REGULARITY OF SYMBOLIC POWERS OF EDGE IDEALS

A. V. JAYANTHAN AND RAJIV KUMAR

Abstract

In this article, we prove that for several classes of graphs, the CastelnuovoMumford regularity of symbolic powers of their edge ideals coincide with that of their ordinary powers.

1. Introduction

This article is motivated by the results in the paper [5]. Gu et al. in [5] studied the properties and invariants associated with symbolic powers of edge ideals of unicyclic graphs. Let G be a finite simple graph on the vertex set x_{1}, \ldots, x_{n} and $I(G)$ denote the ideal in the polynomial ring $S=\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ generated by $\left\{x_{i} x_{j} \mid\left\{x_{i}, x_{j}\right\}\right.$ is an edge of $\left.G\right\}$, where k is a field. There have been a lot of research on connection between algebraic properties of $I(G)^{s}$ with the combinatorial properties of G, see [2] and the references there in. In the geometrical context, the symbolic powers have more importance since it captures all polynomials that vanishes with a given multiplicity. Algebraically, the symbolic powers are harder to compute or handle. In our situation, we can observe that $I(G)^{(s)}=\bigcap_{\mathfrak{p} \in \operatorname{Ass}(I)} \mathfrak{p}^{s}$. It was proved by Simis, Vasconcelos and Villarreal that G is bipartite if and only if $I(G)^{(s)}=I(G)^{s}$ for all $s \geq 1$, [12]. It has been conjectured by N. C. Minh that if G is a finite simple graph, then $\operatorname{reg}\left(I(G)^{(s)}\right)=\operatorname{reg}\left(I(G)^{s}\right)$ for all $s \geq 1$, see [5]. Gu et al., in [5], proved this conjecture for odd cycles. Recently, the conjecture has been proved for the classes of unicyclic graphs, chordal graphs and Cameron-Walker graphs by Seyed Fakhari, [9, 10, 11]. In [7], Kumar and Selvaraja generalized a result of Seyed Fakhari to prove Minh's conjecture for a class of graphs obtained by attaching complete graphs to vertices of unicyclic graphs.

In this article, we extend some of the results in [5] to prove the equality of regularity of ordinary powers with that of symbolic powers for certain classes of graphs. Our main theorem is stated as follows:

Theorem 4.12. Let G be a graph obtained by taking clique sum of a $C_{2 n+1}$ and some bipartite graphs. Let H be an induced subgraph of G on vertices $V \backslash \bigcup_{x \in V\left(C_{2 n+1}\right)} N_{G}(x)$. Assume that none of the vertices of H is part of any cycle in G. If $\nu(G)-\nu(H) \geq 3$, then $\operatorname{reg}\left(I^{(s)}\right)=\operatorname{reg}\left(I^{s}\right)$.

[^0]As in [5], the approach is through understanding the symbolic power as a sum of product of ordinary powers of certain related ideals. We use this decomposition to study the regularity of symbolic powers of edge ideals of graphs whose each odd cycle is a dominant odd cycle.

Theorem 3.5. Let G^{\prime} be a clique sum of r cycles of size $2 n+1$, say C_{1}, \ldots, C_{r}, and G be a graph by taking the clique sum of G^{\prime} and some bipartite graphs. If $N_{G}\left(C_{i}\right)=V(G)$ for any odd cycle C_{i} in G, then $\operatorname{reg}\left(I^{(s)}\right)=\operatorname{reg}\left(I^{s}\right)$ for all $s \geq 1$.

The article is organized as follows. We collect the required terminologies and results in Section 2. In Section 3, we obtain the decomposition for symbolic powers in terms of ordinary powers and use it to prove Theorem 3.5. In the final section, we prove Theorem 4.12.
Acknowledgement: We thank Yan Gu for going through a preliminary version of the article and making some valuable comments. We are also thankful to the anonymous reviewer for reading the manuscript carefully and asking pertinent questions which lead us to finding a gap in one of the lemmas in the first version.

2. Preliminaries

Throughout this paper, all graphs considered are assumed to be finite and simple. For a graph G with vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}, S$ denotes the polynomial ring $\mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$ and \mathfrak{m} denotes the unique graded maximal ideal in S. In this section, we recall the definitions and results that are needed for the rest of the paper. We begin by recalling the some of the terminologies related to finite simple graphs.

Definition 2.1. Let G be a graph on the vertex set V. Then,
i) set $\alpha(G):=\min \{|C|: C$ is a vertex cover of $G\}$;
ii) the graph G is called decomposable if there exists a partition of $V=V_{1} \sqcup \cdots \sqcup V_{r}$ such that $\sum \alpha\left(G_{i}\right)=\alpha(G)$, where G_{i} is induced subgraph of G on V_{i}. If G is not decomposable, then G is called indecomposable;
iii) for $T \subset V, G \backslash T$ denote the induced subgraph of G on the vertex set $V \backslash T$;

It was shown by Harary and Plummer, [6] that every indecomposable contains an odd cycle. We now recall the duplication and parallelization.

Definition 2.2. Let G be a graph on n vertices and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{N}^{n}$.
i) The duplication of a vertex x of G is the graph obtained from G by adding a vertex x^{\prime} and all edges $\left\{x^{\prime}, y\right\}$ for all $y \in N_{G}(x)$.
ii) The parallelization of G with respect to \mathbf{v}, denoted by $G^{\mathbf{v}}$, is the graph obtained from G by deleting x_{i} if $v_{i}=0$ and duplicating $v_{i}-1$ times x_{i} if $v_{i} \geq 1$.

