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a b s t r a c t

Recently Sarkar (DCC 2014) has proposed a new attack on small decryption exponentwhen
RSA Modulus is of the form N = prq for r ≥ 2. This variant is known as Prime Power RSA.
The work of Sarkar improves the result of May (PKC 2004) when r ≤ 5. In this paper, we
improve the work of Sarkar when 2 < r ≤ 8.

We also study partial key exposure attack on Prime Power RSA. Our result improves the

works ofMay (PKC 2004)when r ≤ 8 and the decryption exponent d < N
1

r+1 +
3 r−2

√
3 r+3+3

3 (r+1) .
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the domain of public key cryptography, RSA has been the most popular cipher since its inception in 1978 by Rivest,
Shamir and Adleman. Wiener [22] presented an important result on RSA by showing that one can factor N in polynomial
time if the decryption exponent d < 1

3N
1
4 . Later using the idea of Coppersmith [6], Boneh and Durfee [3] improved this

bound up to d < N0.292.
There are several RSA variants proposed in the literature for efficiency and security point of view. In this paper, we

consider Prime Power RSA, where RSA modulus N is of the form N = prq where r ≥ 2. The modulus N = p2q was first
used by Fujioka et al. in Eurocrypt 1991 [9]. In Eurocrypt 1998, Okamoto et al. [19] also used N = p2q to design a public key
crypto system.

There are two variants of Prime Power RSA. In the first variant ed ≡ 1 mod pr−1(p − 1)(q − 1), where as in the second
variant ed ≡ 1 mod (p − 1)(q − 1). In [11], authors proved that polynomial time factorization is possible for the second

variant if d < N
2−

√
2

r+1 .
For the first variant, Takagi in Crypto 1998 [21] proved that when d ≤ N

1
2(r+1) , one can factor N in polynomial time. Later

in PKC 2004, May [18] improved this bound up to d < N
max


r

(r+1)2
,( r−1

r+1 )2

. Recently, Lu et al. [16,17] have shown that one

can factor N when d < N
r(r−1)
(r+1)2 , which improves the work of [18].

Sarkar [20] has considered the polynomial fe(x, y, z) = 1+ x(N − yr − yr−1z + yr−1) over Ze whose root is (x0, y0, z0) =

(b, p, q), where ed = 1+bφ(N) to analyze the RSAmodulusN = prq. In this paperwe consider the same polynomial. But our
lattice construction to solve this polynomial is different from [20]. As a result, we improve the existing works of [18,20,16]
when r = 3, 4.

Partial exposure on d. In Crypto 1996, Kocher [12] first proposed a novel attack which is known as partial key exposure
attack. He showed that an attacker can get a few bits of d by timing characteristic of an RSA implementing device. Fault
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attacks [2] and power analysis [13] are other important side channel attacks in this direction. Boneh, Durfee and Frankel [4]
first proposed polynomial time algorithms when the attacker knows a few bits of the decryption exponent. The approach
of [4] works only when the upper bound on e is

√
N . Later this constraint was removed by Blömer et al. in Crypto 2003 [1]

and Ernst et al. in Eurocrypt 2005 [8].
May in PKC 2004 [18] studied partial key exposure attack on Prime Power RSA. He showed that one can factor N in

polynomial time from the knowledge of d0 where |d − d0| < N
max


r

(r+1)2
,( r−1

r+1 )2

when RSA modulus N = prq. Lu et al. [16]

improve the work of [18] and show that factorization of N can be possible when |d − d0| < N
r(r−1)
(r+1)2 . So in particular, when

r = 2, approach of [16] works when |d− d0| < N0.22. We have improved this bound up to N0.33. Unfortunately, our method
works only when d < N0.67.

2. Useful lemmas and preliminaries

Consider w many linearly independent vectors b1, . . . , bw ∈ Rn. The set

L =


b : b =

w
i=1

cibi, c1, . . . , cw ∈ Z


is called an w dimensional lattice with basis B = {b1, . . . , bw}. A lattice is of full rank when w = n and in this paper we only
use such lattices. The determinant of L is defined as det(L) = det(M), where the rows of M are the vectors from B. When
b1, . . . , bw ∈ Zn, the lattice L is called an integer lattice.

