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a b s t r a c t

An analysis is performed to study the influence of non-uniform slot injection (suction)

on a steady incompressible laminar boundary layer flow in a diverging channel with an

exponentially decreasing free-stream velocity. The difficulties in obtaining the non-similar

solutions at the starting point of the streamwise coordinate, at the edges of the slot and at

the point of separation are overcome by applying an implicit finite difference scheme with

the quasi-linearization technique and an appropriate selection of the finer step sizes along

the streamwise direction. It is observed that the separation can be delayed by non-uniform

slot suction and also by moving the slot downstream but the effect of non-uniform slot

injection is just reverse.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A detailed analysis of boundary layer flow problems taking non-similarity into account has become significantly
important in recent past. In an earlier study, a review on the non-similarity solution methods along with the citations of
some relevant publications is given by Dewey and Gross [1]. Subsequently, many attempts have been made to provide non-
similar solutions of boundary layer flow problems using asymptotic methods [2,3], finite difference method [4,5] and more
recently by an implicit finite difference method in combination with quasi-linearization technique [6–8].

In the presence of an adverse pressure gradient, the boundary layer grows in thickness and eventually breaks away from
the solid surface. The point at which separation of the boundary layer occurs, for steady flow over a stationary surface, is
generally taken as coinciding with or very near the point at which the skin friction vanishes. There are several studies on
the phenomenon of separation, for example, by Brown and Stewartson [9], Williams [10] and Curle [11]. The work that is
directly relevant to the present work is by Chiam [12] who has investigated the development of a steady two-dimensional
laminar boundary layer flow with and without uniform suction. Mass transfer from a wall slot (i.e. mass transfer occurs
in a small porous section of the body surface while there is no mass transfer in the remaining part of the body surface)
into boundary layer is of interest for various potential applications including energizing the inner portion of boundary layer
in adverse pressure gradient and skin friction reduction on control surfaces. In fact, mass transfer through a slot strongly
influences the development of a boundary layer along a surface and in particular can prevent or at least delay separation of
viscous region. In recent studies, several investigators [6–8] have investigated the effect of single slot injection (suction) into
steady compressible and water boundary layer flows. Therefore, as a step towards the eventual development in the study of
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Nomenclature

Roman letters

A surface mass transfer parameter
c characteristic length
f dimensionless stream function
F dimensionless velocity along surface
m pressure gradient parameter
Re Reynolds number
u, v velocity components along x and y, respectively
x, y Cartesian coordinates along and normal to surface, respectively

Greek letters

α small parameter
η transformed variable
ν kinematic viscosity
ξ(= x

c
) a scaled streamwise coordinate

ξ0 slot location parameter
ψ dimensional stream function
ω∗ slot length parameter

Subscripts

e, w denote conditions at the edge of the boundary layer and on the surface, respectively
ξ, η denote the partial derivatives w.r.t these variables, respectively

mass transfer into the boundary layer flows, it is interesting as well as useful to investigate the effect of single slot injection
(suction) into a boundary layer flow with exponentially decreasing free-stream velocity distribution.

The effect of non-uniform slot injection (suction) on the steady laminar non-similar boundary layer flow with an
exponentially decreasing free-stream velocity distribution is considered in the present investigation. The non-similar
solutions have been obtained starting from the origin of the streamwise coordinate to the point of separation (zero skin
friction in the streamwise direction) using quasi-linearization technique with an implicit finite difference scheme. There
are two free parameters in this problem, one measures the length of the slot (i.e. the part of the body surface in which
there is a mass transfer) and another parameter fixes the position of the slot. Thus, these two parameters help to vary the
slot length and to move the slot location. The application of non-uniform slot injection or suction is helpful in suppressing
recirculating bubbles and controlling transition and/or delaying the boundary layer separation over control surfaces. Present
results without mass transfer are compared with the results of a recent study by Chiam [12] and found them in good
agreement.

2. Analysis

Consider a two-dimensional steady laminar incompressible boundary layer flow in a diverging channel with
exponentially decreasing free-stream velocity distribution when mass transfer (suction/injection) occurs in a slot along
the surface. Let x, y be the Cartesian coordinates along and normal to the surface, respectively, and u, v, the corresponding
velocity components (see Fig. 1). The blowing rate of the fluid is assumed to be small and it does not affect the inviscid
flow at the edge of boundary layer and also assumed that the injected fluid possesses the same physical properties as the
boundary layer fluid [13]. Under the above assumptions, the boundary layer equations governing the flow are [12,13]

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= ue

due

dx
+ ν

∂2u

∂2y
(2)

and the boundary conditions are given by

u = 0, v = vw(x) at y = 0 (3)

u = ue(x) at y −→ ∞. (4)
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Fig. 1. Flow geometry.

