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REGULARITY OF SYMBOLIC POWERS OF EDGE IDEALS

A. V. JAYANTHAN AND RAJIV KUMAR

Abstract. In this article, we prove that for several classes of graphs, the Castelnuovo-

Mumford regularity of symbolic powers of their edge ideals coincide with that of their

ordinary powers.

1. Introduction

This article is motivated by the results in the paper [5]. Gu et al. in [5] studied the

properties and invariants associated with symbolic powers of edge ideals of unicyclic graphs.

Let G be a finite simple graph on the vertex set x1, . . . , xn and I(G) denote the ideal in the

polynomial ring S = k[x1, . . . , xn] generated by {xixj | {xi, xj} is an edge of G}, where k is a

field. There have been a lot of research on connection between algebraic properties of I(G)s

with the combinatorial properties of G, see [2] and the references there in. In the geometrical

context, the symbolic powers have more importance since it captures all polynomials that

vanishes with a given multiplicity. Algebraically, the symbolic powers are harder to compute

or handle. In our situation, we can observe that I(G)(s) =
⋂

p∈Ass(I) p
s. It was proved by

Simis, Vasconcelos and Villarreal that G is bipartite if and only if I(G)(s) = I(G)s for all

s ≥ 1, [12]. It has been conjectured by N. C. Minh that if G is a finite simple graph, then

reg(I(G)(s)) = reg(I(G)s) for all s ≥ 1, see [5]. Gu et al., in [5], proved this conjecture

for odd cycles. Recently, the conjecture has been proved for the classes of unicyclic graphs,

chordal graphs and Cameron-Walker graphs by Seyed Fakhari, [9, 10, 11]. In [7], Kumar

and Selvaraja generalized a result of Seyed Fakhari to prove Minh’s conjecture for a class of

graphs obtained by attaching complete graphs to vertices of unicyclic graphs.

In this article, we extend some of the results in [5] to prove the equality of regularity

of ordinary powers with that of symbolic powers for certain classes of graphs. Our main

theorem is stated as follows:

Theorem 4.12. Let G be a graph obtained by taking clique sum of a C2n+1 and some

bipartite graphs. Let H be an induced subgraph of G on vertices V \
⋃

x∈V (C2n+1)
NG(x).

Assume that none of the vertices of H is part of any cycle in G. If ν(G)− ν(H) ≥ 3, then

reg
(

I(s)
)

= reg (Is).
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As in [5], the approach is through understanding the symbolic power as a sum of product of

ordinary powers of certain related ideals. We use this decomposition to study the regularity

of symbolic powers of edge ideals of graphs whose each odd cycle is a dominant odd cycle.

Theorem 3.5. Let G′ be a clique sum of r cycles of size 2n+ 1, say C1, . . . , Cr, and G be a

graph by taking the clique sum of G′ and some bipartite graphs. If NG(Ci) = V (G) for any

odd cycle Ci in G, then reg
(

I(s)
)

= reg (Is) for all s ≥ 1.

The article is organized as follows. We collect the required terminologies and results in

Section 2. In Section 3, we obtain the decomposition for symbolic powers in terms of ordinary

powers and use it to prove Theorem 3.5. In the final section, we prove Theorem 4.12.

Acknowledgement: We thank Yan Gu for going through a preliminary version of the article

and making some valuable comments. We are also thankful to the anonymous reviewer for

reading the manuscript carefully and asking pertinent questions which lead us to finding a

gap in one of the lemmas in the first version.

2. Preliminaries

Throughout this paper, all graphs considered are assumed to be finite and simple. For a

graph G with vertex set V (G) = {x1, . . . , xn}, S denotes the polynomial ring k[x1, . . . , xn]

and m denotes the unique graded maximal ideal in S. In this section, we recall the definitions

and results that are needed for the rest of the paper. We begin by recalling the some of the

terminologies related to finite simple graphs.

Definition 2.1. Let G be a graph on the vertex set V . Then,

i) set α(G) := min{|C| : C is a vertex cover of G};

ii) the graph G is called decomposable if there exists a partition of V = V1⊔· · ·⊔Vr such that
∑

α(Gi) = α(G), where Gi is induced subgraph of G on Vi. If G is not decomposable,

then G is called indecomposable;

iii) for T ⊂ V , G \ T denote the induced subgraph of G on the vertex set V \ T ;

It was shown by Harary and Plummer, [6] that every indecomposable contains an odd

cycle. We now recall the duplication and parallelization.

Definition 2.2. Let G be a graph on n vertices and v = (v1, . . . , vn) ∈ Nn.

i) The duplication of a vertex x of G is the graph obtained from G by adding a vertex x′

and all edges {x′, y} for all y ∈ NG(x).

ii) The parallelization of G with respect to v, denoted by Gv, is the graph obtained from

G by deleting xi if vi = 0 and duplicating vi − 1 times xi if vi ≥ 1.

For an ideal I in a commutative ring A, let Rs(I) := ⊕n≥0I
(n)tn denote the symbolic

Rees algebra of I. For a vector v ∈ Nn, let xv be the monomial xv1
1 · · ·xvn

n ∈ k[x1, . . . , xn].

