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Abstract. Salsa and ChaCha are well known names in the family of stream

ciphers. In this paper, we first revisit the existing attacks on these ciphers. We
first perform an accurate computation of the attack complexities of the existing

technique instead of the estimation used in previous works. This improves
the complexity by some margin. The differential attacks using probabilistic

neutral bits against ChaCha and Salsa involve two probability biases: forward

probability bias (εd) and backward probability bias (εa). In the second part
of the paper, we suggest a method to increase the backward probability bias,

which helps reduce the attack complexity. Finally, we focus on the design

principle of ChaCha. We suggest a slight modification in the design of this
cipher as a countermeasure of the differential attacks against it. We show that

the key recovery attacks proposed against ChaCha will not be effective on this

modified version.

1. Introduction

Salsa20, a stream cipher submitted by D. J. Bernstein [2] to eSTREAM project
in 2008, was selected as Phase 3 design for software, by receiving highest votes.
Though original Salsa has 20 rounds, the submitted version in eSTREAM is of 12
rounds.

From the beginning, Salsa has been seriously analysed. A few differential attacks
have been proposed against Salsa. The basic idea of differential attack is to put some
input difference at the initial stage and obtain a bias in the output after a number
of rounds. In 2005, Crowley [5] proposed the first differential attack breaking the 5
rounds Salsa with time complexity 2165. Then in Indocrypt 2006, 6 rounds version
of Salsa was attacked by Fischer et al. [7] with time complexity 2177 which was
further extended to 7 rounds by Tsnunoo et al. [12] with around 2190 trials. Next
in FSE 2008, an improvement in the backward inversion to 4 rounds was suggested
by Aumasson et al. [1]. This led to an attack on 8 rounds Salsa with 2251 time
complexity using the concept of probabilistic neutral key bits (PNB). Shi et al. [11]
improved this attack in ICISC 2012 reducing the complexity to 2250. Later, Maitra
et al. [9] provided give some new ideas in this attack and reduced the complexity
to 2247.2 for 8-round Salsa. Next, the complexity was further improved upto 2245.5

by Maitra [8]. Again, Choudhuri et al. [4] improved it up to 2244.9 using multibit
approach. Recently, the complexity is improved upto 2243.7 by Dey et al. [6].

ChaCha [3], a variant of Salsa, was published by Bernstein in 2008, to achieve
better performance. Aumasson et al. [1] attacked the 256 bit version of ChaCha
upto 7th round. Later, this complexity was further improved to 2238.9 by Maitra [8].
Next, instead of single bit output, Choudhuri et al. [4] suggested to use multiple
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bit output and improved the complexity to 2237.6. Recently, this complexity was
further improved upto 2235.2 by Dey et al. [6].

The design of Salsa family uses ARX operation (addition-rotation-Xor) in its
update function. The combination of these three operations brings about huge
diffusion in the entries very fast, which is the backbone of the security of these
ciphers. Due to this non-linearity, this design pattern possesses strong security
against linear approximation attacks, cube attacks, algebraic attacks etc. To the
best of our knowledge, diffential attack is the only attack which has been successfully
applied in key recovery attack against these two ciphers upto few rounds. In recent
times, ChaCha has been selected as an encryption algorithm by Google, which
has made these ciphers one of the major areas of research. Since this family of
ciphers has great contribution in the market, both the detailed security analysis
of this design principle and the possible improvement of security further are very
important issues. The differential attacks against Salsa and ChaCha are applicable
upto 8th and 7th round respectively. These attacks are mainly based on an idea
of partitioning the keybits into significant key bits (non-PNB) and insignificant key
bits (PNB) and searching them separately in two different steps.

In this paper, we provide a detailed study of the differential attack using proba-
bilistically neutral bits and provide an accurate estimation of the attack complexity
of the attacks available so far. Also, we provide an improvement in the attack
method by finding out a set of values that can be asigned to the PNB’s while
searching the non-PNB’s. Finally, we suggest a small tweak in the design principle
of ChaCha and show that this tweak can defend all the key recovery attacks based
on the idea of PNB’s without harming the security of the cipher against any other
kind of attacks.

Notations: We follow the following notations throughout the paper.

• Xi will denote the word in i-th cell of the matrix X.
• Xi,j will denote the j-th bit of Xi, starting from right ( Xi,0 is the least

significant bit of Xi.). So Xi,j denotes j-th bit of i-th cell of X. We represent
it also by ‘position (i, j)’.

• X ′ will denote the matrix obtained by inputting a difference at an intended
position of X.

• Xr will denote the matrix obtained after r-th round of X.
• Xr

i will denote the i-th word of Xr.
• Xr

i,j will denote the j-th bit of Xr
i .

• ∆r
i,j will represent Xr

i,j ⊕X ′ri,j . In particular for r = 0, we use ∆0
i,j = ∆i,j .

• |X| will denote the number of elements in the set X.

Organisation of the paper:

• In Section 2.1 and Section 2.2 we have explained the structure of Salsa and
ChaCha in short.

• In Section 3, we revisit the differential attack idea against this family of ci-
phers. We go through the error estimation in detail and improve the com-
plexity by more accurate estimation. We revisit an attack idea called chaining
distinguisher and find some weakness of this strategy.