For an ideal I in a commutative ring A, let $\mathcal{R}_{s}(I):=\oplus_{n \geq 0} I^{(n)} t^{n}$ denote the symbolic Rees algebra of I. For a vector $\mathbf{v} \in \mathbb{N}^{n}$, let $\mathbf{x}^{\mathbf{v}}$ be the monomial $x_{1}^{v_{1}} \cdots x_{n}^{v_{n}} \in \mathrm{k}\left[x_{1}, \ldots, x_{n}\right]$. Martínez-Bernal et al. obtained the k-algebra generators for the symbolic Rees algebra:

Theorem 2.3. [8, Lemma 2.1] Let G be a graph on V. Then

$$
\mathcal{R}_{s}(I)=\mathrm{k}\left[x^{\mathbf{v}} t^{b}: G^{\mathbf{v}} \text { is an indecomposable graph, } \mathbf{v} \in \mathbb{N}^{|V|} \text { and } b=\alpha\left(G^{\mathbf{v}}\right)\right]
$$

Here we recall the definition of implosive graphs.

Definition 2.4.

i) A graph G is called implosive if symbolic Rees algebra of I is generated by monomials of the form $x^{\mathbf{v}} t^{b}$, where $\mathbf{v}=\{0,1\}^{|V|}$.
ii) Let G_{1} and G_{2} be graphs. Suppose $G_{1} \cap G_{2}=K_{r}$ is a complete graph, where $G_{1} \neq K_{r}$ and $G_{2} \neq K_{r}$. Then $G_{1} \cup G_{2}$ is called the clique-sum of G_{1} and G_{2}.

Remark 2.5. [4, Theorem 2.3, Theorem 2.5]
i) If G is a cycle, then G is implosive.
ii) The clique-sum of implosive graphs is implosive.

3. Regularity of Dominant Cycles

Gu et al. in [5] shows that if G is unicyclic graph with $C_{2 n+1}=\left(x_{1}, \ldots, x_{2 n+1}\right)$, then $I^{(s)}=\sum_{i=0}^{k} I^{s-i(n+1)}\left(x_{1} \cdots x_{2 n+1}\right)^{i}$, where $s=k(n+1)+r$ for some $k \in \mathbb{Z}$ and $0 \leq r \leq n$. In this section, we generalize some of the results in sections 3 and 5 of [5] and use it to compute the regularity of the symbolic powers, generalizing [5, Theorem 5.3].

Lemma 3.1. Let G^{\prime} be a clique sum of r cycles of size $2 n+1$, say C_{1}, \ldots, C_{r}, and G be a graph by taking the clique sum of G^{\prime} and some bipartite graphs. Let $I=I(G)$ and $J=\left(u_{C_{1}}, \ldots, u_{C_{r}}\right)$, where $u_{C_{i}}=\prod_{j=1}^{2 n+1} x_{i_{j}}$, the product of variables corresponding to the vertices of the cycle C_{i}. Then $I^{(s)}=I^{s}$ for all $s \leq n$ and $I^{(s)}=\sum_{i=0}^{k} J^{i} I^{s-i(n+1)}$, where $s=k(n+1)+r$ for some $k \in \mathbb{Z}$ and $0 \leq r \leq n$.

Proof. Since G is the clique sum of odd cycles and bipartite graphs, by [4, Theorems 2.3, 2.5], we get that G is implosive. By [6, Theorem 2], any indecomposable induced subgraph of G is contained in C_{i} for some i or an edge. Moreover, by [6, Corollary 1b], an indecomposable induced subgraph of C_{i} is either itself or an edge. Hence by Theorem 2.3, we get $\mathcal{R}_{s}(I)=$ $S\left[I t, J t^{n+1}\right]$. Now comparing the graded components on both sides of the above equality, we get $I^{(s)}=I^{s}$ for all $s \leq n$ and $I^{(s)}=\sum_{i=0}^{k} J^{i} I^{s-i(n+1)}$.

To study the regularity of $I^{(s)}$, we need to understand the structure of $I^{(s)} \cap \mathfrak{m}^{2 s}$. This is done by studying the intersection with each of the term appearing in the summation in the previous result.

Lemma 3.2. Let G be a graph as in Lemma 3.1. Then

$$
I^{(s)} \cap \mathfrak{m}^{2 s}=\sum_{i=0}^{k} J^{i} \mathfrak{m}^{i} I^{s-i(n+1)} .
$$

Proof. By Lemma 3.1, it is enough to show that $J^{i} I^{s-i(n+1)} \cap \mathfrak{m}^{2 s}=J^{i} \mathfrak{m}^{i} I^{s-i(n+1)}$. Since $J^{i} \mathfrak{m}^{i} I^{s-i(n+1)} \subset J^{i} I^{s-i(n+1)}$ and $J^{i} \mathfrak{m}^{i} I^{s-i(n+1)} \subset \mathfrak{m}^{2 s}$, we get

$$
J^{i} \mathfrak{m}^{i} I^{s-i(n+1)} \subset J^{i} I^{s-i(n+1)} \cap \mathfrak{m}^{2 s}
$$

For the reverse containment, let $u \in J^{i} I^{s-i(n+1)} \cap \mathfrak{m}^{2 s}$. Write $u=f g h$, where $f \in G\left(J^{i}\right)$, $g \in G\left(I^{s-i(n+1)}\right)$. Note that $u \in \mathfrak{m}^{2 s}$ implies that $\operatorname{deg}(u) \geq 2 s$. Since $\operatorname{deg}(f)=i(2 n+1)$ and $\operatorname{deg}(g)=2 s-2 i(n+1)$, we get that $\operatorname{deg}(h) \geq i$ which completes the proof.

As an immediate consequence, we obtain the intersection $I^{(s)} \cap \mathfrak{m}^{2 s}$ for the class of graphs that we are considering.

Corollary 3.3. Let G be a graph as in Lemma 3.1. If $N_{G}\left(C_{i}\right)=V$ for any odd cycle C_{i} in G, then $I^{(s)} \cap \mathfrak{m}^{2 s}=I^{s}$.