In 1982, Lenstra, Lenstra and Lovász [15] proposed a polynomial time algorithm (known as LLL algorithm) to obtain
another basis with some useful properties: given a basis b1, . . . , bw of a lattice L, LLL algorithm gives a (reduced) basis
u1, . . . , uw with

∥u1∥ ≤ ∥u2∥ ≤ ∥u3∥ ≤ 2
w(w−1)
4(w−2) det(L)

1
w−2 . (1)

In [6], Coppersmith formulated seminal ideas to find small roots of modular polynomials in single variable and also
of polynomials in two variables over the integers. These deterministic techniques have many important consequences in
cryptography. The idea of [6] can also be extended to more than two variables, but the method becomes a heuristic in that
case. The following result due to Howgrave-Graham [10] gives a sufficient condition under which modular roots become
the roots over integers for polynomials in three variables.

Theorem 1. Let g(x, y, z) be a polynomial with integer coefficients which is a sum of w many monomials. Suppose that
1. g(x0, y0, z0) ≡ 0 mod em for positive integers e,m and |x0| < X, |y0| < Y , |z0| < Z.
2. ∥g(xX, yY , zZ)∥ < em

√
w
,

Then g(x0, y0, z0) = 0 holds over integers.

Suppose we have w polynomials b1, . . . , bw in the variables x, y, z such that b1(x0, y0, z0) = · · · = bw(x0, y0, z0) =

0 mod em with |x0| < X, |y0| < Y and |z0| < Z . Now we construct a lattice L with the coefficient vectors of
b1(xX, yY , zZ), . . . , bw(xX, yY , zZ). Since lattice reduction is a series of elementary row operations, after reduction, we get
three polynomials u1(x, y, z), u2(x, y, z) and u3(x, y, z) such that

u1(x0, y0, z0) = u2(x0, y0, z0) = u3(x0, y0, z0) = 0 mod em

which correspond to first three vectors of the reduced basis. Also by the property of LLL algorithm, we have

∥u1(xX, yY , zZ)∥ ≤ ∥u2(xX, yY , zZ)∥ ≤ ∥u3(xX, yY , zZ)∥ ≤ 2
w(w−1)
4(w−2) det(L)

1
w−2 .

Hence by Theorem 1, if

2
w(w−1)
4(w−2) det(L)

1
w−2 <

em
√

w
,

then we have u1(x0, y0, z0) = u2(x0, y0, z0) = u3(x0, y0, z0) = 0. The required condition can be taken as det(L)
1

w−2 < em

by neglecting the terms 2
w(w−1)
4(w−2) and 1

√
w
. Again if w ≫ 2, we can simplify the condition as (det(L))

1
w < em.

Thus if det(L) < emw , after lattice reduction we will get three polynomials u1(x0, y0, z0) = u2(x0, y0, z0) =

u3(x0, y0, z0) = 0. We want to find x0, y0, z0 from u1, u2, u3. Although our technique works in practice as noted from the
experiments we perform, we need the following heuristic assumption for theoretical results.

Assumption 1. Our lattice-based construction yields algebraically independent polynomials. The common roots of these
polynomials can be efficiently computed by using techniques like calculation of the resultants or finding a Gröbner basis.

It is important to fix the degrees of the polynomials, since time complexity of the Gröbner basis computation is in general
double-exponential in the degrees of the polynomials [7]. For this reason, the dimension of the lattice that we construct
should not be large.
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3. Small decryption exponent attack on Prime Power RSA

In this section we will consider the case when RSA modulus is of the form N = prq where r ≥ 2.

Theorem 2. Let N = prq be an RSA modulus with p ≈ q ≈ N
1

r+1 . Let the public exponent e(≈ N) and private exponent d
satisfies ed ≡ 1 mod φ(N). Then under Assumption 1, N can be factored in polynomial time if d ≤ Nτ(r), where τ(r) is a
function of r.

