Cambridge University Press 978-1-107-05871-2 - Relay Autotuning for Identification and Control M. Chidambaram and Vivek Sathe Frontmatter <u>More information</u>

Relay Autotuning for Identification and Control

M. Chidambaram

Indian Institute of Technology, Chennai

Vivek Sathe

Dr. Babasaheb Ambedkar Technological University, Maharashtra

Cambridge House, 4381/4 Ansari Road, Daryaganj, Delhi 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107058712

© M. Chidambaram and Vivek Sathe 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2014

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Chidambaram, M.
Relay autotuning for identification and control / M. Chidambaram, Vivek Sathe. pages cm
Summary: "Provides a simple method of designing P/PI controllers for series and parallel cascade control schemes for effective industrial operations"–Provided by publisher.
Includes bibliographical references and index.
ISBN 978-1-107-05871-2 (hardback)
Relay control systems. 2. Self-tuning controllers. 3. Electric relays–Automatic control.
I. Sathe, Vivek. II. Title.
TJ217.C4765 2014
629.8'36–dc23

ISBN 978-1-107-05871-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of Figures			ix
List of Tables			xvii
Acknowledgements			xxi
Pre	face		xxiii
1.	Intro	duction	
	1.1	Relay Feedback Method	1
	1.2	Identification by Symmetric Relay Feedback Method	3
	1.3	Identification using Asymmetrical Relay	4
	1.4	Identification of Unstable Processes	5
	1.5	Autotuning of Cascade Control System	6
	1.6	Relay Tuning of Multivariable System	7
	1.7	PI/PID Controller Design	8
2.	Impro	oved Autotune Identification Methods	
	2.1	Introduction	12
	2.2	Estimation of Time Delay	13
	2.3	Method for Considering Higher Order Harmonics	15
	2.4	Simulation Study	20
	2.5	Modified Asymmetrical Relay Method for Improved System Identification	22
	2.6	Method	23
	2.7	Simulation Results	25
	2.8	Conclusions	29
3.	Casca	de Controllers Tuning by Relay Autotune Method	
	3.1	Introduction	30
	3.2	Method 1	31
	3.3	Method 2	35
	3.4	Parallel Cascade Controllers	38

iv Contents

	3.5	Method 1 for Parallel Cascade Control Systems	38
	3.6	Method 2 for Parallel Cascade Control Systems	41
	3.7	Conclusions	42
4.	Simu	ultaneous Relay Autotuning of Cascade Controllers	
	4.1	Introduction	43
	4.2	Method for Series Cascade Control Systems	44
	4.3	Method for Parallel Cascade Control Systems	49
	4.4	Simulation Study	50
	4.5	Higher Order Harmonics in both the Loops	52
	4.6	Conclusions	56
5.	A Sir	mple Method of Tuning Cascade Controllers	
	5.1	Introduction	57
	5.2	Method for Series Cascade Control Systems	58
	5.3	Simulation Results	60
	5.4	Stability Analysis	70
	5.5	Method for Parallel Cascade Control Systems	71
	5.6	Simulation Results for Parallel Cascade Controllers	73
	5.7	Conclusions	78
6.	Imp Deac	roved Saturation Relay Test for Systems with Large	
	61	Introduction	79
	6.2	Importance of Saturation Relay Slope	80
	63	Method 1	80
	6.4	Method 2	82
	6.5	Simulation Study	83
	0.0	6.5.1 Case study 1	83
		6.5.2 Effect of noise	85
		6.5.3 Case study 2	86
		6.5.4 Case studies 3 and 4	87
	6.6	Non-Relay Identification Methods	89
	6.7	Conclusions	91
7.	Iden Bala	tification of FOPTD Model using Single Symmetrical	
	Rela	Introduction	03
	7.1	Problem Description	93
	73	Relay Test	94
	1.5	101u/ 100l	24

