringent compared to the previous Belle

results [5]. With the absence of signal in any modes, the upper limits are set on branching

fractions: B(τ± → µ±γ) < 4.2×10−8 and B(τ± → e±γ) < 5.6×10−8 at the 90% confidence

level. The observed limit on the τ± → µ±γ decay is the most stringent to date.
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