Mart́ınez-Bernal et al. obtained the k-algebra generators for the symbolic Rees algebra:
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Theorem 2.3. [8, Lemma 2.1] Let G be a graph on V . Then

Rs(I) = k[xvtb : Gv is an indecomposable graph, v ∈ N|V | and b = α(Gv)].

Here we recall the definition of implosive graphs.

Definition 2.4.

i) A graph G is called implosive if symbolic Rees algebra of I is generated by monomials

of the form xvtb, where v = {0, 1}|V |.

ii) Let G1 and G2 be graphs. Suppose G1 ∩G2 = Kr is a complete graph, where G1 6= Kr

and G2 6= Kr. Then G1 ∪G2 is called the clique-sum of G1 and G2.

Remark 2.5. [4, Theorem 2.3, Theorem 2.5]

i) If G is a cycle, then G is implosive.

ii) The clique-sum of implosive graphs is implosive.

3. Regularity of Dominant Cycles

Gu et al. in [5] shows that if G is unicyclic graph with C2n+1 = (x1, . . . , x2n+1), then

I(s) =
k
∑

i=0

Is−i(n+1)(x1 · · ·x2n+1)
i, where s = k(n + 1) + r for some k ∈ Z and 0 ≤ r ≤ n. In

this section, we generalize some of the results in sections 3 and 5 of [5] and use it to compute

the regularity of the symbolic powers, generalizing [5, Theorem 5.3].

Lemma 3.1. Let G′ be a clique sum of r cycles of size 2n + 1, say C1, . . . , Cr, and G

be a graph by taking the clique sum of G′ and some bipartite graphs. Let I = I(G) and

J = (uC1
, . . . , uCr

), where uCi
=

∏2n+1
j=1 xij , the product of variables corresponding to the

vertices of the cycle Ci. Then I(s) = Is for all s ≤ n and I(s) =
k
∑

i=0

J iIs−i(n+1), where

s = k(n + 1) + r for some k ∈ Z and 0 ≤ r ≤ n.

Proof. Since G is the clique sum of odd cycles and bipartite graphs, by [4, Theorems 2.3, 2.5],

we get that G is implosive. By [6, Theorem 2], any indecomposable induced subgraph of G

is contained in Ci for some i or an edge. Moreover, by [6, Corollary 1b], an indecomposable

induced subgraph of Ci is either itself or an edge. Hence by Theorem 2.3, we get Rs(I) =

S[It, Jtn+1]. Now comparing the graded components on both sides of the above equality, we

get I(s) = Is for all s ≤ n and I(s) =
k
∑

i=0

J iIs−i(n+1). �

To study the regularity of I(s), we need to understand the structure of I(s) ∩m2s. This is

done by studying the intersection with each of the term appearing in the summation in the

previous result.
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Lemma 3.2. Let G be a graph as in Lemma 3.1. Then

I(s) ∩m
2s =

k
∑

i=0

J i
m

iIs−i(n+1).

Proof. By Lemma 3.1, it is enough to show that J iIs−i(n+1) ∩ m2s = J imiIs−i(n+1). Since

J imiIs−i(n+1) ⊂ J iIs−i(n+1) and J imiIs−i(n+1) ⊂ m2s, we get

J i
m

iIs−i(n+1) ⊂ J iIs−i(n+1) ∩m
2s.

For the reverse containment, let u ∈ J iIs−i(n+1) ∩ m2s. Write u = fgh, where f ∈ G(J i),

g ∈ G(Is−i(n+1)). Note that u ∈ m2simplies that deg(u) ≥ 2s. Since deg(f) = i(2n + 1) and

deg(g) = 2s− 2i(n+ 1), we get that deg(h) ≥ i which completes the proof. �

As an immediate consequence, we obtain the intersection I(s) ∩m2s for the class of graphs

that we are considering.

Corollary 3.3. Let G be a graph as in Lemma 3.1. If NG(Ci) = V for any odd cycle Ci in

G, then I(s) ∩m2s = Is.

Proof. We show that mJ ⊆ In+1. Let xi ∈ V (G) and uCi
=

∏2n+1
j=1 xij be a minimal generator

of J . Without loss of generality, let xi1 ∈ NCi
(xi). Then xiuCi

= xixi1 · xi2xi3 · · ·xi2nxi2n+1
∈

In+1. Hence mJ ⊆ In+1 so that miJ i ⊆ I i(n+1). �

For a homogeneous ideal I ⊂ S, let α(I) denote the least degree of a minimal generator

of I. The Waldschmidt constant of I is defined to be α̂(I) := lim
s→∞

α(I(s))

s
. The real number

ρ(I) = sup{s/t | I(s) 6⊂ I t} is called resurgence number of I and ρa(I) = sup{s/t | I(sr) 6⊂

I tr for all r ≫ 0} is called asymptotic resurgence number of I. We compute the Waldschmidt

constant, resurgence and asymptotic resurgence number of the edge ideals of the graphs

considered in Lemma 3.1.

Corollary 3.4. Let G be as in Lemma 3.1. Then

(1) α(I(G)(s)) = 2s− ⌊ s
n+1

⌋ for all s ∈ N;

(2) α̂(I(G)) = 2n+1
n+1

;

(3) α(I(G)(s)) < α(I t) if and only if I(G)(s) 6⊂ I t;

(4) ρ(I(G)) = ρa(I(G)) = 2n+2
2n+1

.