• In Section 4, we discuss a procedure to find the values that can be assigned
to the PNB’s instead of some random values during searching the non-PNB’s.
We provide the full list of values in all PNB’s and discuss the improvement in
attack by experiments in 4.
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• In Section 5, we suggest a small modification in the design of ChaCha. This
change can defend all the differential attacks based on probabilistic neutral bits
which have been proposed so far against this family of ciphers. We also provide
a detailed discussion on the security of this tweak against other attacks.

2. Structure of the ciphers

2.1. Structure of Salsa: Salsa involves a 4 × 4 matrix, whose each cell is of 32
bits. The 16 cells of the matrix include 4 constant cells, 8 key cells, 2 IV cells and
2 counter cells. The 256 bit Salsa20 divides the 256 bit input key into 8 parts, each
containing 32 bits and assigned to 8 cells of the matrix. 128 bit Salsa20 replicates
the key to another copy of 128 bit and makes it 256 bits, and then use the same
opearions as Salsa256.

X =


X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 .

In the above matrix, c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 =
0x6b206574 are the constant cells, ki are key cells, vi are IV cells and ti are counter
cells.

Quarterround Function: This is a set of nonlinear functions operating on a 4-
tuple (a, b, c, d) to give an output of 4-tuple (a, b, c, d), where each of a, b, c and d
is a 32 bit word. The function is defined as:

b = b⊕ ((a+ d) ≪ 7)

c = c⊕ ((b+ a) ≪ 9)

d = d⊕ ((c+ b) ≪ 13)

a = a⊕ ((d+ c) ≪ 18).

Note that here ′+′, ⊕ and ≪ signs denote respectively the addition modulo 232,
the usual XOR operation and the left cyclic rotation respectively.

At first, we apply quarterround function to each column (from 1st to 4th) of the
matrix. This is called a columnround. Each columnround is followed by a rowround,
where this function is applied to the respective rows. Here in columnround, the order
of the cells taken is respectively (X0, X4, X8, X12), (X5, X9, X13, X1), (X10, X14,
X2, X6) and (X15, X3, X7, X11). Each set of columnround and rowround is together
called a doubleround.

In Salsa, 20 rounds are performed. R denotes the total number of rounds. So,
X0 and XR are respectively the initial and the final matrices. Clearly, for Salsa20,
R = 20. We finally get an output keystream of 512 bits as Z = X +XR.

Since the quarterround function is reversible, from any round of Salsa we can
get back the matrix of the previous round. We call this reverse algorithm Revers-
eSalsa and each round of the reverse algorithm reverseround so that application of
reverseround on Xr+1 gives Xr. Thus, using ReverseSalsa algorithm, we can get
back the initial matrix X0 from the final matrix XR.
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2.2. Structure of ChaCha: As ChaCha is a variant of Salsa, it has a structure
almost similar to that of Salsa. Here, in the initial matrix, the positions of the cells
are as follows

X =


X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1

 .

Here c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32 and c3 = 0x6b206574.
Also ki, vi and ti’s denote the key cells, IV cells and counter cells respectively.

Round Function: In ChaCha, the nonlinear round functions are different and
more complicated than that of Salsa. Here, the quarterround function is given by:

a = a+ b, d = ((d⊕ a) ≪ 16),

c = c+ d, b = ((b⊕ c) ≪ 12),

a = a+ b, d = ((d⊕ a) ≪ 8),

c = c+ d, b = ((b⊕ c) ≪ 7).

The way of application of the nonlinear function is also different here. Unlike
columnround and rowround in Salsa, ChaCha applies the function along column
and diagonals. In case of columns the order is (X0, X4, X8, X12), (X1, X5, X9,
X13), (X2, X6, X10, X14) and (X3, X7, X11, X15). In case of diagonals the order is
(X0, X5, X10, X15), (X1, X6, X11, X12), (X2, X7, X8, X13) and (X3, X4, X9, X14).
Similar to Salsa, each round in ChaCha is also reversible.

3. Idea of attack on Salsa and ChaCha

So far various differential attacks have been proposed against Salsa and ChaCha.
The basic idea of differential attacks is to input a difference at any intended bit Xi,j

of the initial matrix X and achieve a new matrix X ′. Then we run the algorithm
on both the matrices by few rounds and find some correlation between Xr and
X ′r. This correlation is called a distinguisher. Similarly, from the final state, we
can come backward by ReverseSalsa. In this attack method, Aumasson et al. [1]
introduced a new idea named Probabilistic Neutral Bits (PNB’s). We first explain
idea of Probabilistic Neutral Bits or PNB as given in [1, 9]. The aim of this idea is
to reduce the complexity of searching 256 bits of the unknown key by partitioning
the set of keybits into two parts: Significant Keybits and insignificant Keybits.
Detailed explanation: Applying an input difference at an IV position (i, j) (j-
th bit of i-th word ), two matrices X and X ′ are achieved. Now the algorithm
is performed on both X and X ′ by some r rounds and a correlation between Xr

and X ′r is found at some position (p, q). Suppose Xr
p,q and X ′rp,q be the entries

at position (p, q). Now, ∆r
p,q = Xr

p,q ⊕ X ′rp,q. This ∆r
p,q shows a high bias εd i.e.,

Pr(∆r
p,q = 1 | ∆i,j = 1) = 1

2 (1 + εd) ; εd being the measure of the bias of the output
difference. This bias works as the distinguisher of the cipher.