				Contents v
	7.4	Estima	ation of $k_{ m p}, D$ and $ au$	94
	7.5	Simula	ation Study	97
		7.5.1	Case study 1	97
		7.5.2	Case study 2	99
		7.5.3	Case study 3	100
		7.5.4	Case study 4	101
	7.6	Concl	usions	104
8.	Auto	tuning	of PID Controllers for Unstable FOPTD Systems	
	8.1	Introd	luction	105
	8.2	Proble	em Description	107
	8.3	Consi	deration of Higher Order Harmonics	107
	8.4	Estima	ation of k_p, D and $ au$	110
	8.5	Simula	ation Study	111
		8.5.1	Case study 1	111
		8.5.2	Case study 2	113
		8.5.3	Effect of measurement noise on identification	115
		8.5.4	Effect of load on model parameter identification	116
	8.6	Simula	ation Study of an Unstable Non-linear Bioreactor	117
	8.7	Concl	usions	119
9.	Auto	tuning	of PID Controllers for Critically Damped SOPTD Systems	
	9.1	Introd	luction	120
	9.2	Proble	em Description	121
	9.3	Consi	deration of Higher Order Harmonics	122
	9.4	Estima	ation of k_p , D and $ au$ using k_u	127
	9.5	Simula	ation Study	128
		9.5.1	Case study 1	128
		9.5.2	Case study 2	131
		9.5.3	Case study 3	133
		9.5.4	Effect of measurement noise on identification	135
		9.5.5	Effect of load on model parameter identification	135
	9.6	Simula	ation Study of a Non-linear Bioreactor System	136
	9.7	Estima	ation of k_{p} , D and $ au$ without using k_u	139
	9.8	Simula	ation Study	140
	9.9	Concl	usions	142
10.	Estin	nation o	f SOPTD Transfer Function Model	

Introduction

10.1

143

vi Contents

	10.2	Problem Description	144
	10.3	Relay Test	144
	10.4	Estimation of Process Gain	145
	10.5	Estimation of θ , τ_1 and τ_2	145
	10.6	Simulation Results	147
		10.6.1 Case study 1	147
		10.6.2 Case study 2	148
		10.6.3 Case study 3	149
		10.6.4 Case study 4	149
	10.7	Conclusions	150
11.	Estim	ation of Five Parameters of Unstable SOPTD Model with a Zero	
	11.1	Introduction	151
	11.2	Problem Description	153
	11.3	Relay Test	153
	11.4	Parameter Estimation	153
	11.5	Simulation Results	156
		11.5.1 Case study 1	156
		11.5.2 Case study 2	159
		11.5.3 Case study 3	160
	11.6	Simulation Application to a Non-linear Continuous Stirred	1.60
		Tank Reactor (CSTR)	162
	11.7	Conclusions	164
12.	Identi	ification of FOPTD Multivariable Systems	
	12.1	Introduction	165
	12.2	Relay Identification	166
	12.3	Estimation of Model Parameters (τ and θ)	168
	12.4	Comparision of Closed Loop Performance	168
	12.5	Examples	169
		12.5.1 Example 1	169
		12.5.2 Example 2	170
	12.6	Conclusions	173
13.	Identi	ification of SOPTD Multivariable Systems	
	13.1	Introduction	174
	13.2	Relay Identification	175
	13.3	Estimation of Model Parameters	176
	13.4	Comparison of Closed Loop Performance	177

		Contents vii
13.5	Simulation Examples	177
13.6	Conclusions	180
14 Tuni	ng of Multivariable Controllers for Non-Minimum Phase Systems	
14. 14.1	Introduction	183
14.1	Controller Design Methods	184
14.2	14.2.1 Simple tuning method	184
	14.2.2 Decoupled internal model controller method	185
143	Comparison Criterion of Controllers Performance	187
14.5	Examples	187
11.1	14.4.1 Example 1	187
	14.4.2 Example 2	191
	1443 Example 3	192
14 5	Conclusions	192
-		175
15. Tun	ing of Multivariable Controllers by Genetic Algorithms	
15.1	Introduction	195
15.2	Genetic Algorithms	196
15.3	Objective Function	196
15.4	Design Example	197
15.5	Decentralized Controllers	198
15.6	Centralized Controllers	202
15.7	Example 2: Niederlinski Model	203
15.8	Conclusions	205
16. Sum	mary and Conclusions	
16.1	Improved Autotune Identification Method	206
16.2	Series Cascade Controller Tuning	206
	16.2.1 Symmetric relay method	207
	16.2.2 Asymmetric relay method	207
	16.2.3 Simultaneous relay autotuning of cascade controllers	208
16.3	A Simple Method of Designing Cascade Controllers	209
16.4	Improved Saturation Relay Test for Systems with Large Dead Time	209
16.5	Model Parameters using Single Symmetrical Relay Test	210
	16.5.1 FOPTD systems	210
	16.5.2 Autotuning of unstable FOPTD system	210
	16.5.3 Autotuning of PID controllers for critically damped stable SOI	PTD
	system	210

viii Contents

16	5.6	Estimation of Model Parameters of SOPTD System	211
16	5.7	Identification of Five Parameters of Unstable SOPTD System	211
16	5.8	Identification of FOPTD Multivariable Systems	212
16	5.9	Identification of SOPTD Multivariable Systems	212
16	5.10	Comparison of Multivariable Controllers Tuning Methods	212
16	5.11	Tuning of Multivariable Controllers by Genetic Algorithm	213
16	5.12	Conclusions	213
Appen	idix A	1	215
Appen	ıdix E	3	220
Appen	idix (2	230
Nomer	nclat	ure	239
Proble	ems		243
Sugges	stive l	Reading	247
Referen	nces		249
Index			259