Proof. We have ed ≡ 1 mod φ(N) where N = prq. So we can write ed = 1 + b(N − pr − pr−1q + pr−1). Now we want to
find the root (x0, y0, z0) = (b, p, q) modulo e of the polynomial

fe(x, y, z) = 1 + x(N − yr − yr−1z + yr−1).

Let d ≈ Nδ . Since e is of order N , we have b ≈ Nδ . Let X = Nδ, Y = Z = N
1

r+1 . Clearly, (X, Y , Z) provides the upper
bounds of the elements in the root (x0, y0, z0), neglecting any small constant. Note that yr0z0 = N . Now we define a set of
polynomials which will be used to construct a lattice.

For integersm, a, t ≥ 0, we consider the following polynomials

gi,j,k(x, y, z) = xiy(r−1)i+kz i+af je(x, y, z) where i = 0, . . . ,m, j = 0, . . . ,m − i, k = 0, . . . , r and

g ′

i,j,0(x, y, z) = y(r+j)zaf ie(x, y, z) where i = 0, . . . ,m, j = 1, . . . , t − r.

We replace each occurrence of the monomial yrz in gi,j,k by N . Let the new polynomial be h′′

i,j,k. Now we want to make

the coefficient of the monomial xi+j yk+(r−1)i+rj−rlz i+a−l in h′′

i,j,k to be 1, where l = min
 k+(r−1)i+rj

r


, i + a


. Let A be its

coefficient in h′′

i,j,k. Assume gcd(A, e) = 1. Let AB ≡ 1 mod em.
Now consider the set of polynomials

hi,j,k(x, y, z) = Bh′′

i,j,k(x, y, z)e
m−j.

Similarly construct h′

i,j,0(x, y, z) from g ′

i,j,0(x, y, z). Note that both

hi,j,k(x0, y0, z0) = h′

i,j,k(x0, y0, z0) = 0 mod em.

Next, we form a lattice L by taking the coefficient vectors of the shift polynomials hi,j,k(xX, yY , zZ) and h′

i,j,k(xX, yY , zZ)
as basis. Here we choose polynomials in a clever way to reduce the size of the determinant of the corresponding lattice.

Now dimension w of L is given by w =
m

i=0
m−i

j=0
r

k=0 1+
m

i=0
t−r

j=1 1 =
r+1
2 m2

+mt + o(m). Let the determinant

of L be det(L) = X sxY syZ sz ese . Now sx =
m

i=0
m−i

j=0
r

k=0(i + j) +
m

i=0
t−r

j=1 i =
m3(r+1)

3 +
m2t
2 + o(m3). Similarly,

se =
m3(r+1)

3 +
m2t
2 + o(m3).

During the calculations of sy, we assume eitherm > a or a −
t
r < m < a.

Now

sy =

m
i=0

m−i
j=0

r
k=0


(r − 1)i + k + rj − r min


(r − 1)i + k + rj

r


, i + a



+

m
i=0

t−r
j=1


ri + r + j − r min


ri + r + j

r


, a



=
(3a2m − 3am2

+ m3)r2

6
−

(2am − m2)rt
2

+
mt2

2
−

(a3r3 − 3a2r2t + 3art2 − t3)
6r

+ o(m3).

Assumingm ≥ a −
t
r , we have

sz =

m
i=0

m−i
j=0

r
k=0


i + a − min


(r − 1)i + k + rj

r


, i + a


+

m
i=0

t−r
j=1


a − min


ri + r + j

r


, a



=

ma2r3
2 −

a3r3
6 +

m2ar2
2 +

a2tr2
2 +

m3r
6 −

at2r
2 +

t3
6

r2
+ o(m3).