Using the following transformations

ψ(x, y) =
√

(ueνx)f (ξ , η), η =

√

ue

νx
y, ξ =

x

c
,

fη(ξ , η) = F(ξ , η), u =
∂ψ

∂y
, v = −

∂ψ

∂x
, (5)

the boundary layer Eq. (2), where continuity equation (1) is identically satisfied by the above transformation, is reduced to

Fηη +

(

m + 1

2

)

fFη + m(1 − F 2) = ξ(FFξ − Fηfξ ) (6)

where m is a dimensionless pressure gradient parameter defined by m =
ξ

ue

due
dξ
. Here ue is the external flow velocity at

the edge of the boundary layer and is given by [12] ue = u∞(1 − αeξ ), 0 < α < 1 where u∞ is constant, α is the small
parameter and ξ , a scaled streamwise coordinate is defined by ξ = x

c
, where c is the characteristic length. The transformed

boundary conditions are

F(ξ , 0) = 0, F(ξ ,∞) = 1 (7)

where f =
∫ η

o
Fdη + fw .

Now

v = −
∂ψ

∂x
= −

1

2
(ueνx)

−1/2

[

ueν +
due

dξ

dξ

dx

]

f − (ueνx)
1/2

[

∂ f

∂ξ

∂ξ

∂x
+
∂ f

∂η

∂η

∂x

]

,

where
dξ

dx
=

∂ξ

∂x
= 1

c
and

∂η

∂x
= −

η

2x

[

1+α(ξ−1)eξ

1−αeξ

]

.

Thus at wall (y = 0), η = 0,
∂η

∂x
= 0 and v can be written at wall as

vw(ξ) = −
u∞

Re1/2

[

d

dξ

(

[ξ(1 − αeξ )]1/2
)

f (ξ , 0)+ [ξ(1 − αeξ )]1/2fξ (ξ , 0)

]

i.e., vw(ξ) = − u∞

Re1/2
d
dξ

(

[ξ(1 − αeξ )]1/2f (ξ , 0)
)

.

Integrating with respect to ξ from 0 to ξ , we get

f (ξ , 0) = fw(ξ) = −[ξ(1 − αeξ )]−1/2 Re
1/2

u∞

∫ ξ

o

vw(ξ)dξ

where the Reynolds number Re = u∞c

ν
.
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The boundary condition vw(ξ) is considered in terms of transformed coordinate ξ and vw(ξ) is taken as sinusoidal
function given by

vw(ξ) =

{

−u∞(Re)
− 1

2 Aω∗ sin(ω∗(ξ − ξo)), ξo ≤ ξ ≤ ξ ∗
o

0, ξ ≤ ξo and ξ ≥ ξ ∗
o

where ω∗ and ξo are the two free parameters which determine the slot length and slot location, respectively. The function
vw(ξ) is continuous for all values of ξ and it has a nonzero value only in the interval [ξo, ξ

∗
o ]. The reason for taking such a

function is that it allows the mass transfer to change slowly in the neighbourhood of leading and trailing edges of the slot.
The surface mass transfer parameter A > 0 or A < 0 according to whether there is a suction or an injection.

Using the above vw(ξ), the expression for fw(ξ) is

fw =







0, ξ ≤ ξo
A(P1)

−1/2C(ξ , ξo), ξo ≤ ξ ≤ ξ ∗
o

A(P1)
−1/2C(ξ ∗

o , ξo), ξ ≥ ξ ∗
o

(8)

where C(ξ , ξo) = 1 − cos(ω∗(ξ − ξo)) and P1 = ξ(1 − α eξ ).

3. Numerical method

The boundary value problem represented by Eqs. (6) and (7) is solved by implicit finite difference scheme in
combination with the quasi-linearization technique. Quasi-linearization technique can be viewed as a generalization of
the Newton–Raphson approximation technique in functional space. An iterative sequence of linear equations are carefully
constructed to approximate the nonlinear equation (6) for achieving quadratic convergence andmonotonicity. The efficiency
and accuracy of the method have been illustrated through its applications to many boundary value problems in the book by
Bellman and Kalaba [14].

Applying the quasi-linearization technique [14,15], the nonlinear partial differential equation (6) reduce to the following
linear partial differential equation

F i+1
ηη + X i

1F
i+1
η + X i

2F
i+1 + X i

3F
i+1
ξ = X i

4. (9)

The boundary conditions become

F i+1 = 0, at η = 0

F i+1 = 1, at η = η∞ (10)

where η∞ is the edge of the boundary layer. The coefficient functions with iterative index i are known where the functions
with iterative index (i + 1) are to be determined and the coefficients are given by

X i
1 =

(

m + 1

2

)

f + ξ fξ

X i
2 = −2mF − ξFξ

X i
3 = −ξF

X i
4 = −m(1 + F 2)− ξFFξ .