List of Figures

1.1	Block diagram for symmetric relay feedback system	2
1.2	Response of a relay feedback system	2
1.3	Block diagram for asymmetric relay feedback system	5
1.4	Block diagram for saturation relay feedback system	5
1.5	Series cascade control scheme	6
1.6	Relay feedback tuning of cascade control system	7
2.1	Relay feedback oscillations for the system $\exp(-2s)/[(10s + 1)(s + 1)]$ relay height = 1	14
2.2	The open loop comparisons of the original system and the identified model	15
2.3	Relay feedback oscillations for the system (a) $\exp(-4s)/(s+1)$; (b) $\exp(-4s)/(0.4s+1)$ reheight = 1	elay 18
2.4	Relay feedback oscillations for the system $\exp(-4s)/(0.5s+1)^3$ relay height = 1	21
2.5	Open loop comparisons of actual system and the identified FOPTD models	
		21
2.6	The closed loop response of the system $\exp(-4s)/(0.5s+1)^3$ (controller design by closed Ziegler–Nichols method)	the 22
2.7	The closed loop performance of the system $\exp(-4s)/(0.5s+1)^3$ (controller design by open Ziegler–Nichols method)	the 22
2.8	Block diagram for asymmetric relay feedback system	23
2.9	Closed loop response comparisons for case study 1	25
2.10	Closed loop response comparisons for case study 2	26
2.11	Closed loop response comparisons for case study 3	27
2.12	Closed loop servo response of the unstable FOPTD system	28
3.1	Relay feedback tuning of cascade control system	30
3.2	Response in y_2 using symmetric relay (with relay height ±1) in inner loop	31
3.3	Response in y_1 for symmetric relay in outer loop (with inner loop on PI settings)	32

x List of Figures

3.4a	Servo response in y_1 using PID controller for outer loop and PI for inner loop for the first example 33
3.4b	Response in <i>u</i> corresponding to Fig. 3.4a. PID controller for outer loop and PI forinner loop (for first example)33
3.5	Regulatory response in y_1 for a disturbance in inner loop. PID controller for outer loop and PI for inner loop (first example) 34
3.6a	Servo response in y_1 using PID controller for outer loop and PI for inner loop for the second example 36
3.6b	Response in <i>u</i> corresponding to Fig. 3.6a. PID controller for outer loop and PI for inner loop (second example) 37
3.6c	Regulatory response in y_1 for a disturbance in inner loop. PID controller for outer loopand PI for inner loop (for second example)37
3.7	Parallel cascade control scheme39
3.8	Response in y_2 using symmetric relay (with relay height ±1) in inner loop 39
3.9	Response in y_1 for symmetric relay in outer loop (with inner loop on PI settings) 39
3.10	Servo response in y_1 using the Ziegler–Nichols settings. PID controller for outer loop and PI for inner loop 40
3.11	Regulatory response in y_1 for a disturbance in the inner loop using the Ziegler–Nicholssettings. PID controller for the outer loop and PI for the inner loop40
4.1	Relay feedback tuning of cascade control system44
4.2	Response in y_1 using symmetric relay with relay height 1 in both the outer and inner loops 44
4.3	Response in y_2 for symmetric relay in inner loop and PID in outer loop45
4.4	Regulatory response in y_1 for a disturbance entering in the inner loop using PIDcontroller for outer loop and PI for inner loop46
4.5	Servo response in y_1 using PID controller for the outer loop and PI for the inner loop 47
4.6	Response in u corresponding to Fig. 4.5 using PID controller for the outer loop and PI for the inner loop 47
4.7	Response in y_2 for symmetric relay in the inner loop and PID in the outer loop in presence of measurement noise in the inner loop 48
4.8	Servo response in y_1 using PID controller for the outer loop and PI for the inner loop with noise in the inner loop 49
4.9	Servo response in y_1 using PID controller for the outer loop and PI for the inner loop with load in the inner loop 49
4.10	Parallel cascade control scheme50