One gets the root (x0, y0, z0) using lattice reduction over L, if det(L) < emw .
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Table 1
Numerical upper bound of δ for different values
of r .

r [18] [20] [16] τ(r)

2 0.222 0.395 0.222 0.395
3 0.250 0.410 0.375 0.461
4 0.360 0.437 0.480 0.508
5 0.444 0.464 0.555 0.545
6 0.510 0.489 0.612 0.574
7 0.562 0.512 0.656 0.598
8 0.605 0.532 0.691 0.619
9 0.640 0.549 0.720 0.637

10 0.669 0.565 0.744 0.653

Table 2
Numerical values of δ for different parameters.

r m a t δ Lattice dimension

3 22 20 49 0.42 2162
4 14 15 48 0.44 1260
5 11 12 44 0.45 936
6 19 26 119 0.52 3730

Let a = τ1m and t = τ2m, where τ1, τ2 are non-negative real numbers. Now putting the values of det(L) and w in the
condition det(L) < emw , we need

η(τ1, τ2) = −
1
6
δ (2r + 3τ2 + 2) +

1
6
r +

1
2
τ2 −


3τ 2

1 − 3τ1 + 1

r2 − 3 (2τ1 − 1) rτ2 + 3τ 2

2

6(r + 1)

+
(τ1r − τ2)

3 ( 1
r +

1
r2

) −
3τ2

1 r
3
+3τ1r2+r
r2

6 (r + 1)
+

1
6

> 0.

For a fixed δ, we will take the partial derivative of η with respect to τ1, τ2 and equate each of them to 0, we get
τ1 = −

(δ−1)r2+(δ−1)r+1
2 r and

τ2 = −
(δ − 1) r3 + 2 δr2 + δr − 2


− (δ − 1) r2 − (2 δ − 1) r − δ + 1r + 1
2 (r + 1)

.

Nowput these values of τ1, τ2 in η. Inequality η > 0 gives an upper bound of δ. Call this upper bound τ(r). Sowhen δ ≤ τ(r),
η > 0.

Now when η > 0, we get three polynomials f0, f1, f2 after lattice reduction such that f0(x0, y0, z0) = f1(x0, y0, z0) =

f2(x0, y0, z0) = 0. Under Assumption 1, we can extract x0, y0, z0. �

Exact expression of τ(r) in Theorem 2 is very complicated. Hence in Table 1, we present a few values of τ(r) for different
values of r . One can note that from Table 1, our method will be better than the existing works for r = 3, 4. Also in Table 2,
we present a few numerical values of δ for different values of r,m, a, t . Our result is better than the work of [20] and [18] if
2 < r ≤ 8. When r > 4, the work of [16] is better than our approach. However, Boneh et al. in Crypto 1999 [5] proved that
a fraction of 1

r+1 fraction of bits of MSBs of p are sufficient for polynomial time factorization. Also for large r , Elliptic Method
Factorization [14] will be efficient because size of primes would be reduced for larger values of r . Hence for all practical
purpose value of r cannot be large.

Experimental results. We have implemented the code in SAGE 5.12 on a Linux Mint 12. The hardware platform is HP
Compaq 6200 Pro MT PC with a 3.4 GHz Inter(R) Core i7-2600 CPU. Gröbner basis always contains a polynomial of the form
y−p. Hence we can always extract the root successfully. We present the experimental results for the following cases: r = 3
and δ is in the range 0.270–0.341; r = 4 and δ = 0.362 (see Table 3).

Remark 1. Experimental results presented in [20] are up to δ = 0.27. In particular, when δ = 0.27, the lattice constructed
in [20] is of dimension 220when r = 3. From the above tablewe can see that the dimension of the lattice in this construction
is 102 when r = 3 and δ = 0.27.

4. Partial key exposure attack on Prime Power RSA

We will start with the following lemma. Our proof is similar to [1].
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Table 3
Experimental results for 1024-bit N = prq.

r m a t δ LD Time in seconds
LLL Algorithm Gröbner basis

5 3 6 0.270 102 1700.05 120.76
5 4 9 0.288 120 7761.85 1364.29
5 4 10 0.291 126 10347.65 1576.04

3 6 4 8 0.301 147 15875.70 2433.46
6 5 11 0.313 168 47205.86 10018.92
7 5 10 0.325 200 94117.08 13793.54
7 5 12 0.331 216 114720.15 17936.09
8 6 12 0.341 261 345864.51 52022.77

4 7 6 16 0.362 276 340649.58 107403.42

Lemma 1. Let N = prq be an RSA modulus with p ≈ q ≈ N
1

r+1 . Let the public exponent e(≈ N) and private exponent d(≈ Nδ)
satisfies ed = 1 + bφ(N). Given an approximation d0 of d with |d − d0| < Nβ , one can find out an approximation b0 of b such

that |b − b0| < Nλ where λ = max

β, δ −

1
r+1


.