Now, using this distinguisher, a key recovery attack can be formed using the
idea of probabilistically neutral bits. Let us give a brief idea of PNB’s. Suppose,
R is the total number of rounds, and Z = X + XR and Z ′ = X ′ + X ′R. In X
and X ′ , a particular key bit position k is complemented to yield the states X and
X ′. Next, one can reverse the states Z −X and Z ′ −X ′ by R − r rounds to yield
the states Y and Y ′ respectively. Let Γp,q = Yp,q ⊕ Y ′p,q. If the bias in the event
(Γp,q = 0) is high, then k is considered to be a probabilistic neutral bit (PNB). A
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predetermined threshold probability bias γ is already considered to identify PNB’s.
Using this idea, the keybits are partitioned into two sets: Probabilistic neutral bits
(PNB) and non-Probabilistically neutral bits (non-PNB). After this, in the main
attack, we aim to find the values of the non-PNB’s first. For this purpose, some
random values are assigned to the PNB’s. The attacker tries to guess the values
of the non-PNB’s. Suppose, the matrix obtained by guessing the non-PNB’s and
assigning random values to PNB’s are X̃ and X̃ ′. Reverse algorithm is applied on
Z−X̃ and Z ′−X̃ ′ by R−r rounds to obtain Ỹ and Ỹ ′. If the guess of non-PNB’s is
correct, Γ̃p,q = Ỹp,q ⊕ Ỹ ′p,q gives a high bias ε. The bias of the event Γ̃p,q = ∆p,q is
called backward bias and denoted by εa. The bias ε can be approximated by εd · εa.
Thus, we now achieve the values non-PNB set. Suppose the size of non-PNB set
is n. Achieving the values of the non-PNBs, we fix those values try to guess the
values for PNBs. Instead of an exhaustive search over all possible 2256 values for
the keybits, this idea helps to reduce the search time complexity.

Improving the Complexity and the Error Estimation: Now we revisit the
estimation provided in [1] and perform an accurate computation of the complexity,
which improves the attack by some margin. We have 2n possible sequences of
random values for the n non-PNB’s among which only 1 sequence is correct and
remaining 2n−1 sequences are incorrect. Here, we consider the null hypothesis and
alternative hypothesis respectively as:

1. H0 : chosen sequence is incorrect.
2. H1: chosen sequence is the correct one.

So, 2n − 1 sequences satisfy the null hypothesis and only 1 sequence satisfies the
alternative hypothesis.

Suppose we make our decision based on N keystream bits Z1, Z2, . . . , ZN . We
focus on the probability of the event Γ̃p,q = 0. If the guess of n non-PNB’s are
correct, then this probability is p1 = 1

2 (1 + ε). On the other side, if the guess

is wrong, the probability is p0 = 1
2 . So, this experiment on each Zi is basically

a Bernoulli trial where getting Γ̃p,q = 0 can be considered to be ‘success’ and

Γ̃p,q = 1 to be ‘failure’. Repeating this experiment on N keystream bits constructs
a binomial distribution with the parameters p0/p1 (based on the correctness of the
guess of non-PNB’s) and N . So, if the guess of n non-PNB’s is incorrect, the mean of
the binomial distribution is µ0 = Np0 = N

2 and variance is σ0 = Np0(1− p0) = N
4 .

On the other side, for correct guess, probability of success p1 = 1
2 (1+ε). So, mean is

µ1 = N
2 (1+ε) and variance is σ1 = N

4 (1+ε)(1−ε). Now, from central limit theorem
we know that for large N , both these binomial distributions can be approximated by
normal distributions with same means and variances. Therefore, the corresponding

normal distribution functions can be given by f(x) = 1√
2πσi

e
− (x−µi)

2

2σ2
i , where i = 1

for correct guess.
Let us denote the distribution associated to the correct guess as distribution 1

and the one associated with the wrong guess as distribution 2. In the hypothesis
testing, at first, a threshold T is decided. Among the N Bernoulli trials, if the
number of successes is more than T , we choose the alternative hypothesis H1 to
be true. In other words, in our N trials, say t be the number of times the event
(Γ̃p,q = 0) has occurred, which we declare as ‘success’. Then, if t ≥ T , then we
declare the alternate hypothesis to be true, i.e., the guess of non-PNB’s is correct.
Otherwise, if t < T , the null hypothesis H0 is declared to be true.
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N
2 T N

2 (1 + ε)

Figure 1. Two Normal distribution curves

Now, in the figure 1, we can see that some portion of the two graphs overlap with
each other. In fact, for any point on the x-axis, their is some positive pdf value for
each of the two distributions. This means, for any t, we can’t say for sure that one
of the hypothesis is wrong and the other is right. So, whatever be the value of the
threshold T , there is a possibility of error in decision making. Two possible errors
can occur:

1. False Alarm Error: This error occurs when the chosen sequence A is in-
correct, i.e., A ∈ H0, but in the experiment we achieve t ≥ T . As a result
we accept a wrong sequence to be the correct one. The probability of this
event is denoted by Pfa. Since the chosen sequence is actually incorrect, the
probability distribution associated with this experiment is the one with mean
µ0 and variance σ0. So, to find the probability of this kind of error, we have
to find the probability that t ≥ T in the normal distribution 1. This can be

given by Pfa = 1√
2πσ0

∫∞
T
e
− (x−µ0)2

2σ20 dx.