Since the method is described for ordinary differential equations by Inouye and Tate [15] and also explained for partial
differential equations in a recent article by Singh and Roy [16], its detailed description is not presented here for the sake
of brevity. In brief at each iteration step, the sequence of linear partial differential equation (9) under boundary conditions
(10)were expressed in difference formusing central difference in η-direction and backward difference in ξ -direction. Finally
at each iteration step, the equation reduces to a system of algebraic equation in tri-diagonal form which is solved by using
Thomas algorithm. The step size in theη-direction has been chosen as1η = 0.01 throughout the computation, as it has been
found that further decrease in1η does not change the results up to the fourth decimal place. In the ξ -direction,1ξ = 0.01
has been used for small values of ξ and then it has been decreased to1ξ = 0.005. There after the step size has been reduced
further, ultimately choosing a value1ξ = 0.0001 in the neighbourhood of the zero skin friction. This has been done because
the convergence becomes slower when the point of vanishing skin friction is approached. A convergence criterion based on
the relative difference between the current and the previous iterations has been used. The solution is assumed to have
converged and the iterative process is terminated when

Max|(Fη)
i+1
w − (Fη)

i
w| < 10−4. (11)
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Fig. 2. Effect of suction (A > 0) on fηη(ξ , 0) for ω
∗ = 4π and α = 0.1.

Fig. 3. Effect of injection (A < 0) on fηη(ξ , 0) for ω
∗ = 4π and α = 0.1.

4. Results and discussion

Computations have been carried out for various values of α (10−6 − 10−1) and mass transfer parameter A (−0.1 ≤ A ≤

0.5). In all numerical computations the edge of the boundary layer η∞ is taken as 9.0. In order to assess the accuracy of the
procedure, solutions have been obtained for the incompressible flow caseswith uniformmass transfer [12] and comparisons
are included in Figs. 2–7. The present results are found to be in good agreement.

The effects of non-uniform slot suction (or injection) parameter (A > 0 or A < 0) and ξo (which fixes the slot location)
on velocity gradient [fηη(ξ , 0)] at the wall for different values of α are presented in Figs. 2–7. In the case of non-uniform
slot suction (See Figs. 2, 4 and 6), the velocity gradient (fηη(ξ , 0)) increases as slot starts and attain their maximum values
before the trailing edge of the slot. Finally, fηη(ξ , 0) decreases from its maximum value as the effect of the adverse pressure
gradient dominates and fηη(ξ , 0) decreases to zero. As mentioned earlier, this implies that separation occurs at this point.
The enhancement in the velocity gradient is due to the increment of the suction parameter A, but in the case of slot injection
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Fig. 4. Effect of suction (A > 0) on fηη(ξ , 0) for ω
∗ = π and α = 0.001.

Fig. 5. Effect of injection (A < 0) on fηη(ξ , 0) for ω
∗ = π and α = 0.001.

(See Figs. 3, 5 and 7) the skin friction decreases with the increase of the injection parameter A. The results indicate that
the effect of non-uniform slot suction is to move the point of separation downstream, i.e., it delays the separation as can
be seen in Figs. 2, 4 and 6. In contrast, the effect of non-uniform slot injection is to move the point of separation upstream
as shown in Figs. 3, 5 and 7. In particular, for α = 0.001 and A = 0.5, it is noticed that the point of separation moves
downstream approximately by 14% as the suction parameter A increases from 0 to 0.5. Moreover, the results presented in
Figs. 2, 4 and 6 indicate that if wemove the location of the slot downstream, the point of separation alsomoves downstream
(i.e.,it delays the separation). Further, comparative studies on Figs. 2–7 show that the point of separationmoves downstream
approximately from 0.63 to 10.2 corresponding to the decrease of α from 10−1 to 10−6. This large change is due to the fact
that as α decreases rapidly, the free-stream flow becomes closer to flow over flat plate for extremely small α.

The effects of slot suction (injection) parameter on velocity profiles (f (η)) are displayed in Fig. 8. These profiles indicate
that the injection decreases the steepness of the profiles but the steepness of the profiles increases with suction. In general
the profiles at a distant streamwise location are comparatively less steeper than those at the starting point of the steamwise
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Fig. 6. Effect of suction (A > 0) on fηη(ξ , 0) for ω
∗ = π and α = 0.000001.

Fig. 7. Effect of injection (A < 0) on fηη(ξ , 0) for ω
∗ = π

2
and α = 0.000001.

coordinate. Further Fig. 8 shows that the velocity profile at the separation point have larger η∞ than those at the previous
streamwise locations.

5. Conclusions

Non-similar solution of a steady laminar incompressible boundary layer flow with an exponentially decreasing velocity
distribution for non-uniform slot injection/suction has been obtained starting from the origin of streamwise coordinate to
the exact point of separation.

• The numerical results are obtained to find the location of the point of separation for various values ofα to cover extensive
variations in decreasing free-stream velocity distributions.

• Thepoint of separationmoves significantly in the downstreamdirection asα decreases rapidly and finally the free-stream
flow becomes closer to flow over a flat plate for extremely small α.
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Fig. 8. Velocity profiles at ξ = 7.5 and ξ = 10.1 for ǫ = 0.000001 with different values of A.

• The point of separation can be delayed by non-uniform slot suction aswell as bymoving the slot in downstreamdirection
whereas the effect of non-uniform slot injection is just opposite.
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