Proof. Let b0 = ⌊
ed0
N ⌋. Note that b =

ed−1
N−pr−pr−1q+pr−1 .

So b − b0

 ≈

 ed0N −
ed

N − pr − pr−1q + pr−1


≤

eN|d − d0|

N

N − pr − pr−1q + pr−1

 +
ed0


pr + pr−1q − pr−1


N


N − pr − pr−1q + pr−1


< Nβ

+ Nδ+ r
r+1 −1

= Nβ
+ Nδ− 1

r+1

≈ Nλ.

Hence the result. �

So from an approximation of d, one can find an approximation of b. We will use this idea to prove the following result.

Theorem 3. Let N = prq be an RSA modulus with p ≈ q ≈ N
1

r+1 . Let the public exponent e(≈ N) and private exponent
d(≈ Nδ) satisfies ed = 1 + bφ(N). Given an approximation d0 of d with |d − d0| < Nβ , one can factor N in polynomial time
under Assumption 1 if

λ <
3 r − 2

√
3 r + 3 + 3

3 (r + 1)
,

where λ = max

β, δ −

r
r+1


.

Proof. We have ed ≡ 1 mod φ(N) where N = prq. So we can write ed = 1 + b(N − pr − pr−1q + pr−1). From Lemma 1,
we can find an approximation b0 of b. Let b1 = b − b0. Hence we have ed = 1 + (b0 + b1)(N − pr − pr−1q + pr−1). Now we
want to find the root (x0, y0, z0) = (b1, p, q) modulo e of the polynomial

fe(x, y, z) = 1 + (b0 + x)

N − yr − yr−1z + yr−1.

Let X = Nλ, Y = Z = N
1

r+1 . Clearly, (X, Y , Z) provides the upper bounds of the elements in the root (x0, y0, z0),
neglecting any small constant.

For integersm, a, t , we consider the following polynomials

gv,i,0(x, y, z) = yi+rvzaf (m−v)
e where v = 0, . . . ,m, i = 0, . . . , t and

gv,i,j(x, y, z) = xj−min{j,v}yi−j+r max{j,v}z j+af m−max{j,v}

e where v = 0, . . . ,m, j = 1, . . . ,m, i = 0, . . . , r.

Now we replace each occurrence of the monomial yrz in gv,i,0 by N . Let the new polynomial be h′

v,i,0. Now we want to

make the coefficient of the monomial xm−v yi+rm−rlza−l in h′

v,i,0 to be 1, where l = min
 i+rm

r


, a


. Let A be its coefficient

in h′

v,i,0. Assume gcd(A, e) = 1. Let AB ≡ 1 mod em.
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Table 4
Numerical values of δ for different parameters.

r m a t λ Lattice dimension

2 10 4 0 0.23 341
3 7 5 2 0.26 248
4 10 10 13 0.37 704
5 15 16 29 0.45 1920
6 27 35 89 0.52 7812

Now consider the set of polynomials

hv,i,0(x, y, z) = Bh′

v,i,0(x, y, z)e
v.

Similarly construct hv,i,j(x, y, z) = Bh′

v,i,j(x, y, z)e
max{j,v}.

Next, we form a lattice L by taking the coefficient vectors of the shift polynomials hv,i,j(xX, yY , zZ) as basis.
Nowdimensionw of L is given byw =

m
v=0

t
i=0 1+

m
v=0

m
j=1

r
i=0 1 = (r+1)m2

+mt+o(m2). Let the determinant
of L be det(L) = X sxY syZ sz ese .