Proof. Since the proof is exactly same as the proof of [5, Theorem 3.6], we skip it here. �

We now generalize [5, Theorem 5.3].

Theorem 3.5. Let G be as in Lemma 3.1. If NG(Ci) = V for any odd cycle Ci in G, then

reg
(

I(s)
)

= reg (Is) for all s ≥ 1.
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Proof. Suppose ν(G) = 1. Then G is either C5 or is the clique-sum of a C3, say T , with

several copies of C3, say G1, . . . , Gr along the edges of T and copies of P2, say Gr+1, . . . , Gs

along the vertices of T . If G = C5, then the assertion is proved in [5]. If G 6= C5, then Gc

is the clique-sum of a Ks with s − r copies of C3 along the edges of Ks and with r many

edges along the vertices of Ks. Hence G is a co-chordal graph. Therefore, S/Is has linear

resolution for all s ≥ 1. Consider the short exact sequence

0 −→
S

Is
−→

S

I(s)
⊕

S

m2s
−→

S

I(s) +m2s
−→ 0.(1)

Note that since I(s) contains a minimal generator of degree 2s, reg(S/I(s)) ≥ 2s − 1 =

reg(S/m2s). Also, S/(I(s)+m2s) is Artinian, [S/(I(s)+m2s)]2s−1 6= 0 and [S/(I(s)+m2s)]2s = 0

so that reg(S/I(s) + m2s) = 2s − 1. Hence it follows from the exact sequence (1) that

reg(S/I(s)) ≤ 2s− 1. Therefore reg(S/I(s)) = 2s− 1 = reg(S/Is).

Assume now that ν(G) ≥ 2. Since S/(I(s) + m2s) is Artinian, the regularity is given by

the socle degree. Hence reg

(

S

I(s) +m2s

)

= 2s − 1 = reg

(

S

m2s

)

and by [5, Theorem 4.6]

reg

(

S

I(s)

)

≥ 2s+ν(G)−2. Since ν(G) ≥ 2, this implies that reg

(

S

I(s)

)

> reg

(

S

I(s) +m2s

)

.

Hence it follows from the short exact sequence (1) that reg
(

I(s)
)

= reg (Is) . �

Example 3.6. We would like to note here that the class of graphs that we have considered

here is more general than unicyclic graphs with a dominating odd cycle which are considered

in [5].
For example, the graphs given on the right are

not unicyclic graphs but satisfy the hypotheses

of Theorem 3.5. The first one is a clique sum

of C5 with some bipartite graphs which contain

cycles. The second graph on the right is a clique

sum of three C3’s.

4. Regularity of Unicyclic Graphs

In this section, we focus on graphs which has only one odd cycle. For the rest of the paper,

let G be a graph obtained by taking clique-sum along the vertices or edges of an odd cycle

C2n+1 and some bipartite graphs. Let V (C2n+1) = {x1, . . . , x2n+1}, NG(C2n+1) \V (C2n+1) =

{y1, . . . , yl} and V (G) \NG(C2n+1) = {z1, . . . , zm}. Now we set I = I(G), µ = x1 · · ·x2n+1,

L = (x1, . . . , x2n+1, y1, . . . , yl), K = (z1, . . . , zm) and m the homogeneous maximal ideal in

k[L,K]. For any monomial ideal J , let G(J) denote the set of minimal monomial generators

of J . We first give a refinement of the decomposition of I(s) ∩m2s.

Lemma 4.1. I(s) ∩m2s =
k
∑

i=0

µiKiIs−i(n+1).
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Proof. Using Lemma 3.2, we get I(s) ∩m2s =
k
∑

i=0

µimiIs−i(n+1). Since for any a ∈ L, we know

that aµ ∈ In+1, we get Liµi ⊂ I i(n+1). By above remark, we get

I(s) ∩m
2s ⊂

k
∑

i=0

i
∑

t=0

µiLtKi−tIs−i(n+1) ⊂
k

∑

i=0

i
∑

t=0

µi−tKi−tIs−(i−t)(n+1) =
k

∑

i=0

µiKiIs−i(n+1).

Since each term of the summation on the right hand side is naturally contained in the left

hand side, the reverse inclusion follows easily. �

We now define an ordering, called edgelex ordering, among the monomial generators of

I(G)s and mrI(G)s following [1, Discussion 4.1]. This helps us in understand certain colon

ideals which are crucial in the study of regularity of powers.

Definition 4.2. Let G be a graph with E(G) = {e1, . . . , er} and I be its edge ideal. For

A,B ∈ G(Is), we say that A >edgelex B if there exists an expression A = ea1i1 · · · earir such that

for all expressions eb1i1 · · · e
br
ir
= B , we have (a1, . . . , ar) >lex (b1, . . . , br).

Let J = Ismr. Then for any u, v ∈ G(J), we say that u > v if there exists an expression

u = fu′ such that for any expression of v = gv′ with g ∈ G(Is) and v′ ∈ mr, we have either

f >edgelex g or f = g and u′ >lex v′. Further, we say u = fu′ is a maximal expression of u if

for any other expression f1u1 = u with f1 ∈ G(Is) and u1 ∈ mr, we have f >edgelex f1.