List of Figures xi

4.11	Response in y_1 using symmetric relay with relay height ±1 (parallel cascade control system) 51
4.12	Response in y_2 using symmetric relay with relay height ±1 (parallel cascade control system) 51
4.13	Servo response in y_1 for unit step change in the set point with PI controller in the inner loop and the outer loop on PID settings 52
4.14	Response in u corresponding to Fig. 4.13. PID controller for the outer loop and PI for the inner loop 53
4.15	Regulatory response in y_1 for a disturbance in the inner loop using PID controller for the outer loop and PI for the inner loop 54
4.16	Response in y_2 using symmetric relay with noise in the inner loop and the outer loop on PID controller 55
4.17	Servo response in y_1 with PI controller in the inner loop and the outer loop on PID settings (with 0.2% noise) 55
4.18	Servo response in y_1 with PI controller in the inner loop and the outer loop on PID settings (in presence of load) 56
5.1	Series cascade control scheme 58
5.2	Comparison of different methods for servo response in y_1 using PI controller for the outer loop and P controller for the inner loop, under perfect parameters ($\alpha_1 = 1.0$ and $\alpha_2 = 1.0$ for series cascade control system) 61
5.3	Comparison of different methods for regulatory response in y_1 for a disturbance in the inner loop ($\alpha_1 = 1.0$ and $\alpha_2 = 1.0$ for series cascade control system) 62
5.4	Comparison of different methods for servo response in y_1 using PI controller for the outer loop and P controller for the inner loop, under perfect parameters (series cascade control system) 63
5.5	Comparison of different methods for regulatory response in y_1 for a disturbance in the inner loop under perfect parameters (series cascade control system) 64
5.6	Servo response in y_1 using PI controller in the outer loop and <i>P</i> controller in the inner loop, with 20% uncertainty in k_{p2} in the process (series cascade control system) 65
5.7	Regulatory response in y_1 for a disturbance in the inner loop with 20% uncertainty in k_{p2} in the process (series cascade control system)65
5.8	Servo response in y_1 with PI controller for the outer loop and P controllerfor the inner loop, with 20% uncertainty in D_2 in the process67
5.9	Regulatory response in y_1 for a disturbance in the inner loop with 20% uncertainty in D_2 in the process 67
5.10	Servo response in y_1 using PI controller for the outer loop and <i>P</i> controller for the inner loop with 20% uncertainty in τ_2 in the process 68

xii List of Figures

5.11	Regulatory response in y_1 for a disturbance in the inner loop with 20% uncertainty in in the process	η τ ₂ 68
5.12	Parallel cascade control scheme	72
5.13	Comparison of servo response for case study 1	74
5.14	Comparison of regulatory response for case study (parallel cascade control system)	74
5.15	Comparison of servo response for case study 2 (parallel cascade control system)	76
5.16	Comparison of regulatory response for case study 2 (parallel cascade control system))76
5.17	Servo response for k_{p2} = 2.4 for case study 1 (parallel cascade control system)	77
5.18	Regulatory response for k_{p2} = 2.4 for case study 1 (parallel cascade control system)	77
6.1	Block diagram for saturation relay feedback system	80
6.2	Comparison of closed loop responses for the FOPTD system (with $D/\tau = 10$) using controllers from various methods	the 84
6.3	Process output with measurement noise	85
6.4	Comparison of closed loop response for SOPTD system (with $k_p = 1$, $\tau_1 = 2$, $\tau_2 = 4$ and $D =$ using the controllers from various methods	40) 86
6.5	Comparison of closed loop servo response using PI controller for c study 3	ase 88
6.6	Comparison of closed loop regulatory response using PI controller for case study 3	88
6.7	Comparison of closed loop servo response using PI controller for c study 4	ase 89
6.8	Comparison of closed loop regulatory response using PI controller for case study 4	89
6.9	Typical closed loop under damped response for a step change in the set point using $k_c = 0$).5 91
6.10	Comparison of closed loop servo response using PI controllers from various metho for case study 4	ods 91
7.1	Block diagram for symmetric relay feedback system	95
7.2a	Process output symmetrical relay response (case study 1)	98
7.2b	Closed loop response comparisons for case study 1	98
7.3a	Process output symmetrical relay response (case study 2)	99
7.3b	Closed loop response comparisons for case study 2 (solid and dot lines coincide)	100
7.4a	Process output symmetrical relay response (case study 3)	01
7.4h	Closed loop response comparisons for case study 3	01
7.4b	Closed loop response comparisons for case study 3	101

