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Preface

To design proportional plus integral (PI)/PID controllers, the ultimate values of the controller 
gain (ku) and frequency of oscillation (wu) should be known. The conventional Ziegler and 
Nichols continuous cycling method requires a large number of experiments to calculate these 
values. Åström and Hägglund (1984) suggested the use of ideal relay to generate closed loop 
oscillations. The ultimate gain and ultimate frequency can be found in a single-shot experiment. 
However, the method is still approximate because of the use of the principal harmonics 
approximation. Li et al. (1991) reported that for an open loop, stable first order plus time 
delay (FOPTD) system, an error of -18% to 27% is obtained in the calculation of ku. Yu (1999) 
suggested a saturation feedback test to get better results for the ultimate gain and frequency. 
However, Yu (1999) did not report any result for large values of delay-to-time constant ratio.

An SOPTD model can incorporate higher order process dynamics better than an FOPTD 
model. The controller designed on the basis of the SOPTD model gives a better closed loop 
response than  the one designed on an FOPTD model. It is better to have an SOPTD model with 
equal time constants since only three parameters are to be identified. Li et al. (1991) showed 
that the conventional analysis of the relay autotune method for an SOPTD model with equal 
time constants gives -11% to 27% error in the calculation of ku. In identifying the transfer 
function models for unstable systems, it is necessary to estimate 5 parameters to describe such 
systems. There is no method available to estimate these parameters from a single relay test. 
Cascade control system is a multi-loop control scheme commonly used in the chemical process 
industries. It should be noted that there are two ways of relay tuning cascade control systems, 
namely, simultaneous tuning and sequential tuning procedures. However, there is a need 
to consider higher order harmonics in the analysis of relay tuning of such systems to obtain 
improved controllers settings.
The authors have organized the book in the following manner:
Chapter 1 gives an overview of the reported works on relay tuning of single loop control system, 
cascade controllers, estimation of model parameters and design of PI/PID controllers. Chapter 
2 gives a method of considering higher order harmonics in the analysis of symmetric relay 
tuning method and analytical solutions for model parameters using a single asymmetrical  
relay test.

Chapter 3 gives a method of considering higher order harmonics in the analysis of series 
cascade control systems by the sequential tuning method. The method is also extended to 
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xxiv Preface

parallel cascade control systems. Chapter 4 analyzes the simultaneous relay tuning of series and 
parallel cascade control systems. 

Chapter 5 gives a simple method to design PID controllers for a series cascade control system. 
FOPTD models are assumed for both the inner and outer loop sub-systems. The method is 
based on matching the coefficients of the corresponding powers of s and s2 in the numerator 
to a1 and a2 times that in the denominator of the closed loop transfer function model for a 
servo problem. The method is first applied to design a proportional (P) controller for the inner 
loop and then to design a proportional plus integral (PI) controller for the outer loop. The 
performance of the proposed controllers is evaluated for FOPTD models of the inner loop 
and the outer loop process transfer functions. This method is also extended to parallel cascade 
control systems.

Chapter 6 proposes two methods to improve the accuracy of the saturation relay method for 
FOPTD systems with a large ratio of time delay to time constant. Chapter 7 proposes a method 
to identify all the three parameters of a first order plus time delay (FOPTD) model using a 
single symmetrical relay test.

Chapter 8 gives a method to identify all the three parameters of an unstable FOPTD system 
using a single symmetric relay feedback test. It also proposes a method by incorporating higher 
order harmonics to explain the error in the calculation of ku. Another method is proposed to 
estimate all the parameters of an unstable FOPTD system.

In Chapter 9, using a single symmetric relay feedback test, a method is proposed to identify 
all the three parameters of a stable second order plus time delay (SOPTD) model with equal 
time constants [kp exp(–Ds)/(ts+1)2]. It provides a method to improve the accuracy in the ku

calculation by incorporating the higher order harmonics.
In Chapter 10, using a single asymmetric relay feedback test, a method is proposed to identify 

all the four parameters of a stable second order plus time delay (SOPTD) model  kp exp(–Ds)/
[(t1s+1) (t2 s+1)]. In Chapter 11, a method is proposed to identify all the 5 parameters of an 
SOPTD system with a zero, G(s) = kp (t1 s+1) exp(–Ds)/[(t2 s+1)(t3 s–1)], using an asymmetric 
relay test. 

In Chapter 12, the asymmetrical relay tuning method is extended to multivariable FOPTD 
systems. In Chapter 13, the asymmetrical relay tuning method is extended to multivariable 
SOPTD systems. Chapter 14 proposes a simple method of designing centralized multivariable 
PID controllers for multivariable systems. In Chapter 15, the use of detuned Ziegler–Nichols 
PID settings as initial guess values is suggested for the design of multivariable controllers 
by an optimization method using the genetic algorithm to reduce the number of iterations 
significantly. Chapter 16 summarizes the results and conclusions of the work.

There are three appendices. 
Appendix A gives the Simulink block diagrams used in the present work.
Appendix B gives the Matlab programs used in Chapter 3, Chapter 5 and Chapter 6.
Appendix C gives an improved relay tuning method for integrating plus FOPTD systems. 
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