We now recall the concept of edge-division given in [1, Definition 4.2]. Let G be a graph

with E(G) = {e1, . . . , er} and I be its edge ideal of G. Let u ∈ Is. Then for some j, we say

that ej edge-divides u if there exists v ∈ Is−1 such that u = ejv. We denote this by ej |
edge u.

For example, if G = C5 and I(G) = (x1x2, x2x3, x3x4, x4x5, x1x5) ⊂ k[x1, . . . , x5], then

(x4x5)
2 >edgelex (x1x5)

2. Note that with respect to the lex order, the inequality is reverse.

Also, x1x2 |
edge x1x

2
2x3 and x2x3 | x1x2x3x4. Note that the second one is a normal division,

not an edge-division.

Most of the proofs that we do are by some type of induction. Understanding the behavior

of the colon ideal is necessary to apply induction. We first generalize [1, Lemma 4.11].

Lemma 4.3. Let G be a graph, I be its edge ideal and m be the homogeneous maximal ideal

in the appropriate polynomial ring. Let J = Ismr. Then there exists an ordering on minimal

monomial generators of J = (u1, . . . , um) such that for j < k, either (uj : uk) ⊂ Is+1 : uk

or there exists i < k such that (ui : uk) is an ideal generated by a variable and it contains

(uj : uk).

Proof. Consider the ordering on G(J) given in Definition 4.2. We prove the result by using

induction on (s, r). For j < k, let uj = f1v1 and uk = f2v2 be maximal expressions, where

f1, f2 ∈ Is and v1, v2 ∈ mr.

If r = 0, then the assertion follows from [1, Lemma 4.11]. In particular, if (s, r) =

(1, 0), then the assertion holds true. Assume by induction that the assertion is true for all

(s1, r1) <lex (s, r).
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Let ab be the maximal edge such that ab |edge f1. If ab |edge f2, then write f1 = abf ′
1 and

f2 = abf ′
2 for some f ′

1, f
′
2 ∈ Is−1. Then u′

j = uj/ab = f ′
1v1 and u′

k = uk/ab = f ′
2v2 are in

Is−1mr. Moreover,
(

u′
j : u

′
k

)

= (uj : uk). By induction, either (u′
j : u

′
k) ⊆ (Is : u′

k) or there

exists and i < k such that (u′
i : u

′
k) is an ideal generated by variables and it contains (u′

j : u
′
k).

If (u′
j : u

′
k) ⊆ (Is : u′

k), then clearly (uj : uk) ⊆ (Is+1 : uk). Suppose there exists an i < k

such that (u′
i : u

′
k) is generated by a variable. Clearly (abu′

i : uk) = (u′
i : u

′
k). Hence it is

enough to show that abu′
i > uk and set ui = abu′

i. But this is obvious since u′
i ∈ G(Is−1mr),

ab is an edge and ab edge divides f2.

Now we assume that ab ∤edge f2. If gcd(ab, uk) = 1, then (uj : uk) ⊂ (ab) ⊂ (Is+1 : uk).

Hence the assertion follows. Suppose gcd(ab, uk) 6= 1. Consider the case when a | uk. If

a | v2, then we claim that b ∤ uk. Suppose b | uk. If b | v2, then we can write uk = v′2f
′
2, where

f ′
2 =

ab
ej
f2 for some edge ej with ej |

edge f2 and v′2 =
ej
ab
v2. Since f ′

2 >edgelex f2, the expression

uk = v2f2 is not maximal which is a contradiction. Hence b ∤ v2 so that b|f2. Let b
′ be such

that bb′ |edge f2. This implies that ab |edge
af2
b′

and
af2
b′

| uk. Note that
af2
b′

>edgelex f2, and

hence f2v2 is not a maximal expression which is a contradiction to our assumption. This

implies that b ∤ uk and (uj : uk) ⊂ (b) ⊂ Is+1 : uk. If a | f2, then, as in the earlier case, we

get b ∤ v2. Then there exists a vertex c such that ac|edgef2. Suppose (uj : uk) ⊂ (b). Write

f1 = abf ′
1 and f2 = acf ′

2 and take ui = abf ′
2v2. Hence ui > uk and (ui : uk) = (b) ⊃ (uj : uk).

Suppose (uj : uk) 6⊂ (b). Since b | uj, b | uk. Also, b ∤ v2. Therefore, b | f2 and there exists

a vertex d such that bd |edge f2. If (uj : uk) ⊆ (a), then by the symmetry of arguments, we

get (ui : uk) = (a) ⊃ (uj : uk), where ui = ab
f2
bd

v2. Hence, for the rest of the proof we may

assume that neither a nor b divides (uj : uk).

Let (uj : uk) = (w). If gcd(f1, w) = 1, then w | v1. Let w = xw′, where x is a variable,

and take w1 such that w1 |
uk

gcd(uj, uk)
with deg(w1) = deg(w′). Set ui =

ujw1

w′
. Since

f1 >edgelex f2, we have ui > uk, and (ui : uk) = (x) which contains w.

Suppose gcd(f1, w) 6= 1. Let x be a vertex such that x | w and x | f1. Note that

x 6= a. Since x | f1, there exists y such that xy |edge f1. If y does not divide uk, then

(uj : uk) ⊂ (xy). Since xy is an edge, this implies that xyuk ∈ Is+1, i.e., xy ∈ Is+1 : uk.