List of Figures xiii

7.5	Comparison of the closed loop servo response of the controllers on the actual sy	stem
		103
8.1	Block diagram for symmetric relay feedback system	107
8.2a	Relay oscillations for $(D/\tau) = 0.2$ for case study 1	112
8.2b	Comparison of set point responses for case study 1	113
8.3	Relay oscillations for case study 2	114
8.4	Comparison of set point responses for case study 2	114
8.5	Comparison of actual response (deviation variable) with that obtained by the Thya and Yu method (for non-linear bioreactor problem)	garajan 118
8.6	Comparison of the responses of the non-linear bioreactor using the controller s from different identification methods	settings 119
9.1	Block diagram for symmetric relay feedback system	122
9.2	q versus $\tau \omega_u$ corresponding to Eq.(9.22)	126
9.3	Relay feedback response of case study 1	129
9.4	Open loop response comparison for case study 1	130
9.5	Closed loop response comparison for case study 1	131
9.6	Relay feedback response of case study 2	132
9.7	Open loop response of case study 2	132
9.8	Closed loop response on the actual system for a step change in set point for case (controller settings as in Tables 9.3 and 9.6)	study 2 133
9.9	Relay response of case study 3	134
9.10	Open loop response of case study 3. SC method is for FOPTD model	134
9.11	Closed loop response for unit step change in set point for case study 3	135
9.12	Relay feedback response of bioreactor system	137
9.13	Open loop response of a bioreactor system (deviation from initial stead value is plotted for the actual system)	ly-state 138
9.14	Closed loop response for unit step change in set point for a bioreactor system	138
9.15	Nyquist plot of the transfer function	142
10.1	Block diagram for asymmetric relay feedback system	144
10.2a	Output response for case study 1	147
10.2b	Step response for case study 1	148
10.3	Step response for case study 2	148
10.4	Step response for case study 3	149

xiv List of Figures

10.5	Closed loop response for case study 4	150	
11.1	Block diagram for asymmetric relay feedback system	154	
11.2	Process input-output relay response (case study 1)	158	
11.3	Controllers performance evaluated on the actual system (case study 1)	158	
11.4	Controllers performance evaluated on the actual system (case study 1, effect of load model identification)	d on 159	
11.5	Process output relay response (case study 2)	160	
11.6	Controllers performance evaluated on the actual system (case study 2)	160	
11.7	Process output relay response (case study 3)	161	
11.8	Controllers performance evaluated on actual system (case study 3)	161	
11.9	Process asymmetric relay response of the CSTR	163	
11.10	Closed loop response of actual system for step point in the set point	163	
12.1	Decentralized relay feedback	167	
12.2a	Comparison of closed loop performance for step change in Y_1	171	
12.2b	Comparison of closed loop performance for step change in Y_2	171	
13.1	Comparison of performance of actual and identified models for example 1	181	
13.2	Comparison of performance of actual and identified models for example 2	182	
14.1	Control performance of four-tank system for unit step change in y_1	188	
14.2	Control performance of four-tank system for unit step change in <i>y</i> 2	189	
14.3	Control performance of four-tank system for unit step change in V1	189	
14.4	Control performance of four-tank system for unit step change in V2	190	
15.1	Convergence of PI controller parameters (1 and 2 represent the controllers C11 C22, respectively)	and 200	
15.2	Closed loop system response of decentralized controllers for a step change in set p <i>Y</i> 1 (the upper curves show the response and the lower curves show the interaction)	oint 201	
15.3	Closed loop system response of decentralized controllers for a step change in set p <i>Y</i> 2 (the upper curves show the response and the lower curves show the interaction)	oint 201	
15.4	Closed loop system response of centralized controllers for a step change in set poin (the upper curves show the response and the lower curves show the interaction)	t Y1 202	
15.5	Closed loop system response of centralized controllers for a step change in set poin (the upper curves show the response and the lower curves show the interaction)	t Y2 203	
Figures in Appendices			

A.1	Simulink block diagram for inner loop tuning for case study 1	215

A.2 Simulink block diagram for outer loop tuning for case study 1 215

List of Figures xv

A.3	Simulink block diagram for measurement noise in inner loop for case study 1	216
A.4	Simulink block diagram for parallel cascade control system	216
A.5	Simulink block diagram for inner loop and outer loop tuning for case study 1	216
A.6	Simulink block diagram for improved relay tuning for case study 1	217
A.7	Simulink block diagram for identification for the non-linear continuous biore	actor
	system	217
A.8	Simulink block diagram for non-linear continuous bioreactor system	218
A.9	Simulink block diagram for control of the non-linear CSTR process	218
A.10	Simulink block diagram for non-linear CSTR system	219
C.1	$y^{*}(t^{*})$ versus a_{1m} corresponding to Eq.(C.24)	233