Proof. We show that $\mathfrak{m} J \subseteq I^{n+1}$. Let $x_{i} \in V(G)$ and $u_{C_{i}}=\prod_{j=1}^{2 n+1} x_{i_{j}}$ be a minimal generator of J. Without loss of generality, let $x_{i_{1}} \in N_{C_{i}}\left(x_{i}\right)$. Then $x_{i} u_{C_{i}}=x_{i} x_{i_{1}} \cdot x_{i_{2}} x_{i_{3}} \cdots x_{i_{2 n}} x_{i_{2 n+1}} \in$ I^{n+1}. Hence $\mathfrak{m} J \subseteq I^{n+1}$ so that $\mathfrak{m}^{i} J^{i} \subseteq I^{i(n+1)}$.

For a homogeneous ideal $I \subset S$, let $\alpha(I)$ denote the least degree of a minimal generator of I. The Waldschmidt constant of I is defined to be $\hat{\alpha}(I):=\lim _{s \rightarrow \infty} \frac{\alpha\left(I^{(s)}\right)}{s}$. The real number $\rho(I)=\sup \left\{s / t \mid I^{(s)} \not \subset I^{t}\right\}$ is called resurgence number of I and $\rho_{a}(I)=\sup \left\{s / t \mid I^{(s r)} \not \subset\right.$ $I^{t r}$ for all $\left.r \gg 0\right\}$ is called asymptotic resurgence number of I. We compute the Waldschmidt constant, resurgence and asymptotic resurgence number of the edge ideals of the graphs considered in Lemma 3.1.

Corollary 3.4. Let G be as in Lemma 3.1. Then
(1) $\alpha\left(I(G)^{(s)}\right)=2 s-\left\lfloor\frac{s}{n+1}\right\rfloor$ for all $s \in \mathbb{N}$;
(2) $\hat{\alpha}(I(G))=\frac{2 n+1}{n+1}$;
(3) $\alpha\left(I(G)^{(s)}\right)<\alpha\left(I^{t}\right)$ if and only if $I(G)^{(s)} \not \subset I^{t}$;
(4) $\rho(I(G))=\rho_{a}(I(G))=\frac{2 n+2}{2 n+1}$.

Proof. Since the proof is exactly same as the proof of [5, Theorem 3.6], we skip it here.
We now generalize [5, Theorem 5.3].
Theorem 3.5. Let G be as in Lemma 3.1. If $N_{G}\left(C_{i}\right)=V$ for any odd cycle C_{i} in G, then $\operatorname{reg}\left(I^{(s)}\right)=\operatorname{reg}\left(I^{s}\right)$ for all $s \geq 1$.

Proof. Suppose $\nu(G)=1$. Then G is either C_{5} or is the clique-sum of a C_{3}, say T, with several copies of C_{3}, say G_{1}, \ldots, G_{r} along the edges of T and copies of P_{2}, say G_{r+1}, \ldots, G_{s} along the vertices of T. If $G=C_{5}$, then the assertion is proved in [5]. If $G \neq C_{5}$, then G^{c} is the clique-sum of a K_{s} with $s-r$ copies of C_{3} along the edges of K_{s} and with r many edges along the vertices of K_{s}. Hence G is a co-chordal graph. Therefore, S / I^{s} has linear resolution for all $s \geq 1$. Consider the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \frac{S}{I^{s}} \longrightarrow \frac{S}{I^{(s)}} \oplus \frac{S}{\mathfrak{m}^{2 s}} \longrightarrow \frac{S}{I^{(s)}+\mathfrak{m}^{2 s}} \longrightarrow 0 \tag{1}
\end{equation*}
$$

Note that since $I^{(s)}$ contains a minimal generator of degree $2 s, \operatorname{reg}\left(S / I^{(s)}\right) \geq 2 s-1=$ $\operatorname{reg}\left(S / \mathfrak{m}^{2 s}\right)$. Also, $S /\left(I^{(s)}+\mathfrak{m}^{2 s}\right)$ is Artinian, $\left[S /\left(I^{(s)}+\mathfrak{m}^{2 s}\right)\right]_{2 s-1} \neq 0$ and $\left[S /\left(I^{(s)}+\mathfrak{m}^{2 s}\right)\right]_{2 s}=0$ so that $\operatorname{reg}\left(S / I^{(s)}+\mathfrak{m}^{2 s}\right)=2 s-1$. Hence it follows from the exact sequence (1) that $\operatorname{reg}\left(S / I^{(s)}\right) \leq 2 s-1$. Therefore $\operatorname{reg}\left(S / I^{(s)}\right)=2 s-1=\operatorname{reg}\left(S / I^{s}\right)$.

Assume now that $\nu(G) \geq 2$. Since $S /\left(I^{(s)}+\mathfrak{m}^{2 s}\right)$ is Artinian, the regularity is given by the socle degree. Hence $\operatorname{reg}\left(\frac{S}{I^{(s)}+\mathfrak{m}^{2 s}}\right)=2 s-1=\operatorname{reg}\left(\frac{S}{\mathfrak{m}^{2 s}}\right)$ and by [5, Theorem 4.6] $\operatorname{reg}\left(\frac{S}{I^{(s)}}\right) \geq 2 s+\nu(G)-2$. Since $\nu(G) \geq 2$, this implies that reg $\left(\frac{S}{I^{(s)}}\right)>\operatorname{reg}\left(\frac{S}{I^{(s)}+\mathfrak{m}^{2 s}}\right)$. Hence it follows from the short exact sequence (1) that $\operatorname{reg}\left(I^{(s)}\right)=\operatorname{reg}\left(I^{s}\right)$.

Example 3.6. We would like to note here that the class of graphs that we have considered here is more general than unicyclic graphs with a dominating odd cycle which are considered in [5].