Hence (uj : uk) ⊂ Is+1 : uk. Now assume that y | uk. If y | v2, then xv2f2 ∈ Is+1, since

xy is an edge and f2 ∈ Is. Therefore, x ∈ Is+1 : uk. Hence (uj : uk) ⊂ (x) ⊆ Is+1 : uk.

If y | f2, then there exists z such that yz |edge f2. Write f1 = abxyf ′′
1 and f2 = acyzf ′′

2 for

some f ′′
1 , f

′′
2 ∈ Is−2. Since (uj : uk) = (w), we get uj | wuk, and hence abf ′′

1 v1 | w′zacf ′′
2 v2.

This implies that (w′z) ⊂ (abf ′′
1 v1 : acf ′′

2 v2). Let (abf ′′
1 v1 : acf ′′

2 v2) = (w′
1). This gives us

abf ′′
1 v1 | w1acf

′′
2 v2, and hence uj | w1xuk which forces that w′x | w1x. This implies that

(abf ′′
1 v1 : acf

′′
2 v2) is equal either to (w′) or to (w′z). Note that abf ′′

1 >edgelex acf ′′
2 . Therefore

by induction (abf ′′
1 v1 : acf ′′

2 v2) ⊂ Is : acf ′′
2 v2 or there exists u′ ∈ G(Is−1mr) such that

(u′ : acf ′′
2 v2) is generated by a variable and it contains (abf ′′

1 v1 : acf
′′
2 v2).
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Assume that (abf ′′
1 v1 : acf ′′

2 v2) = (w′) ⊃ (uj : uk). Suppose (abf ′′
1 v1 : acf ′′

2 v2) ⊂ Is :

acf ′′
2 v2. This implies that (uj : uk) ⊂ (abf ′′

1 v1 : acf ′′
2 v2) ⊂ Is+1 : uk. Suppose there exists

u′ ∈ G(Is−1mr) such that (u′ : acf ′′
2 v2) = (l) for some variable l which divides w′. Therefore,

by taking ui = yzu′, we get (ui : uk) = (u′ : acf ′′
2 v2) = (l) which divides w′, and hence w.

Suppose (abf ′′
1 v1 : acf

′′
2 v2) = (w′z). If (abf ′′

1 v1 : acf
′′
2 v2) ⊂ Is : acf ′′

2 v2, i.e., w
′zacf ′′

2 v2 ∈ Is,

then w′zxyacf ′′
2 v2 ∈ Is+1, i.e., wuk ∈ Is+1. Suppose there exists u′ ∈ G(Is−1mr) such that

(u′ : acf ′′
2 v2) = (l), where l is a variable and l | w′z. If l = z, then take ui = xyu′. This gives

us (ui : uk) = (x). If l 6= z, then take ui = yzu′. Then we get (ui : uk) = (l). In both cases,

(ui : uk) is generated by a variable and it contains (uj : uk) which completes the proof. �

We now recall the definition of even-connection introduced by Banerjee in [1].

Definition 4.4. Let G be a graph and x and y be vertices of G. Then we say that x and y

are even connected with respect to u = e1 · · · es if there is a path p0p1 · · ·p2k+1, k ≥ 1 in G

such that

i) p0 = x and p2k+1 = y.

ii) For all 1 ≤ l ≤ k, we have p2l−1p2l = ei for some i.

iii) For all i, we have |{l ≥ 0 : p2l−1p2l = ei}| ≤ |{j : ej = ei}|.

One of the most important property of the even connection is that it describes the gener-

ators of the colon ideal Is : u.

Theorem 4.5. [1, Theorem 6.7] Let G be a graph and I be its edge ideal. Let u ∈ G(Is−1).

Then Is : u = I + (xy : x is even connected to y with respect to u).

We further analyze the even-connected edges in this class of edge ideals and certain colon

ideals which come up in the induction step.

Lemma 4.6. Let G be a graph obtained by taking the clique-sum along the vertices or edges

of an odd cycle C2n+1 and some bipartite graphs. Let {z1, . . . , zm} = V (G) \ NG(C2n+1).

Assume that zi is not part of any cycle for all i = 1, . . . , m. Then there exists an ordering

on G(Is) = {u1, . . . , ur} such that if zi and zj are even-connected with respect to ut for some

1 ≤ t ≤ r, then there exists us > ut such that (us : ut) = (zk), where k = min{i, j}.

Proof. Since zi is not part of any cycle, it follows that the induced subgraph on V (G) \

NG(C2n+1) is a forest. After a re-ordering of the vertices, assume that e1 is a leaf in G having

pendant vertex z1 and ei is a leaf in G\{e1, . . . , ei−1} with pendant vertex zi, for i = 2, . . . , m.

Set z1 > · · · > zm, e1 > · · · > em and on E(G) \ {e1, . . . , em}, set the lexicographic ordering

with y1 > · · · > yl > x1 > · · · > x2n+1 and such that for any e ∈ E(G)\{e1, . . . , em}, em > e.

Now, take the edgelex ordering on Is.

Suppose zi and zj are even connected with respect to ul = ei1 · · · eis . Without loss of

generality, we may assume that i < j. Hence zj < zi and ej < ei. Let zip1 · · · p2kzj , k ≥ 1

be an even-connection in G.