Cambridge University Press 978-1-107-05871-2 - Relay Autotuning for Identification and Control M. Chidambaram and Vivek Sathe Frontmatter More information

List of Tables

2.1	Comparison of estimated k_u and identified FOPTD model parameters for the present method (when $\omega t^* = \pi/2$) and Li et al. (1991) method 19
2.2a	Effect of including higher order harmonics on k_u (Eqs 2.19 and 2.22) 20
2.2b	Details of calculations for Table 2.2a 20
2.2c	Effect of including higher order harmonics on k_u (use of Eqs 2.33 and 2.22) 20
2.2d	Details of calculations for Table 2.2c 20
2.3	Closed loop performance comparisons of different methods of identification with that of the actual system 27
2.4	PID controller settings and ISE values for case study 4 (unstable system) 29
3.1	Controller settings comparison for $(D/\tau)_{inner loop} = 4.0, (D/\tau)_{outer loop} = 4.0$ 34
3.2	Performance comparison of proposed methods and the Hang et al. method for $(D/\tau)_{\text{inner loop}} = 4.0, (D/\tau)_{\text{outer loop}} = 4.0$ 35
3.3	Effect of change in relay height on PI settings using asymmetric relay testing 36
3.4	Controller settings comparison for the second example 37
3.5	Controller settings comparison using the Ziegler–Nichols settings for parallel cascade control system 41
3.6	Performance comparison of proposed methods and conventional method for $(D/\tau)_{\text{inner loop}} = 4.0, (D/\tau)_{\text{outer loop}} = 6.0$ 41
3.7	Effect of change in relay height using asymmetric relay testing on PI settings for parallel cascade control system 42
4.1	Calculation details for proposed method (series cascade control system) 45
4.2	Controller settings comparison using the Ziegler-Nichols settings (series cascade control systems) 46
4.3	Controller settings for simultaneous relay series cascade control system 48
4.4	Controller settings comparison using Z-N settings (for parallel cascade control systems) 52

xviii List of Tables

4.5	Performance comparison for parallel cascade control systems 53
4.6	Controller design comparison for simultaneous relay for parallel cascade control system 54
5.1	P/PI Controller settings 62
5.2	Performance comparison of different methods under perfect parameters 62
5.3	Controller settings when $\alpha_1 = 0.9$ and $\alpha_2 = 0.4 \alpha_1$ (series cascade control system) 63
5.4	Performance comparison of different methods under perfect parameters 64
5.5a	Performance comparison of the controlled system under uncertainty in k_{p2} 20% high (k_{p2} = 2.4 in the process and controller designed for k_{p2} = 2) 66
5.5b	Performance comparison of the controlled system under uncertainty in $D_2 20\%$ high ($D_2 = 2.4$ in the process and controller designed for $D_2 = 2$) 66
5.5c	Performance comparison of the controlled system under uncertainty in τ_2 20% high (τ_2 = 24 in the process and controller designed for τ_2 = 20) 66
5.6a	Performance comparison of the controlled system under uncertainty in k_{p1} 20% higher in the process ($k_{p1} = 1.2$, $\alpha_1 = 0.9$ and $\alpha_2 = 0.4 \alpha_1$) 69
5.6b	Performance comparison of the controlled system under uncertainty in D_1 20% higher in the process ($D_1 = 12$, $\alpha_1 = 0.9$ and $\alpha_2 = 0.4 \alpha_1$) 69
5.6c	Performance comparison of the controlled system under uncertainty in τ_1 20% higher in the process ($\tau_1 = 120$, $\alpha_1 = 0.9$ and $\alpha_2 = 0.4 \alpha_1$) 69
5.7	Gain margin (A_m) and phase margin (ϕ_m) with inner loop P controller and outer loop PI controller 69
5.8	Controller settings 73
5.9	Performance comparison of the controlled system under perfect parameters 75
5.10	Performance comparison of the controlled system under uncertainty in k_{p2} (parallel cascade control system) 75
6.1	Theoretical value and estimations of the ultimate gain by relay tests for the FOPTD systems 83
6.2	PI controller settings for FOPTD system with $k_p = 1$, $\tau = 1$ and $D = 10$ 84
6.3	Identified k_u and p_u while using noise 85
6.4	PI controller settings for SOPTD system with $k_p = 1$, $\tau_1 = 2$, $\tau_2 = 4$ and $D = 40$ 86
6.5	PI controller settings using IMC method for case studies 3 and 4 87
6.6	Comparison of identified model parameters, the designed PI controller parameters using IMC method and IAE values of the closed loop system for case study 4 90
7.1	Intermediate values for the examples considered97
7.2	Controller parameters based on identified model and actual process parameters 97