Now sx =
m

v=0
t

i=0(m − v) +
m

v=0
m

j=1
r

i=0


m + j − min{j, v} − max{j, v}


=

m3(r+1)
2 +

m2t
2 + o(m3). Similarly,

se =
2m3(r+1)

3 +
m2t
2 + o(m3).

Also

sy =

m
v=0

t
i=0


i + rm − r min

 i + rm
r


, a


+

m
v=0

m
j=1

r
i=0


i − j + rm − r min

 i − j + rm
r


, j + a


=

1
2
m3r2 − m2ar2 +

1
2
ma2r2 + m2tr − matr +

1
2
mt2 + o(m3), (if a < m or a > m & t > r(a − m))

and

sz =

m
v=0

t
i=0


a − min

 i + rm
r


, a


+

m
v=0

m
j=1

r
i=0


j + a − min

 i − j + rm
r


, j + a


=

ma2r2 + 2m2ar + m3

2r
+ o(m3) (if a < m or a > m & t > r(a − m)).

To find (x0, y0, z0) using lattice reduction over L, we need det(L) < emw . Let a = τ1m and t = τ2m, where τ1, τ2 are
non-negative real numbers.

Now putting the values of det(L) and w in the condition det(L) < emw , required condition is

η(τ1, τ2) = −
τ 2
1

2r
+

2r3τ1 + 2r2τ1τ2 − r3λ − r2τ2λ −
r3
3 − r2τ2 − rτ 2

2 − 2r2λ − rτ2λ
2r2 + 2r

+

4
3 r

2
− 2rτ1 + rτ2 − rλ +

2
3 r − 1

2r2 + 2r
> 0.

For a fixed δ, we will take the partial derivative of η with respect to τ1, τ2 and equate each of them to 0, we get
τ1 = −

(λ−1)r2+(λ−1)r+2
2 r and τ2 = −

r2
2 (λ − 1)−λr −

λ
2 −

1
2 . Now put these values of τ1, τ2 in η, we have λ < 3 r−2

√
3 r+3+3

3 (r+1) .
�

In Table 4 we present few numerical values of λ for different values of r,m, a, t .

Note that cryptanalysis using our method is possible if λ < 3 r−2
√
3 r+3+3

3 (r+1) , with λ = max

β, δ −

1
r+1


. As λ <

3 r−2
√
3 r+3+3

3 (r+1) , we have β < 3 r−2
√
3 r+3+3

3 (r+1) and δ < 1
r+1 +

3 r−2
√
3 r+3+3

3 (r+1) .

In [18], it is proved that if |d−d0| < Nβ where β = max
 r

(r+1)2
, ( r−1

r+1 )
2

and d0 is known, one can factorN in polynomial

time. Lu et al. [16] improve this bound to |d− d0| < N
r(r−1)
(r+1)2 . Approach of [18,16] works even when d is of order N . However

our approach does not work in these cases.
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Table 5
Numerical upper bound of β and δ for different values of r .

r 2 3 4 5 6 7 8 9 10

[18]: β 0.222 0.250 0.360 0.444 0.510 0.562 0.605 0.640 0.669
[16]: β 0.222 0.375 0.480 0.555 0.612 0.656 0.691 0.720 0.744

Our β 0.333 0.423 0.484 0.528 0.563 0.592 0.615 0.635 0.652
δ 0.667 0.673 0.684 0.695 0.706 0.717 0.726 0.735 0.743

In Table 5, we have compared our bounds with the work of [16,18]. From Table 5, it is clear that when δ < 1
r+1 +

3 r−2
√
3 r+3+3

3 (r+1) , our approach is better than the work of [18] if r ≤ 8. However, our idea is better than [16] when r < 5. We
could not attempt experiments as the lattice dimension is becoming quite high to show the improvements.

5. Conclusion

In this paper, we have considered the Prime Power RSA, i.e, when RSA modulus is of the form N = prq. Our new
lattice construction improves the existing attacks for small decryption exponent when r = 3, 4. We also have studied
partial key exposure attack on Prime Power RSA. Our new approach improves the existing works when 2 ≤ r ≤ 4 if

d < N
1

r+1 +
3 r−2

√
3 r+3+3

3 (r+1) .
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