For example, the graphs given on the right are not unicyclic graphs but satisfy the hypotheses of Theorem 3.5. The first one is a clique sum of C_{5} with some bipartite graphs which contain cycles. The second graph on the right is a clique
 sum of three C_{3} 's.

4. Regularity of Unicyclic Graphs

In this section, we focus on graphs which has only one odd cycle. For the rest of the paper, let G be a graph obtained by taking clique-sum along the vertices or edges of an odd cycle $C_{2 n+1}$ and some bipartite graphs. Let $V\left(C_{2 n+1}\right)=\left\{x_{1}, \ldots, x_{2 n+1}\right\}, N_{G}\left(C_{2 n+1}\right) \backslash V\left(C_{2 n+1}\right)=$ $\left\{y_{1}, \ldots, y_{l}\right\}$ and $V(G) \backslash N_{G}\left(C_{2 n+1}\right)=\left\{z_{1}, \ldots, z_{m}\right\}$. Now we set $I=I(G), \mu=x_{1} \cdots x_{2 n+1}$, $L=\left(x_{1}, \ldots, x_{2 n+1}, y_{1}, \ldots, y_{l}\right), K=\left(z_{1}, \ldots, z_{m}\right)$ and \mathfrak{m} the homogeneous maximal ideal in $\mathrm{k}[L, K]$. For any monomial ideal J, let $G(J)$ denote the set of minimal monomial generators of J. We first give a refinement of the decomposition of $I^{(s)} \cap \mathfrak{m}^{2 s}$.

Lemma 4.1. $I^{(s)} \cap \mathfrak{m}^{2 s}=\sum_{i=0}^{k} \mu^{i} K^{i} I^{s-i(n+1)}$.

Proof. Using Lemma 3.2, we get $I^{(s)} \cap \mathfrak{m}^{2 s}=\sum_{i=0}^{k} \mu^{i} \mathfrak{m}^{i} I^{s-i(n+1)}$. Since for any $a \in L$, we know that $a \mu \in I^{n+1}$, we get $L^{i} \mu^{i} \subset I^{i(n+1)}$. By above remark, we get

$$
I^{(s)} \cap \mathfrak{m}^{2 s} \subset \sum_{i=0}^{k} \sum_{t=0}^{i} \mu^{i} L^{t} K^{i-t} I^{s-i(n+1)} \subset \sum_{i=0}^{k} \sum_{t=0}^{i} \mu^{i-t} K^{i-t} I^{s-(i-t)(n+1)}=\sum_{i=0}^{k} \mu^{i} K^{i} I^{s-i(n+1)} .
$$

Since each term of the summation on the right hand side is naturally contained in the left hand side, the reverse inclusion follows easily.

We now define an ordering, called edgelex ordering, among the monomial generators of $I(G)^{s}$ and $\mathfrak{m}^{r} I(G)^{s}$ following [1, Discussion 4.1]. This helps us in understand certain colon ideals which are crucial in the study of regularity of powers.

Definition 4.2. Let G be a graph with $E(G)=\left\{e_{1}, \ldots, e_{r}\right\}$ and I be its edge ideal. For $A, B \in G\left(I^{s}\right)$, we say that $A>_{\text {edgelex }} B$ if there exists an expression $A=e_{i_{1}}^{a_{1}} \cdots e_{i_{r}}^{a_{r}}$ such that for all expressions $e_{i_{1}}^{b_{1}} \cdots e_{i_{r}}^{b_{r}}=B$, we have $\left(a_{1}, \ldots, a_{r}\right)>_{\text {lex }}\left(b_{1}, \ldots, b_{r}\right)$.

Let $J=I^{s} \mathfrak{m}^{r}$. Then for any $u, v \in G(J)$, we say that $u>v$ if there exists an expression $u=f u^{\prime}$ such that for any expression of $v=g v^{\prime}$ with $g \in G\left(I^{s}\right)$ and $v^{\prime} \in \mathfrak{m}^{r}$, we have either $f>_{\text {edgelex }} g$ or $f=g$ and $u^{\prime}>_{\text {lex }} v^{\prime}$. Further, we say $u=f u^{\prime}$ is a maximal expression of u if for any other expression $f_{1} u_{1}=u$ with $f_{1} \in G\left(I^{s}\right)$ and $u_{1} \in \mathfrak{m}^{r}$, we have $f>_{\text {edgelex }} f_{1}$.

We now recall the concept of edge-division given in [1, Definition 4.2]. Let G be a graph with $E(G)=\left\{e_{1}, \ldots, e_{r}\right\}$ and I be its edge ideal of G. Let $u \in I^{s}$. Then for some j, we say that e_{j} edge-divides u if there exists $v \in I^{s-1}$ such that $u=e_{j} v$. We denote this by $\left.e_{j}\right|^{\text {edge }} u$.

For example, if $G=C_{5}$ and $I(G)=\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}, x_{4} x_{5}, x_{1} x_{5}\right) \subset \mathrm{k}\left[x_{1}, \ldots, x_{5}\right]$, then $\left(x_{4} x_{5}\right)^{2}>_{\text {edgelex }}\left(x_{1} x_{5}\right)^{2}$. Note that with respect to the lex order, the inequality is reverse. Also, $\left.x_{1} x_{2}\right|^{\text {edge }} x_{1} x_{2}^{2} x_{3}$ and $x_{2} x_{3} \mid x_{1} x_{2} x_{3} x_{4}$. Note that the second one is a normal division, not an edge-division.

Most of the proofs that we do are by some type of induction. Understanding the behavior of the colon ideal is necessary to apply induction. We first generalize [1, Lemma 4.11].