List of Tables xix

7.3	Tuning formulae used for case study 3 (Padmasree et al., 2004)	100
7.4	Identified parameters of FOPTD model for case study 4	103
8.1	Effect of including higher order harmonics on k_u	109
8.2	Details of calculations for Table 8.1	110
8.3	Model parameters identified for unstable FOPTD systems	112
8.4	Comparison of identified model parameters and controller parameters for case s	tudy 1 112
8.5	Effect of measurement noise for case study 2. $G(s) = \exp(-0.5s)/((0.5s+1)(2s-1))$	115
8.6	Effect of load on identification for case studies 1 and 2	116
8.7	PID settings for the identified unstable FOPTD model parameters of bioreactor	118
9.1	Effect of including higher order harmonics on k_u	124
9.2	Details of calculations for Table 9.1	124
9.3	Identified model parameters and controller settings	129
9.4	Effect of measurement noise and load on model identification using the pro- method	oposed 136
9.5	Controller performance based on non-linear identified models	137
9.6	Identified and controller parameters by the proposed methods for case study 2	141
10.1	Intermediate values for the examples considered	149
11.1	Intermediate values for the case studies considered	157
11.2	Controller parameters based on identified model and actual process parameters	157
11.3	Effect of noise and load disturbance on identification for case study 1	158
11.4	Controller parameters and ISE and IAE values for the CSTR control problem	164
12.1	ISE value comparison for actual and identified models for the above examples	172
13.1	Closed loop ISE values comparison between the identified model and system for example 1	actual 179
13.2	Closed loop ISE values comparison for the actual and identified models for exam	nple 2 180
14.1	ISE values of servo and regulatory problem for four-tank liquid level system	191
14.2	ISE values for robustness analysis (perturbation in all the steady-state gains)	191
14.3a	ISE values of servo problem for the examples 2 and 3	193
14.3b	ISE values of regulatory problem for the examples 2 and 3	194
15.1	Optimal PI controller parameters for decentralized control system	198
15.2	Optimal PI controller parameters for centralized control system	203

xx List of Tables

15.3	Optimal PI controller parameters for example 2 using the improved GA	and
	the Vlachos et al. method	205
Tables in Appendices		

- C.2 Effect of including higher order harmonics on k_u 236
- C.3 Details of calculations for Table C.2

237

Cambridge University Press 978-1-107-05871-2 - Relay Autotuning for Identification and Control M. Chidambaram and Vivek Sathe Frontmatter <u>More information</u>

Acknowledgements

The authors owe a debt of gratitude to many friends, colleagues and students who helped us write this book. First of all, we gratefully acknowledge the contributions made by the graduate students – K. Sinivasan, V. Ramakrishnan, D.S. Ganesh, E. Sivakumar, D.S. Reddy, M.V. Sadasivarao – as part of their project works. We are also thankful for the support received from the Department of Chemical Engineering and the Continuing Education Centre, Indian Institute of Technology, Madras. The second author expresses his sincere appreciation to his son C. Srihari Prasath for his patience and understanding while writing the manuscript.

It would also be appropriate to express our regards to R. Mohan of Sigma Publishing who drew the figures of the book. We would be remiss if we did not thank Cambridge University Press and our editors involved in the process for their efficient professionalism and successfully bringing out the book.

Cambridge University Press 978-1-107-05871-2 - Relay Autotuning for Identification and Control M. Chidambaram and Vivek Sathe Frontmatter More information

Preface

To design proportional plus integral (PI)/PID controllers, the ultimate values of the controller gain (k_u) and frequency of oscillation (ω_u) should be known. The conventional Ziegler and Nichols continuous cycling method requires a large number of experiments to calculate these values. Åström and Hägglund (1984) suggested the use of ideal relay to generate closed loop oscillations. The ultimate gain and ultimate frequency can be found in a single-shot experiment. However, the method is still approximate because of the use of the principal harmonics approximation. Li et al. (1991) reported that for an open loop, stable first order plus time delay (FOPTD) system, an error of -18% to 27% is obtained in the calculation of k_u . Yu (1999) suggested a saturation feedback test to get better results for the ultimate gain and frequency. However, Yu (1999) did not report any result for large values of delay-to-time constant ratio.