2. Error of Non-Detection: This error occurs when the chosen sequence A
is the correct one, i.e., A ∈ H1, but it can’t be detected because in the
experiment, t < T . Denote the probability of this error by Pnd. This is
basically the probability of t < T in distribution 2, which can be given by

Pnd = 1√
2πσ1

∫ T
−∞ e

− (x−µ1)2

2σ21 dx.

So, our primary aim is to minimize these two errors. The probability of these
two errors depend on how we choose our threshold T . It is very clear from the
expressions of Pfa and Pnd that if we want to reduce one of them by shifting the
value of T , the other one will obviously increase. But, this change is not same.
Also, the value of N plays a vital role here. Let us focus on the bound of these
two errors. Authors in [1] restricted the false alarm error to be less than some 2−α

and the Non-Detection error to be bounded by 1.3 × 10−3. So, we have the two
equations:

1. 1√
2πσ0

∫∞
T
e
− (x−µ0)2

2σ20 dx ≤ 2−α

Advances in Mathematics of Communications Volume 13, No. 4 (2019), 689–704
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Table 1. New attack complexities for 8 rounds Salsa and 7 rounds ChaCha

Cipher n |ε| α T N Existing complexity New complexity

Salsa 43 0.000176 16.43 229.66 230.66 2243.93 2243.74

ChaCha 53 0.000100 24.83 231.72 232.72 2235.93 2235.78

Table 2. Attack complexities using chaining distinguisher

Cipher Existing complexity New complexity
Salsa 2243.67 2243.23

ChaCha 2235.22 2234.78

2. 1√
2πσ1

∫ T
−∞ e

− (x−µ1)2

2σ21 dx ≤ 1.3× 10−3.

From these two equations we can find the value of N and T which gives the
best possible result. In [1], instead of finding the actual integration value, the

authors used the fact that for any x, 1√
2π

∫∞
x
e−

y2

2 dy < e−
x2

2 . So, e−
x2

2 can be

used as an upper bound of 1√
2π

∫∞
x
e−

y2

2 dy, and this expression was used instead

of the actual integral to find N and T . According to this, the total number of

samples is N ≈
(√

α log 4+3
√
1−ε2

ε

)2

. These many samples are used to achieve the

bounds of Pnd = 1.3× 10−3 and Pfa by 2−α. The final complexity can be given by
2n
(
N + 2mPfa

)
= 2n ·N + 2256−α. In our work, we perform the actual integration

using Sage [10]. In Table 1, we present new attack complexities for 8 rounds Salsa
and 7 rounds ChaCha.

Chaining Distinguisher approach and our observation: In [11], Shi et al.
provided a new technique to recover the key of Salsa and ChaCha with better
complexity. Instead of finding the non-PNB keybits by exhaustive search, they
proposed to do it step by step. Suppose the set of non-PNB’s is K. We find r subsets
of K, namely K1,K2, . . . ,Kr such that for all i = 1, 2, . . . , (r − 1), Ki ⊂ Ki+1 and
Kr = K. Now, while finding the non-PNB’s, first we aim to find the values of keybits
of K1 only. This takes an exhaustive search over only 2|K1| options. After finding
these values correctly, we go for the keybits of K2 \K1. Putting the correct values
in K1, we try all possible combinations for the keybits of K2\K1. When we find the
correct one, as a whole we achieve the values of all keybits of K2. Like this, at i-th
iteration, we perform the exhaustive search over all combinations of Ki \Ki−1, find
the correct one, and thus we achieve Ki. After r such iterations, we can achieve
Kr = K. This technique is very helpful because searching the non-PNB’s step
by step reduces the search by huge margin, which at the end reduces the final
complexity. Using chaining approach, Dey et al. [6] reported attack complexities
for 8 rounds Salsa and 7 rounds ChaCha as 2243.67 and 2235.22 respectively. Using
our actual integration, the attack complexity for Salsa reduces to

2256−43 × 229.96 + 2256−39−3.76 × 227.34 + 2256−3.76−15.62 = 2243.23.

Similarly the complexity for ChaCha becomes

2256−53 × 231.52 + 2256−52−4.16 × 232.27 + 2256−4.16−24.25 = 2234.78.
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Remark 1. An important fact in this approach is the non-detection error proba-
bility. Since in this technique the PNB set is found in r steps, in each of them there
is chance of non-detection error. So, if the probability of non-detection error is Pnd,
this means, correct guess can be detected with probability (1− Pnd). Now, in each
of the r iterations, the correct guess can be detected with probability (1 − Pnd).
Assuming these events independent, the probability that in all the iterations guesses
are correct is detected is (1− Pnd)r ≈ (1− rPnd). This means, in the whole proce-
dure, the probability that the non-detection error occurs is 1− (1− rPnd) = rPnd,
which is r times the original non-detection probability Pnd.

4. How to assign values in PNB’s

In the process of searching the non-PNB’s, the idea was to assign random values
to PNB’s. Here, instead of assigning any random values, we try to focus on the
values which will improve the whole attack complexity. For each PNB positions we
find out some fixed values, which we always assign at those positions during finding
the non-PNB’s. Suppose, there are m probabilistic neutral bits. So, as a tuple it
has 2m possible values, among which only one is correct. We observe that there are
few set of values, which give a better bias of the backward probability on average,
even if the values are not correct. Suppose X and X are respectively the initial
matrix and the matrix obtained by putting some arbitrary values at the PNB’s.
Now, we compute both Z −X and Z −X. If the differences between Z −X and
Z −X are at less number of positions, we observe that after applying R− r rounds
of reverse algorithm of ChaCha on Z − X, the backward probability εa becomes
high. Due to this high bias, from Neyman-Pearson formula, we can achieve a lower
value of N , which will help to reduce the complexity. On the other hand, if Z −X
and Z −X have differences at many positions, the bias εa becomes low, increasing
the value of N .