Lemma 4.3. Let G be a graph, I be its edge ideal and \mathfrak{m} be the homogeneous maximal ideal in the appropriate polynomial ring. Let $J=I^{s} \mathfrak{m}^{r}$. Then there exists an ordering on minimal monomial generators of $J=\left(u_{1}, \ldots, u_{m}\right)$ such that for $j<k$, either $\left(u_{j}: u_{k}\right) \subset I^{s+1}: u_{k}$ or there exists $i<k$ such that $\left(u_{i}: u_{k}\right)$ is an ideal generated by a variable and it contains $\left(u_{j}: u_{k}\right)$.

Proof. Consider the ordering on $G(J)$ given in Definition 4.2. We prove the result by using induction on (s, r). For $j<k$, let $u_{j}=f_{1} v_{1}$ and $u_{k}=f_{2} v_{2}$ be maximal expressions, where $f_{1}, f_{2} \in I^{s}$ and $v_{1}, v_{2} \in \mathfrak{m}^{r}$.

If $r=0$, then the assertion follows from [1, Lemma 4.11]. In particular, if $(s, r)=$ $(1,0)$, then the assertion holds true. Assume by induction that the assertion is true for all $\left(s_{1}, r_{1}\right)<_{l e x}(s, r)$.

Let $a b$ be the maximal edge such that $\left.a b\right|^{\text {edge }} f_{1}$. If $\left.a b\right|^{\text {edge }} f_{2}$, then write $f_{1}=a b f_{1}^{\prime}$ and $f_{2}=a b f_{2}^{\prime}$ for some $f_{1}^{\prime}, f_{2}^{\prime} \in I^{s-1}$. Then $u_{j}^{\prime}=u_{j} / a b=f_{1}^{\prime} v_{1}$ and $u_{k}^{\prime}=u_{k} / a b=f_{2}^{\prime} v_{2}$ are in $I^{s-1} \mathfrak{m}^{r}$. Moreover, $\left(u_{j}^{\prime}: u_{k}^{\prime}\right)=\left(u_{j}: u_{k}\right)$. By induction, either $\left(u_{j}^{\prime}: u_{k}^{\prime}\right) \subseteq\left(I^{s}: u_{k}^{\prime}\right)$ or there exists and $i<k$ such that $\left(u_{i}^{\prime}: u_{k}^{\prime}\right)$ is an ideal generated by variables and it contains $\left(u_{j}^{\prime}: u_{k}^{\prime}\right)$. If $\left(u_{j}^{\prime}: u_{k}^{\prime}\right) \subseteq\left(I^{s}: u_{k}^{\prime}\right)$, then clearly $\left(u_{j}: u_{k}\right) \subseteq\left(I^{s+1}: u_{k}\right)$. Suppose there exists an $i<k$ such that $\left(u_{i}^{\prime}: u_{k}^{\prime}\right)$ is generated by a variable. Clearly $\left(a b u_{i}^{\prime}: u_{k}\right)=\left(u_{i}^{\prime}: u_{k}^{\prime}\right)$. Hence it is enough to show that $a b u_{i}^{\prime}>u_{k}$ and set $u_{i}=a b u_{i}^{\prime}$. But this is obvious since $u_{i}^{\prime} \in G\left(I^{s-1} \mathfrak{m}^{r}\right)$, $a b$ is an edge and $a b$ edge divides f_{2}.

Now we assume that $a b$ łedge f_{2}. If $\operatorname{gcd}\left(a b, u_{k}\right)=1$, then $\left(u_{j}: u_{k}\right) \subset(a b) \subset\left(I^{s+1}: u_{k}\right)$. Hence the assertion follows. Suppose $\operatorname{gcd}\left(a b, u_{k}\right) \neq 1$. Consider the case when $a \mid u_{k}$. If $a \mid v_{2}$, then we claim that $b \nmid u_{k}$. Suppose $b \mid u_{k}$. If $b \mid v_{2}$, then we can write $u_{k}=v_{2}^{\prime} f_{2}^{\prime}$, where $f_{2}^{\prime}=\frac{a b}{e_{j}} f_{2}$ for some edge e_{j} with $\left.e_{j}\right|^{\text {edge }} f_{2}$ and $v_{2}^{\prime}=\frac{e_{j}}{a b} v_{2}$. Since $f_{2}^{\prime}>_{\text {edgelex }} f_{2}$, the expression $u_{k}=v_{2} f_{2}$ is not maximal which is a contradiction. Hence $b \nmid v_{2}$ so that $b \mid f_{2}$. Let b^{\prime} be such that $\left.b b^{\prime}\right|^{\text {edge }} f_{2}$. This implies that $\left.a b\right|^{\text {edge }} \frac{a f_{2}}{b^{\prime}}$ and $\left.\frac{a f_{2}}{b^{\prime}} \right\rvert\, u_{k}$. Note that $\frac{a f_{2}}{b^{\prime}}>_{\text {edgelex }} f_{2}$, and hence $f_{2} v_{2}$ is not a maximal expression which is a contradiction to our assumption. This implies that $b \nmid u_{k}$ and $\left(u_{j}: u_{k}\right) \subset(b) \subset I^{s+1}: u_{k}$. If $a \mid f_{2}$, then, as in the earlier case, we get $b \nmid v_{2}$. Then there exists a vertex c such that $\left.a c\right|^{\text {edge }} f_{2}$. Suppose $\left(u_{j}: u_{k}\right) \subset(b)$. Write $f_{1}=a b f_{1}^{\prime}$ and $f_{2}=a c f_{2}^{\prime}$ and take $u_{i}=a b f_{2}^{\prime} v_{2}$. Hence $u_{i}>u_{k}$ and $\left(u_{i}: u_{k}\right)=(b) \supset\left(u_{j}: u_{k}\right)$. Suppose $\left(u_{j}: u_{k}\right) \not \subset(b)$. Since $b\left|u_{j}, b\right| u_{k}$. Also, $b \nmid v_{2}$. Therefore, $b \mid f_{2}$ and there exists a vertex d such that $\left.b d\right|^{\text {edge }} f_{2}$. If $\left(u_{j}: u_{k}\right) \subseteq(a)$, then by the symmetry of arguments, we get $\left(u_{i}: u_{k}\right)=(a) \supset\left(u_{j}: u_{k}\right)$, where $u_{i}=a b \frac{f_{2}}{b d} v_{2}$. Hence, for the rest of the proof we may assume that neither a nor b divides $\left(u_{j}: u_{k}\right)$.