An SOPTD model can incorporate higher order process dynamics better than an FOPTD model. The controller designed on the basis of the SOPTD model gives a better closed loop response than the one designed on an FOPTD model. It is better to have an SOPTD model with equal time constants since only three parameters are to be identified. Li et al. (1991) showed that the conventional analysis of the relay autotune method for an SOPTD model with equal time constants gives -11% to 27% error in the calculation of k_u . In identifying the transfer function models for unstable systems, it is necessary to estimate 5 parameters to describe such systems. There is no method available to estimate these parameters from a single relay test. Cascade control system is a multi-loop control scheme commonly used in the chemical process industries. It should be noted that there are two ways of relay tuning cascade control systems, namely, simultaneous tuning and sequential tuning procedures. However, there is a need to consider higher order harmonics in the analysis of relay tuning of such systems to obtain improved controllers settings.

The authors have organized the book in the following manner:

Chapter 1 gives an overview of the reported works on relay tuning of single loop control system, cascade controllers, estimation of model parameters and design of PI/PID controllers. Chapter 2 gives a method of considering higher order harmonics in the analysis of symmetric relay tuning method and analytical solutions for model parameters using a single asymmetrical relay test.

Chapter 3 gives a method of considering higher order harmonics in the analysis of series cascade control systems by the sequential tuning method. The method is also extended to

xxiv Preface

parallel cascade control systems. Chapter 4 analyzes the simultaneous relay tuning of series and parallel cascade control systems.

Chapter 5 gives a simple method to design PID controllers for a series cascade control system. FOPTD models are assumed for both the inner and outer loop sub-systems. The method is based on matching the coefficients of the corresponding powers of *s* and *s*² in the numerator to α_1 and α_2 times that in the denominator of the closed loop transfer function model for a servo problem. The method is first applied to design a proportional (*P*) controller for the inner loop and then to design a proportional plus integral (PI) controller for the outer loop. The performance of the proposed controllers is evaluated for FOPTD models of the inner loop and the outer loop process transfer functions. This method is also extended to parallel cascade control systems.

Chapter 6 proposes two methods to improve the accuracy of the saturation relay method for FOPTD systems with a large ratio of time delay to time constant. Chapter 7 proposes a method to identify all the three parameters of a first order plus time delay (FOPTD) model using a single symmetrical relay test.

Chapter 8 gives a method to identify all the three parameters of an unstable FOPTD system using a single symmetric relay feedback test. It also proposes a method by incorporating higher order harmonics to explain the error in the calculation of k_u . Another method is proposed to estimate all the parameters of an unstable FOPTD system.

In Chapter 9, using a single symmetric relay feedback test, a method is proposed to identify all the three parameters of a stable second order plus time delay (SOPTD) model with equal time constants $[k_p \exp(-Ds)/(\tau s+1)^2]$. It provides a method to improve the accuracy in the k_u calculation by incorporating the higher order harmonics.

In Chapter 10, using a single asymmetric relay feedback test, a method is proposed to identify all the four parameters of a stable second order plus time delay (SOPTD) model $k_p \exp(-Ds)/[(\tau_1s+1) (\tau_2s+1)]$. In Chapter 11, a method is proposed to identify all the 5 parameters of an SOPTD system with a zero, $G(s) = k_p (\tau_1 s+1) \exp(-Ds)/[(\tau_2 s+1)(\tau_3 s-1)]$, using an asymmetric relay test.

In Chapter 12, the asymmetrical relay tuning method is extended to multivariable FOPTD systems. In Chapter 13, the asymmetrical relay tuning method is extended to multivariable SOPTD systems. Chapter 14 proposes a simple method of designing centralized multivariable PID controllers for multivariable systems. In Chapter 15, the use of detuned Ziegler–Nichols PID settings as initial guess values is suggested for the design of multivariable controllers by an optimization method using the genetic algorithm to reduce the number of iterations significantly. Chapter 16 summarizes the results and conclusions of the work.

There are three appendices.

- Appendix A gives the Simulink block diagrams used in the present work.
- Appendix B gives the Matlab programs used in Chapter 3, Chapter 5 and Chapter 6.

Appendix C gives an improved relay tuning method for integrating plus FOPTD systems.