REGULARITY OF SYMBOLIC POWERS OF EDGE IDEALS 9

We claim that zip1 > p1p2. If zip1 < p1p2, then zi < p2. This implies that p2 = zi1 for

some i1 < i. Since zi1 is obtained as a pendant vertex after removing z1, . . . , zi1−1 and both

zi and p1 are less than zi1 , p3 = zi2 for some i2 < i1. Continuing like this, we obtain that

p2k+1 = zj > zi which is a contradiction to our assumption that i < j. Hence zip1 > p1p2.

Set us = zip1
ul

p1p2
. Then us > ut and (us : ut) = zi. �

Remark 4.7. Let f = µigu ∈ G(µiKiIs−i(n+1)) and M = supp(g). Then we have the

following:

i) Let l ∈ M and l′ ∈ NG(l). This implies
µ

xj

ll′u ∈ Is−(i−1)(n+1) for any j. Hence l′µigu =

g

l
ll′µiu ∈ µi−1Ki−1Is−(i−1)(n+1) which shows that NG(M) ⊂ µi−1Ki−1Is−(i−1)(n+1) : f .

ii) Let l ∈ M ∪ V (Cn) and l′ ∈ V (G) such that l and l′ is an even connection with

respect to
µu

xj

for some j. Hence
µ

xj

ll′u ∈ Is−(i−1)(n+1) for some j. Hence l′µigu ∈

µi−1Ki−1Is−(i−1)(n+1) which shows that l′ ∈ µi−1Ki−1Is−(i−1)(n+1) : f .

To understand the colon with symbolic power, we study the colon with ideals in the

decomposition of the symbolic power.

Lemma 4.8. Let G be as in Lemma 4.6 and f = µigu ∈ G(µiKiIs−i(n+1)) for 1 ≤ i ≤ k

with f /∈ µi−1Ki−1Is−(i−1)(n+1), where u ∈ Is−i(n+1). Then

µi−1Ki−1Is−(i−1)(n+1) : f = I + L′,

where L′ is an ideal containing L and generated by a set of variables.

Proof. Note that for any a ∈ L, we know that aµ ∈ In+1, and hence we get

L ⊂ µi−1Ki−1Is−(i−1)(n+1) : f.

We first claim that Is−(i−1)(n+1) : µu is generated in degree at most 2. Since
µu

xi

∈

Is−(i−1)(n+1)−1, the ideal Is−(i−1)(n+1) :
µu

xi

is of the form I t+1 : e1 · · · et which is generated

in degree 2. Let v ∈ Is−(i−1)(n+1) : µu. This implies that vxi ∈ Is−(i−1)(n+1) :
µu

xi

. Thus

there exists a monomial v′ of degree 2 such that v′ | vxi. If xi ∤ v
′, then v′ | v. If xi | v

′,

then v′/xi ∈ Is−(i−1)(n+1) : µu. Hence Is−(i−1)(n+1) : µu is generated in at most degree

2. Suppose v ∈ G(Is−(i−1)(n+1) : µu) such that v | g. Suppose deg(v) = 1. Then f =

µi−1g

v
vµu ∈ µi−1Ki−1Is−(i−1)(n+1) which is a contradiction to our assumption that f is not

in that ideal. Hence deg(v) = 2. Then one can see as above that f ∈ µi−1Ki−2Is−(i−1)(n+1).

Hence K ⊆ µi−1Ki−1Is−(i−1)(n+1) : f so that µi−1Ki−1Is−(i−1)(n+1) : f = m = L′ = I + L′.

For the rest of the proof, we may assume that if v ∈ G(Is−(i−1)(n+1) : µu), then v ∤ g.



10 A. V. JAYANTHAN AND RAJIV KUMAR

Now, let Ki−1 = (g1, . . . , gk, . . . , gr) with gj | g for j = 1, . . . , k. Suppose g = ljgj for

j = 1, . . . , k. Note that

µi−1Ki−1Is−(i−1)(n+1) : f =

k
∑

j=1

Is−(i−1)(n+1) : µlju+

r
∑

j=k+1

gjI
s−(i−1)(n+1) : µgu.

We claim that for k + 1 ≤ j ≤ r, gjI
s−(i−1)(n+1) : µgu ⊂

∑k

j=1 I
s−(i−1)(n+1) : µlju. Suppose

that gcd(gj , g) = hj . Write gj = hjg
′
j and g = hjg

′. Now, let a be a monomial such that

aµg′u ∈ Is−(i−1)(n+1). Hence ag′ ∈ Is−(i−1)(n+1) : µu and this colon ideal is generated in at

most degree 2, where the degree 2 generators are either edges or even connections. Then

there exists a monomial generator v of Is−(i−1)(n+1) : µu dividing ag′. If aµu ∈ Is−(i−1)(n+1),

then we are through. Assume that aµu /∈ Is−(i−1)(n+1). If v | a, then vµu and hence aµu

belongs to Is−(i−1)(n+1) which is a contradiction to our assumption. Hence v ∤ a. Also, v ∤ g′

(since v ∤ g). Hence we may write v = ljv
′ such that lj | g

′ and v′ | a. This implies that v′ ∈

Is−(i−1)(n+1) : ljµu, and hence a ∈ Is−(i−1)(n+1) : ljµu. Therefore a ∈
∑k

j=1 I
s−(i−1)(n+1) : µlju

which proves the claim.