So, if the values of the PNB’s can be chosen in such a way that the differences
between Z −X and Z −X can be minimized, we can achieve a high εa. Of course,
this difference depends on the actual values of the PNB’s. If some guessed values of
PNB’s give very low difference between Z−X and Z−X for some key K1, the same
guessed value may give large difference for some other key K2. But, considering all
possible keys, there are some values for PNB’s which give low difference on average.
If those values are assigned to the PNB’s instead of assigning arbitrary values, we
get advantage in our attack in average case.

Procedure: In ChaCha and Salsa, we have 8 cells which contains keybits. We work
on a single key cell at a time. For convenience, let us assume that we work on key cell
k. To find the values of the PNB’s located at k, we consider all possible values for
those bits. Suppose, k contains m PNB’s and we denote them as p1, p2, . . . , pm. So,
the block p1p2, . . . , pm has 2m possible values. Let the values be v0, v1, . . . , v2m−1.
When we compute Z − X, by W we denote the 32 bit block of Z from which k
is subtracted. Now, we choose random values for W and k. For each j from 0 to
2m − 1, we construct 32 bit block kj by replacing the original value of PNB block
p1p2, . . . , pm, by value vj . Next we compute W − k and W − kj for all j. Then, for
each j, we count the number of differences between W−kj and W−k, i.e., we count
the number of 1’s appearing in (W − k) ⊕ (W − kj). Let this value be cj1 . After
this, we again choose random values for W and k and repeat the above operations.
Thus, we repeat the same procedure and count the number of differences between
W − k and W − kj . Let it be cj2 . We repeat this for large number of arbitrary
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3 6 7 15 16 17 18 31 35 38 67 68
1 1 0 1 1 1 0 x 1 0 0 1
71 72 73 91 92 93 94 95 96 97 98 99
1 1 0 x x x x x 1 1 1 1

100 103 104 105 106 107 127 136 137 138 139 156
0 1 1 1 1 0 x 0 0 0 1 x

159 191 223 224 225 226 227 228 248 249 250 251
x x x 1 1 1 1 0 x x x x

252 253 254 255
x x x x

Table 3. Values for Probabilistic Neutral Bits of ChaCha

values of W and k. Say this value is `. We add all cj1 , cj2 , cj3 , . . . , cj` ’s to get the
total number of differences, say cj . Thus, for all vj we have a corresponding cj .
Now suppose , cj0 = minj{cj} Then we assign vj0 for the PNB block p1p2, . . . , pm.
We repeat the same operation for each keycell and obtain a value for the PNB block
of that cell.

However, if there is a PNB block consisting of consecutive bits ending at the
MSB of any cell, i.e, of the form p31p30p29, . . . , p32−i, then we observe that for
that block any arbitrary value can be assigned to the PNB’s. This means, all
2i possible values for p31p30p29, . . . , p32−i give same bias on average. Suppose
k = k31k30, . . . , k0 is a keycell, of which the first i most significant keybits, i.e,
k31, k30, k29, . . . , k32−i are PNB’s. Now, suppose z31z30, . . . , z0 be the correspond-
ing Z. Suppose k′31k

′
30k
′
29, . . . , k

′
32−i is any arbitrary value that we assign to the

PNB’s. We call this new 32-bit value k′. Now, we compare the differences between
Z − k and Z − k′.

By Z1, k1, k
′
1 we denote the most significant i bits of Z, k, k′ respectively. Since

the last 32− i bits are not PNB’s, they are same for k, k′. As a result, the last 32− i
bits of Z−k, Z−k′ are same. So the number of positions where Z−k mod 232 and
Z − k′ mod 232 differ is same as the number of positions where (Z1 − k1) mod 2i

and (Z1 − k′1) mod 2i differ. Now, we consider all possible values for k1. So, for all
possible values of k1, Z1−k1 gives all possible i-bit values that can be generated by

0 and 1. Let us call them k11, k
2
1, . . . , k

2i

1 . For all kj , we count the difference between

Z1 − k1j and Z1 − k′1j and find their sum. Now, the number of differences between

Z1 − kj1 and Z1 − k′1j is the number of 1’s appearing in (Z1 − kj1 ⊕Z1 − k′1j). Now,
the set {Z − k1 ⊕ Z − k′1 | k1 is a i bit number} is basically the set of all possible i

bit numbers. So, the sum is
∑2i

j=0 j
(
i
j

)
, because there are

(
i
j

)
i-bit numbers which

contains exactly j 1’s. Now, this value is same for any value of k′1, i.e.,
∑2i

j=0 j
(
i
j

)
does not depend on the value of k1. So, the total number of difference is same for
any value of the block p31p30, . . . , p32−i.