Let $\left(u_{j}: u_{k}\right)=(w)$. If $\operatorname{gcd}\left(f_{1}, w\right)=1$, then $w \mid v_{1}$. Let $w=x w^{\prime}$, where x is a variable, and take w_{1} such that $w_{1} \left\lvert\, \frac{u_{k}}{\operatorname{gcd}\left(u_{j}, u_{k}\right)}\right.$ with $\operatorname{deg}\left(w_{1}\right)=\operatorname{deg}\left(w^{\prime}\right)$. Set $u_{i}=\frac{u_{j} w_{1}}{w^{\prime}}$. Since $f_{1}>_{\text {edgelex }} f_{2}$, we have $u_{i}>u_{k}$, and $\left(u_{i}: u_{k}\right)=(x)$ which contains w.

Suppose $\operatorname{gcd}\left(f_{1}, w\right) \neq 1$. Let x be a vertex such that $x \mid w$ and $x \mid f_{1}$. Note that $x \neq a$. Since $x \mid f_{1}$, there exists y such that $\left.x y\right|^{\text {edge }} f_{1}$. If y does not divide u_{k}, then $\left(u_{j}: u_{k}\right) \subset(x y)$. Since $x y$ is an edge, this implies that $x y u_{k} \in I^{s+1}$, i.e., $x y \in I^{s+1}: u_{k}$. Hence $\left(u_{j}: u_{k}\right) \subset I^{s+1}: u_{k}$. Now assume that $y \mid u_{k}$. If $y \mid v_{2}$, then $x v_{2} f_{2} \in I^{s+1}$, since $x y$ is an edge and $f_{2} \in I^{s}$. Therefore, $x \in I^{s+1}: u_{k}$. Hence $\left(u_{j}: u_{k}\right) \subset(x) \subseteq I^{s+1}: u_{k}$. If $y \mid f_{2}$, then there exists z such that $\left.y z\right|^{\text {edge }} f_{2}$. Write $f_{1}=a b x y f_{1}^{\prime \prime}$ and $f_{2}=a c y z f_{2}^{\prime \prime}$ for some $f_{1}^{\prime \prime}, f_{2}^{\prime \prime} \in I^{s-2}$. Since $\left(u_{j}: u_{k}\right)=(w)$, we get $u_{j} \mid w u_{k}$, and hence $a b f_{1}^{\prime \prime} v_{1} \mid w^{\prime} z a c f_{2}^{\prime \prime} v_{2}$. This implies that $\left(w^{\prime} z\right) \subset\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right)$. Let $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right)=\left(w_{1}^{\prime}\right)$. This gives us $a b f_{1}^{\prime \prime} v_{1} \mid w_{1} a c f_{2}^{\prime \prime} v_{2}$, and hence $u_{j} \mid w_{1} x u_{k}$ which forces that $w^{\prime} x \mid w_{1} x$. This implies that $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right)$ is equal either to $\left(w^{\prime}\right)$ or to $\left(w^{\prime} z\right)$. Note that $a b f_{1}^{\prime \prime}>_{\text {edgelex }} a c f_{2}^{\prime \prime}$. Therefore by induction $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right) \subset I^{s}: a c f_{2}^{\prime \prime} v_{2}$ or there exists $u^{\prime} \in G\left(I^{s-1} \mathfrak{m}^{r}\right)$ such that $\left(u^{\prime}: a c f_{2}^{\prime \prime} v_{2}\right)$ is generated by a variable and it contains $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right)$.

Assume that $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right)=\left(w^{\prime}\right) \supset\left(u_{j}: u_{k}\right)$. Suppose $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right) \subset I^{s}:$ $a c f_{2}^{\prime \prime} v_{2}$. This implies that $\left(u_{j}: u_{k}\right) \subset\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right) \subset I^{s+1}: u_{k}$. Suppose there exists $u^{\prime} \in G\left(I^{s-1} \mathfrak{m}^{r}\right)$ such that $\left(u^{\prime}: a c f_{2}^{\prime \prime} v_{2}\right)=(l)$ for some variable l which divides w^{\prime}. Therefore, by taking $u_{i}=y z u^{\prime}$, we get $\left(u_{i}: u_{k}\right)=\left(u^{\prime}: a c f_{2}^{\prime \prime} v_{2}\right)=(l)$ which divides w^{\prime}, and hence w.

Suppose $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right)=\left(w^{\prime} z\right)$. If $\left(a b f_{1}^{\prime \prime} v_{1}: a c f_{2}^{\prime \prime} v_{2}\right) \subset I^{s}: a c f_{2}^{\prime \prime} v_{2}$, i.e., $w^{\prime} z a c f_{2}^{\prime \prime} v_{2} \in I^{s}$, then $w^{\prime} z x y a c f_{2}^{\prime \prime} v_{2} \in I^{s+1}$, i.e., $w u_{k} \in I^{s+1}$. Suppose there exists $u^{\prime} \in G\left(I^{s-1} \mathfrak{m}^{r}\right)$ such that $\left(u^{\prime}: a c f_{2}^{\prime \prime} v_{2}\right)=(l)$, where l is a variable and $l \mid w^{\prime} z$. If $l=z$, then take $u_{i}=x y u^{\prime}$. This gives us $\left(u_{i}: u_{k}\right)=(x)$. If $l \neq z$, then take $u_{i}=y z u^{\prime}$. Then we get $\left(u_{i}: u_{k}\right)=(l)$. In both cases, $\left(u_{i}: u_{k}\right)$ is generated by a variable and it contains $\left(u_{j}: u_{k}\right)$ which completes the proof.