Now we claim that Is−(i−1)(n+1) : µlju = I + I ′ + Lj , where I ′ is the ideal generated

by the even connections with respect to µu

xa
for all a. Let v ∈ Is−(i−1)(n+1) : µlju. Then

vxalj ∈ Is−(i−1)(n+1) : µu

xa
. As Is−(i−1)(n+1) : µu

xa
is generated by edges and even connections

with respect to µu

xa
, there exists w = w1w2 which is an edge or an even connection with

respect to µu

xa
such that w | vxalj. If w | v, then we are done. If w | xalj , then this implies

that µlju ∈ Is−(i−1)(n+1), and hence f ∈ µi−1Ki−1Is−(i−1)(n+1) which is a contradiction. Now,

let w ∤ v and w ∤ xalj. We may assume that w1 | v and w2 | xalj. If w2 = xa, then

w2 ∈ NG(Cn) = L. If w2 = lj, then w1 ∈ NG(M) ⊂ L′, by Remark 4.7(i). Hence, In either

case, w ∈ L′. Hence we get that µi−1Ki−1Is−(i−1)(n+1) : f = I + L′, where L′ =
∑k

j=1Lj .

Now, Using Lemma 4.6, we know that I ′ ⊂ L′ which completes the proof. �

In the process of understanding colon with symbolic power, in a step-by-step manner,

we now study the colon with respect to the partial sums in the decomposition of symbolic

powers.

Lemma 4.9. Let G, µ,K, L be as defined in the beginning of the section. Assume that zr

is not part of any cycle for all r = 1, . . . , m. Let I = I(G) and for 1 ≤ i ≤ ⌊ s
n+1

⌋ + 1, set

Ii−1 =
i−1
∑

t=0

µtKtIs−t(n+1). Then there exists an ordering of G
(

µiKiIs−i(n+1)
)

= {u1, . . . , ur}

such that for all j = 0, . . . , r − 1,

(Ii−1 + (u1, . . . , uj)) : uj+1 = I + L′′,

where L′′ is an ideal containing L and generated by a subset of variables.
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Proof. Let uj+1 = µifu, where f ∈ G(Ki) and u ∈ G(Is−i(n+1)). In order to prove the

assertion we claim that for a fixed i and t < i− 1, if µigu /∈ µtKtIs−i(n+1), then

µtKtIs−t(n+1) : µigu ⊂ µi−1Ki−1Is−(i−1)(n+1) : µigu.

We first consider the linear part of the left hand side colon ideal and show that it is contained

in the right hand side. Note that

KtIs−t(n+1) : µi−tgu =

k
∑

j=1

Is−t(n+1) : µi−t g

gj
u+

r
∑

j=k+1

gj
gcd(g, gj)

Is−t(n+1) : µi−t g

gcd(g, gj)
u,

where gj ∈ Kt is a divisor of g for 1 ≤ j ≤ k and for k + 1 ≤ j ≤ r, gj ∈ Kt that does

not divide g. As in the case of proof Lemma 4.8, it can be shown that the second term in

the above summation is contained in the first. Hence, to prove the assertion, it is enough to

consider the first summation.

First of all, note that µi−tu ∈ Is−t(n+1)−[ i−t+1

2 ]. Again, as the proof of Lemma 4.8, one can

see that this ideal is generated in degree at most 2, with the degree 2 part generated by some

of the edges and even connections. Hence, if l ∈ V (G) is such that l ∈ KtIs−t(n+1)−[ i−t−1

2 ] :

µi−tgu, then there exists l′ ∈ V (C2n+1) or l′ ∈ supp(g) such that ll′ ∈ E(G) or an even

connection. By Remark 4.7, we get that l ∈ µi−1Ki−1Is−(i−1)(n+1) : µigu. Now, note

that u ∈ Is−i(n+1) and µi−t ∈ I(i−t)(n+1)−[ i−t+1

2 ]. Hence by Lemma 4.3, we know that

KtIs−t(n+1)−[ i−t−1

2 ] : µi−tgu = I+L′
t, where L

′
t is generated by a set of variables and contains

L. This implies that µtKtIs−t(n+1) : µigu ⊂ I + L′ = µi−1Ki−1Is−(i−1)(n+1) : µigu. This

proves the claim.

Thus by Lemma 4.8, we have Ii−1 : uj+1 = (Is−i(n+1)+1 : u) + L′. On G(µiKiIs−i(n+1)),

define an ordering induced by the ordering in Lemma 4.6 and Definition 4.2. By Lemma

4.3, there exists a largest ideal generated by a subset of variables, say L2, such that L2 ⊂

(u1, . . . , uj) : uj+1 and (u1, . . . , uj) : uj+1 ⊂ Is−i(n+1)+1 : u + L2. Take L′′ = L′ + L2. Then

it follows from Theorem 4.5 and Lemma 4.6 that (Ii−1 + (u1, . . . , uj)) : uj+1 ⊆ I +L′′. Since

L2 ⊂ (u1, . . . , uj) : uj+1 and Ii−1 : uj+1 = (Is−i(n+1)+1 : u) + L′ ⊃ I + L′, we get the reverse

containment as well. �

Remark 4.10. Let H be the induced subgraph on V (G) \NG(C2n+1). By Lemma 4.9, we

know that

(Ii−1 + (u1, . . . , uj)) : uj+1 = I + L′′,

where L ⊂ L′′ ⊂ m. This implies that I + L′′ corresponds to an induced subgraph of H .