Experimental Results

ChaCha: We run our experiment over ChaCha. We use the idea of Maitra [8] to
minimize the number of differences after first round by choosing proper IV. To find
the best value for the PNB block of each keycell, we experimented on 107 keys. We
provide the values for 52 PNB’s in Table 3. The PNB blocks where any arbitrary
values give same bias, is denoted by x. Like [4], we put the input difference at
position (13, 13), i.e., at 13th bit of 13th word. The output difference is observed
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Percentage of keys bias (existing) bias (our) existing complexity our complexity

10 0.000200 0.000648 2234.97 2231.56

20 0.000178 0.000433 2235.28 2232.68

30 0.000165 0.000314 2235.50 2233.57

40 0.000152 0.000231 2235.73 2234.43

50 0.000139 0.000182 2235.96 2235.09

Table 4. Comparison of bias ε and complexities between existing
and our method for ChaCha when n = 52.

25 26 27 28 29 30 31 39 70 71 72 107
x x x x x x x x 1 1 0 1

119 120 121 122 164 165 166 167 168 169 170 171
1 1 1 0 0 1 1 1 1 0 0 0

172 173 174 175 176 209 210 211 212 213 224 225
0 0 0 0 1 1 1 1 1 0 0 1

241 242 243 244 245 246 255
1 1 1 1 1 0 x

Table 5. Values for the probabilistic neutral bits of Salsa

after 4.5 rounds at ∆4.5
0,0⊕∆4.5

0,8⊕∆4.5
1,0⊕∆4.5

5,12⊕∆4.5
11,0⊕∆4.5

9,0⊕∆4.5
15,0⊕∆4.5

12,16⊕∆4.5
12,24.

The average bias ε̄ observed for random assignment of values for PNB’s is 0.000144,
whereas our selected values for PNB’s give bias 0.000318. We observe that for
67% keys, special PNB gives higher ε than random PNB. For 10% of the keys, our
complexity is around 10 times faster than the existing complexity. The comparison
between our complexity and existing complexity is provided in Table 4. In the
figure 2, we represent this comparison graphically. The x-axis presents the percentile
of keys and the y-axis presents the probabilities.

0 20 40 60 80 100

Percentile →

0.5000

0.5002

0.5004

0.5006

0.5008

0.5010

P
ro
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lit
y
→

Random PNB

Special PNB

Figure 2. Comparison between the probability achieved by ran-
dom values and our values for ChaCha

Salsa: In Table 5, we provide the values of PNB blocks which gives the best bias for
Salsa. The PNB blocks where any arbitrary values give same bias, is denoted by x.
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Percentage of keys bias (existing) bias (our) existing complexity our complexity

10 -0.000232 -0.000667 2243.18 2240.11

20 -0.000207 -0.000397 2243.48 2241.53

30 -0.000192 -0.000305 2243.69 2242.24

40 -0.000181 -0.000226 2243.86 2243.06

50 -0.000176 -0.000192 2243.93 2243.51

Table 6. Comparison of bias and complexities between existing
and our method for Salsa when n = 43.

The input difference is put at position (7, 0) and output difference is observed at the
XOR of (9, 0), (13, 0), (1, 13). The average bias ε̄ observed for random assignment
of values for PNB’s is -0.000170, whereas our selected values for PNB’s give bias
-0.000308. We observe that for 57% keys, special PNB gives higher ε than random
PNB. In Table 4 we provide the comparison between our result and existing result
upto 50% of keys. Kindly note that from the Table 4, it is clear that, for around
10% of the keys, the complexity is 8.40 times faster than existing result. However,
as the percentage of keys increases, our result gets closer to existing best result, but
still it is much better. In the figure 3, we represent this comparison graphically.
The x-axis presents the percentile of keys and the y-axis presents the probabilities.

RandomPNB

Special PNB

0.4998

P
ro
b
a
b
il
it
y

0.5000

0.4996

0.4992

0.4990

0 20 40 60 80 100

0.4994

Percentile

Figure 3. Comparison between the probability achieved by ran-
dom values and our values for Salsa

5. Modification of design as a countermeasure of differential attack

In this section, we analyse the structure of ChaCha and aim to find countermea-
sure to defend the proposed differential attacks without hampering the basic design
pattern of the cipher. We propose a small modification of the output keystream
function. Since the design of ChaCha is an excellent one, which has been proven by
its security and use in last few years, we do not intend to bring about any major
change in its design. We keep the basic quarterround function same as the actual
design. However, we make a small tweak in the output function of the cipher. But
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interestingly we can see that this change can defend all the key recovery attacks
based on probabilistic neutral bits against ChaCha.

Output keystream: In the original version of ChaCha, the output keystream Z
is given by the sum of initial and final matrix: Z = X +XR. In our modification,
we change it and define the output function as: Z = X1 +XR. This small change
does not affect the speed or memory of the cipher. In fact, R = 7 is secure enough
to defend the differential attacks. Therefore, actually the tweak can help to reduce
the number of rounds and make the cipher faster. In the next subsection we discuss
the advantage of this tweak against differential attacks.

5.1. Analysis and advantage in modified version: Here we discuss the ad-
vantage of the tweak in the design of the cipher. Our primary focus is to resist the
differential attack based on Probabilistic neutral bits. Later we also show that the
tweak is not going to hamper any other security, i.e., it does not make the cipher
vulnerable against any other type of attack.

Differential distinguisher: In the modified version, no changes has been made in
the basic quarterround function. Therefore the usual differential distinguishers of
ChaCha will also work for the modified version. ChaCha can be distinguished upto
4th round using single bit distinguisher and 5th round using triple bits. Same differ-
ential is applicable for modified version as well. So, we do not resist the distinguish-
ing attack using this modification. But, in the modified version, this distinguisher
will not lead into any key recovery attack. The tweak will resist the generation of
probabilistically neutral bits. As a result, the meet in the middle approach of attack
will not be helpful against the cipher. A detailed idea of Probabilistic Neutral Bits
has been explained in in 3. Using this idea, original ChaCha can be attacked upto 7
rounds. Here, we explain why this tweaked version of ChaCha is much secure than
ChaCha against all these attacks.