We now recall the definition of even-connection introduced by Banerjee in [1].
Definition 4.4. Let G be a graph and x and y be vertices of G. Then we say that x and y are even connected with respect to $u=e_{1} \cdots e_{s}$ if there is a path $p_{0} p_{1} \cdots p_{2 k+1}, k \geq 1$ in G such that
i) $p_{0}=x$ and $p_{2 k+1}=y$.
ii) For all $1 \leq l \leq k$, we have $p_{2 l-1} p_{2 l}=e_{i}$ for some i.
iii) For all i, we have $\left|\left\{l \geq 0: p_{2 l-1} p_{2 l}=e_{i}\right\}\right| \leq\left|\left\{j: e_{j}=e_{i}\right\}\right|$.

One of the most important property of the even connection is that it describes the generators of the colon ideal $I^{s}: u$.

Theorem 4.5. [1, Theorem 6.7] Let G be a graph and I be its edge ideal. Let $u \in G\left(I^{s-1}\right)$. Then $I^{s}: u=I+(x y: x$ is even connected to y with respect to $u)$.

We further analyze the even-connected edges in this class of edge ideals and certain colon ideals which come up in the induction step.

Lemma 4.6. Let G be a graph obtained by taking the clique-sum along the vertices or edges of an odd cycle $C_{2 n+1}$ and some bipartite graphs. Let $\left\{z_{1}, \ldots, z_{m}\right\}=V(G) \backslash N_{G}\left(C_{2 n+1}\right)$. Assume that z_{i} is not part of any cycle for all $i=1, \ldots, m$. Then there exists an ordering on $G\left(I^{s}\right)=\left\{u_{1}, \ldots, u_{r}\right\}$ such that if z_{i} and z_{j} are even-connected with respect to u_{t} for some $1 \leq t \leq r$, then there exists $u_{s}>u_{t}$ such that $\left(u_{s}: u_{t}\right)=\left(z_{k}\right)$, where $k=\min \{i, j\}$.

Proof. Since z_{i} is not part of any cycle, it follows that the induced subgraph on $V(G) \backslash$ $N_{G}\left(C_{2 n+1}\right)$ is a forest. After a re-ordering of the vertices, assume that e_{1} is a leaf in G having pendant vertex z_{1} and e_{i} is a leaf in $G \backslash\left\{e_{1}, \ldots, e_{i-1}\right\}$ with pendant vertex z_{i}, for $i=2, \ldots, m$. Set $z_{1}>\cdots>z_{m}, e_{1}>\cdots>e_{m}$ and on $E(G) \backslash\left\{e_{1}, \ldots, e_{m}\right\}$, set the lexicographic ordering with $y_{1}>\cdots>y_{l}>x_{1}>\cdots>x_{2 n+1}$ and such that for any $e \in E(G) \backslash\left\{e_{1}, \ldots, e_{m}\right\}, e_{m}>e$. Now, take the edgelex ordering on I^{s}.

Suppose z_{i} and z_{j} are even connected with respect to $u_{l}=e_{i_{1}} \cdots e_{i_{s}}$. Without loss of generality, we may assume that $i<j$. Hence $z_{j}<z_{i}$ and $e_{j}<e_{i}$. Let $z_{i} p_{1} \cdots p_{2 k} z_{j}, k \geq 1$ be an even-connection in G.

We claim that $z_{i} p_{1}>p_{1} p_{2}$. If $z_{i} p_{1}<p_{1} p_{2}$, then $z_{i}<p_{2}$. This implies that $p_{2}=z_{i_{1}}$ for some $i_{1}<i$. Since $z_{i_{1}}$ is obtained as a pendant vertex after removing $z_{1}, \ldots, z_{i_{1}-1}$ and both z_{i} and p_{1} are less than $z_{i_{1}}, p_{3}=z_{i_{2}}$ for some $i_{2}<i_{1}$. Continuing like this, we obtain that $p_{2 k+1}=z_{j}>z_{i}$ which is a contradiction to our assumption that $i<j$. Hence $z_{i} p_{1}>p_{1} p_{2}$. Set $u_{s}=z_{i} p_{1} \frac{u_{l}}{p_{1} p_{2}}$. Then $u_{s}>u_{t}$ and $\left(u_{s}: u_{t}\right)=z_{i}$.

Remark 4.7. Let $f=\mu^{i} g u \in G\left(\mu^{i} K^{i} I^{s-i(n+1)}\right)$ and $M=\operatorname{supp}(g)$. Then we have the following:
i) Let $l \in M$ and $l^{\prime} \in N_{G}(l)$. This implies $\frac{\mu}{x_{j}} l l^{\prime} u \in I^{s-(i-1)(n+1)}$ for any j. Hence $l^{\prime} \mu^{i} g u=$ $\frac{g}{l} l l^{\prime} \mu^{i} u \in \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}$ which shows that $N_{G}(M) \subset \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f$.
ii) Let $l \in M \cup V\left(C_{n}\right)$ and $l^{\prime} \in V(G)$ such that l and l^{\prime} is an even connection with respect to $\frac{\mu u}{x_{j}}$ for some j. Hence $\frac{\mu}{x_{j}} l l^{\prime} u \in I^{s-(i-1)(n+1)}$ for some j. Hence $l^{\prime} \mu^{i} g u \in$ $\mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}$ which shows that $l^{\prime} \in \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f$.

To understand the colon with symbolic power, we study the colon with ideals in the decomposition of the symbolic power.