Therefore, we get

reg

(

S

(Ii−1 + (u1, . . . , uj)) : uj+1

)

≤ reg

(

S

I(H)

)

= ν(H).

Proposition 4.11. Let the notation be as in Lemma 4.9 and H denote the induced subgraph

on V (G) \NG(C2n+1). If ν(G)− ν(H) ≥ 3, then for 1 ≤ i ≤ ⌊ s
n+1

⌋+ 1, reg(Is) = reg(Ii−1).
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Proof. Result is true for i = 1. Assume that it is true for i − 1. Using Lemma 4.9, write

G(µiKiIs−i(n+1)) = {u1, . . . , ur} such that for all j = 0, . . . , r − 1,

Ii = Ii−1 + (u1, . . . , ur) and (Ii−1 + (u1, . . . , uj)) : uj+1 = I + L′′.

For j = 0, consider the following exact sequence

0 −→
S

I + L′′
(−2s)

·u1−→
S

Ii−1
−→

S

Ii−1 + (u1)
−→ 0.

From Remark 4.10, we know that

reg

(

S

I + L′′
(−2s)

)

≤ 2s+ ν(H) ≤ 2s+ ν(G)− 3 < reg

(

S

Is

)

= reg

(

S

Ii−1

)

,

where the third inequality follows from [3, Theorem 4.5]. Hence reg

(

S

Ii−1

)

= reg

(

S

Ii−1 + (u1)

)

.

Assume by induction on j that reg(Ii−1+(u1, . . . , uj−1)) = reg(Is). Since (Ii−1+(u1, . . . , uj)) :

uj+1 = I + L′′, we get the desired equality from the short exact sequence:

0 −→
S

I + L′′
(−2s)

·uj+1

−→
S

Ii−1 + (u1, . . . , uj)
−→

S

Ii−1 + (u1, . . . , uj+1)
−→ 0.

�

We are now ready to prove our second main theorem.

Theorem 4.12. Let G be a graph obtained by taking clique sum of a C2n+1 and some

bipartite graphs. Let H be an induced subgraph of G on vertices V \
⋃

x∈V (C2n+1)
NG(x).

Assume that none of the vertices of H is part of any cycle in G. If ν(G)− ν(H) ≥ 3, then

reg
(

I(s)
)

= reg (Is).

Proof. Let s ≥ 1 and k = ⌊ s
n+1

⌋. Consider the following exact sequence

0 −→
S

Ik
−→

S

I(s)
⊕

S

m2s
−→

S

I(s) +m2s
−→ 0,

where Ik =
∑k

t=0 µ
tKtIs−t(n+1). Since ν(G) ≥ 2, we have reg

(

S

I(s)

)

> reg

(

S

m2s

)

=

reg

(

S

I(s) +m2s

)

. Hence reg

(

S

Ik

)

= reg

(

S

I(s)

)

. Since ν(G) − ν(H) ≥ 3, by Proposition

4.11, we get that reg(Is) = reg(I(s)). �

Remark 4.13. If the odd cycle in G is of length at least 9, then the condition ν(G)−ν(H) ≥

3 is always satisfied.

(1) If the unique odd cycle in G is of length 7, then the hypothesis of Theorem 4.12 is

satisfied if a P3 is attached to C7.

(2) If the unique odd cycle in G is of length 5, then the hypothesis of Theorem 4.12

is satisfied if either two P3’s are attached to a single vertex or a P3 and a P2 are

attached to adjacent vertices (see figure below).
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(3) If the unique odd cycle in G is of length 3, then the hypothesis of Theorem 4.12 is

satisfied if either two P3’s are attached to a single vertex or on each vertex of C3 a

P3 is attached (see figure below).

(4) It may also be noted that the class of graphs considered in Theorem 4.12 is not a

subset of unicyclic graphs. It also includes graphs which are obtained by taking clique

sum of copies of C4 along the edges of an odd cycle (see figure below).

We illustrate with pictures, some of the graphs for which the regularity of the symbolic

powers of their edge ideals are same as that of their regular powers.
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[3] Selvi Beyarslan, Huy Tài Hà, and Trân Nam Trung. Regularity of powers of forests and cycles. J.

Algebraic Combin., 42(4):1077–1095, 2015.

[4] A. Flores-Méndez, I. Gitler, and E. Reyes. Implosive graphs: square-free monomials on symbolic Rees

algebras. J. Algebra Appl., 16(8):1750145, 23, 2017.

[5] Y. Gu, H. T. Ha, J. L. O’Rourke, and J. W. Skelton. Symbolic powers of edge ideals of graphs. ArXiv

e-prints, May 2018.

[6] Frank Harary and Michael D. Plummer. On indecomposable graphs. Canad. J. Math., 19:800–809, 1967.

[7] Arvind Kumar and S Selvaraja. Upper bounds for the regularity of symbolic powers of certain classes

of edge ideals. arXiv e-prints, page arXiv:1907.05366, Jul 2019.
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