Unavailability of Probabilistically neutral bits: Suppose the size of the PNB
set is m, and non-PNB set is 256−m. Then, in the original version of ChaCha, if
the guess of non-PNB’s is correct, then between X and X̃, 128 constant bits, 128
counter and nonce bits, 256−m non-PNB’s are exactly same. So, in total, 512−m
bits are exactly same between X and X̃. Same is true between X ′ and X̃ ′ also.
So, in Z − X̃, a large number of bits are same as XR (since XR = Z − X). Due

to this large number of matches, Z − X̃ behaves almost same as XR. Exactly the
same is true between X ′R and Z ′ − X̃ ′. As a result, Ỹ and Ỹ ′, which are obtained
by applying reverse algorithm on Z − X̃ and Z ′ − X̃ ′, behaves similar to Y and Y ′

respectively. This is why Γ̃p,q = Ỹp,q ⊕ Ỹ ′p,q gives a high bias for the correct guess.
Now, in our design, Z is obtained by Z = X1 +XR. Unlike X, not a single bit of

X1 is known to the attacker. Even if the guess for non-PNB’s is correct, that does
not help to construct a matrix which has so many matches with X1. As a result,
even the correct guess of non-PNB’s won’t be able to produce a significant bias of
Γ̃p,q. However, one natural idea that may occur is: if the guess of non-PNB’s is

correct, then we can apply one round of ChaCha on X̃ and X̃ ′ and achieve some X̃1

and X̃ ′1, which can be considered as an approximation of actual X1 and X ′1. Then,

by applying reverse algorithm on Z − X̃1 and Z − X̃ ′1 we can proceed similarly as
original ChaCha. But, experimentally we observe that this procedure is not helpful
to produce an attack. We have run experiment on five million samples and observed
that if a single keybit of X is assigned an incorrect value, then applying one round of
the algorithm, on average we have 12 bits of the matrix X̃1 which are independent
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Table 7. Number of Random V alue Positions for some size of PNB

Percentage of PNB’s Number of Random V alue Positions
5% 70
10% 127
15% 180
20% 219

from the respective bits of X1. The minimum number of differences between X̃1

and X1 is 4. So, this means, if a single incorrect bit can bring so many differences
after one round, then assigning arbitrary values to m PNB’s will bring about huge
difference between X1 and X̃1, and X̃1 will not work as an approximation of X1

at all.
In our experiment we choose some keybit positions randomly, assume these to

be our PNB set and assign arbitrary values to them. After that, applying one
columnround on the matrix we check the number of difference between the original

X1 and this new X̃1. For one such choice of keybit positions, we run experiment for

5 million different keys and finally find the positions of X̃1 which behaves randomly
with respect to X1, i.e., the values at those positions have no positive or negative
bias towards the values of the respective positions of X1. Based on the size of
the chosen PNB set, in Table 7, we provide the number of positions that behave
randomly with respect to the original matrix. For each size given in the table,
100 different random sets of keybits are chosen. For each of these sets, we run

one columnround on X and X̃, achieve X1 and X̃1 and compare the value at each

position of X1 to the respective position of X̃1. Repeating this for 5 million random

keys, we find the probability Pr(X1
i,j = X̃1

i,j). We call a position (i, j) a Random

value position if Pr(X1
i,j = X̃1

i,j) ≈ 1
2 . In this context, in our experiment we assign

a threshold of range .0001 to declare a keybit position to be random. Now, we count
the number of Random value positions and give it on the table. If the number of
Random value positions is high, we can say that X1 cannot be approximated by

X̃1. From the Table 7 it is clear that the number of Random value positions is
very high, even if the number of PNB’s are 5%. With the increment of the PNB
set size, it increases by huge margin.

Therefore, even if a differential distinguisher can be found in this design, the
distinguisher can’t be used to achieve a key recovery attack, since no probabilistic
neutral bit can be generated. Any key recovery attack of ChaCha which are based
on the idea of PNB, is not effective in this modified design.

Detailed Analysis of the Output Keystream: Now, the question is, instead
of computing the output function as Z = X1 +XR, is there any other i < R such
that defining the output function as Z = Xi +XR will provide even better security
than X1 + XR. We do not claim that X1 + XR is the best possible way we can
define the output function. One thing is very clear. The advantage the attacker
has in the usual output keystream of ChaCha (Z = X + X8) is that half of X is
already known to him. This advantage he does not have if X1 is instead of X. But,
the knowledge of X may help to predict some keybits of X1. So, if we use some
other i > 1, it is more difficult for the attacker to predict the keybits of Xi because
of the diffusion. So, this observation apparently may lead to the conclusion that
increasing the value of i will improve the security.
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But, there is another factor which comes into play as we increase i. As i gets
closer to R, the correlation between Xi and XR becomes more prominent. This
correlation may be reflected in the computation of output Xi + XR. As a result,
strong correlation between Xi and XR may weaken the design. For example, if
i = R − 1, i.e., Z is computed as Z = XR−1 +XR, the cipher becomes very much
weaker. Below we show that how easily the cipher can be attacked if i = R− 1.

Case when Z = XR + XR−1: Without loss of generality, let us assume that the
R-th round is a columnround. So, XR is computed by applying columnround on
the four columns of XR−1. Now, let’s assume the four column vectors of XR−1

to be C1, C2, C3 and C4. Each of their size is 128. After applying columnround,
suppose the achieved columns of XR are C ′1, C

′
2, C

′
3 and C ′4. So, each C ′i is achieved

by applying columnround on the respective Ci, and does not depend on the other
columns of XR−1. Now, in Z = XR+XR−1, each Ci is added with C ′i. So, for each
of 2128 possible values of Ci, we compute C ′i and then compute Ci + C ′i. For the
correct guess of Ci, we can achieve 128 bits of Z. So this complexity is 2128 only.
Repeating the same procedure for all four columns, we can achieve all four Ci, with
4× 2128 attempts.

So, i = R − 1 can not ne used for output generation. Now, which value of i
can provide the best security of the cipher is clearly a topic of further analysis and
study. But certainly, our design, where i = 1, is a very secure choice to defend all
the differential attacks available against Salsa and ChaCha.

5.2. Resistance to other common attacks: Though our tweak in the design
of ChaCha is a minor one, it is very much effective in defending the differential key
recovery attacks based on Probabilistically Neutral bits. However, we also have to
make sure that this change of design doesnot weakens the cipher against other kind
of attacks. Since the basic design principle is kept same as the original ChaCha, it
is obvious that it will provide same security as ChaCha against all other attacks.
Still we go through an analysis of this modified design against common attacks.

Time Memory Data Tradeoff Attack: This is a well known attack against
stream ciphers where the attacker uses memory to some information before actual
attack reduce the time complexity of the attack. However, this kind of attacks have
been performed so far mostly against the stream ciphers with Grain-like structure.
The basic design principle of Salsa or ChaCha is completely different from that.
To the best of our knowledge, there is no TMDTO attack known against Salsa,
ChaCha or any stream cipher with similar structure. So, the usual attack strategy
of TMDTO attacks against Grain-like ciphers is not applicable against the design
pattern of Salsa family ciphers. However, a conventional rule is followed to design
Grain-like ciphers to defend TMDTO attack, which says that the state size should
be at least twice the key size. That rule is already followed in SalSa, ChaCha and
in our modified design, because the state size (512) here is twice the key size (256).
Therefore, our design is without any doubt secure against the common TMDTO
attack.

Linear approximation attack: This is another interesting attack which has been
effective against some stream ciphers in recent times. However, in all the attacks
performed by this method, a non-linear polynomial function is approximated by a
linear function. After that, state is found by solving the linear equations. In binary
polynomial functions, the product terms have a high bias towards zero. For example,
a product term of n variables x1x2 . . . xn gives zero with probability (1−1/2n). This
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is why, unless constructed very carefully, polynomial functions can be approximated
probabilistically by linear functions. But in the quarterround function of ChaCha,
four additions modulo 232 are involved. This addition is a very strong non-linear
function, where expressing each of the bits in polynomial form involves all the bits
on the right side of it (less significant bits). So, approximating the addition of 32
bit numbers is very difficult to be approximated by a linear function throughout
an attack. Suppose a and b are added to get S. Let us denote by X[i] we denote
the i-th entry of the number X, Then the i-th entry of S, which we denote by
S[i], can be given by S[i] = a[i]⊕ b[i]⊕ C[i], where C[i] is the carry received from
the previous bits. This carry is the reason of the non-linearity of the function,
and it depend on all the bits of a and b which are less significant than i-th (i.e.,
a[0], a[1], . . . , a[i − 1] and b[0], b[1], . . . , b[i − 1]). The term C[i] can be represented
as a polynomial non-linear function, but it is a very complicated one. Therefore, a
good linear approximation is not possible for the addition.

Cube Attack: Cube attack has been very useful against ciphers like Grain 128.
The reason behind the success of the this attack the low degree of the function.
However, as already mentioned, the addition function of the quarterround func-
tion is a complicated one. Also, quarterround function involves a rotation, which
complicates the function further. Therefore, the polynomial representation of a
quarterround function is of a very high degree. And as the number of rounds in-
creases, the degree increases very fast. Therefore, cube attack is not applicable
against this kind of cipher.

Algebraic Attack: There has not been any algebraic attack either against ciphers
of this kind, the reason being the quarterround function. The nonilinearity and
high degree of this function restricts any algebraic attack against the cipher. So, in
our modification, since we do not make any in the quarterround function, there is
no chance of algebraic attack.

6. Conclusion

In this paper, we first perform more accurate complexity computation and pro-
vide better result. Then, we aim at increasing the backward probability bias of
differential attack against reduced round Salsa and ChaCha. Instead of assigning
random values for probabilistic neutral bits, we found some fixed values for the
PNB blocks of the keycells. These values give minimum difference between Z −X
and Z − X ′ in average case. As a result, the backward probability bias increases
significantly. This helps to reduce the complexity of the attack. Finally, we propose
a slight change in the design of the original ChaCha. We can defend the differential
attack ideas that have been proposed against ChaCha. Also, instead of running the
algorithm by at least 8 rounds, we run our algorithm by 7 rounds only. Due to our
modification, the usual differential attacks don’t work even in 7 rounds. As a result,
in one side we are making the keystream production faster. On the other side, this
design is providing better security.
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