Lemma 4.8. Let G be as in Lemma 4.6 and $f=\mu^{i} g u \in G\left(\mu^{i} K^{i} I^{s-i(n+1)}\right)$ for $1 \leq i \leq k$ with $f \notin \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}$, where $u \in I^{s-i(n+1)}$. Then

$$
\mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f=I+L^{\prime},
$$

where L^{\prime} is an ideal containing L and generated by a set of variables.
Proof. Note that for any $a \in L$, we know that $a \mu \in I^{n+1}$, and hence we get

$$
L \subset \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f
$$

We first claim that $I^{s-(i-1)(n+1)}: \mu u$ is generated in degree at most 2. Since $\frac{\mu u}{x_{i}} \in$ $I^{s-(i-1)(n+1)-1}$, the ideal $I^{s-(i-1)(n+1)}: \frac{\mu u}{x_{i}}$ is of the form $I^{t+1}: e_{1} \cdots e_{t}$ which is generated in degree 2. Let $v \in I^{s-(i-1)(n+1)}: \mu u$. This implies that $v x_{i} \in I^{s-(i-1)(n+1)}: \frac{\mu u}{x_{i}}$. Thus there exists a monomial v^{\prime} of degree 2 such that $v^{\prime} \mid v x_{i}$. If $x_{i} \nmid v^{\prime}$, then $v^{\prime} \mid v$. If $x_{i} \mid v^{\prime}$, then $v^{\prime} / x_{i} \in I^{s-(i-1)(n+1)}: \mu u$. Hence $I^{s-(i-1)(n+1)}: \mu u$ is generated in at most degree 2. Suppose $v \in G\left(I^{s-(i-1)(n+1)}: \mu u\right)$ such that $v \mid g$. Suppose $\operatorname{deg}(v)=1$. Then $f=$ $\mu^{i-1} \frac{g}{v} v \mu u \in \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}$ which is a contradiction to our assumption that f is not in that ideal. Hence $\operatorname{deg}(v)=2$. Then one can see as above that $f \in \mu^{i-1} K^{i-2} I^{s-(i-1)(n+1)}$. Hence $K \subseteq \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f$ so that $\mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f=\mathfrak{m}=L^{\prime}=I+L^{\prime}$. For the rest of the proof, we may assume that if $v \in G\left(I^{s-(i-1)(n+1)}: \mu u\right)$, then $v \nmid g$.

Now, let $K^{i-1}=\left(g_{1}, \ldots, g_{k}, \ldots, g_{r}\right)$ with $g_{j} \mid g$ for $j=1, \ldots, k$. Suppose $g=l_{j} g_{j}$ for $j=1, \ldots, k$. Note that

$$
\mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f=\sum_{j=1}^{k} I^{s-(i-1)(n+1)}: \mu l_{j} u+\sum_{j=k+1}^{r} g_{j} I^{s-(i-1)(n+1)}: \mu g u
$$

We claim that for $k+1 \leq j \leq r, g_{j} I^{s-(i-1)(n+1)}: \mu g u \subset \sum_{j=1}^{k} I^{s-(i-1)(n+1)}: \mu l_{j} u$. Suppose that $\operatorname{gcd}\left(g_{j}, g\right)=h_{j}$. Write $g_{j}=h_{j} g_{j}^{\prime}$ and $g=h_{j} g^{\prime}$. Now, let a be a monomial such that $a \mu g^{\prime} u \in I^{s-(i-1)(n+1)}$. Hence $a g^{\prime} \in I^{s-(i-1)(n+1)}: \mu u$ and this colon ideal is generated in at most degree 2, where the degree 2 generators are either edges or even connections. Then there exists a monomial generator v of $I^{s-(i-1)(n+1)}: \mu u$ dividing $a g^{\prime}$. If $a \mu u \in I^{s-(i-1)(n+1)}$, then we are through. Assume that $a \mu u \notin I^{s-(i-1)(n+1)}$. If $v \mid a$, then $v \mu u$ and hence $a \mu u$ belongs to $I^{s-(i-1)(n+1)}$ which is a contradiction to our assumption. Hence $v \nmid a$. Also, $v \nmid g^{\prime}$ (since $v \nmid g$). Hence we may write $v=l_{j} v^{\prime}$ such that $l_{j} \mid g^{\prime}$ and $v^{\prime} \mid a$. This implies that $v^{\prime} \in$ $I^{s-(i-1)(n+1)}: l_{j} \mu u$, and hence $a \in I^{s-(i-1)(n+1)}: l_{j} \mu u$. Therefore $a \in \sum_{j=1}^{k} I^{s-(i-1)(n+1)}: \mu l_{j} u$ which proves the claim.

Now we claim that $I^{s-(i-1)(n+1)}: \mu l_{j} u=I+I^{\prime}+L_{j}$, where I^{\prime} is the ideal generated by the even connections with respect to $\frac{\mu u}{x_{a}}$ for all a. Let $v \in I^{s-(i-1)(n+1)}: \mu l_{j} u$. Then $v x_{a} l_{j} \in I^{s-(i-1)(n+1)}: \frac{\mu u}{x_{a}}$. As $I^{s-(i-1)(n+1)}: \frac{\mu u}{x_{a}}$ is generated by edges and even connections with respect to $\frac{\mu u}{x_{a}}$, there exists $w=w_{1} w_{2}$ which is an edge or an even connection with respect to $\frac{\mu u}{x_{a}}$ such that $w \mid v x_{a} l_{j}$. If $w \mid v$, then we are done. If $w \mid x_{a} l_{j}$, then this implies that $\mu l_{j} u \in I^{s-(i-1)(n+1)}$, and hence $f \in \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}$ which is a contradiction. Now, let $w \nmid v$ and $w \nmid x_{a} l_{j}$. We may assume that $w_{1} \mid v$ and $w_{2} \mid x_{a} l_{j}$. If $w_{2}=x_{a}$, then $w_{2} \in N_{G}\left(C_{n}\right)=L$. If $w_{2}=l_{j}$, then $w_{1} \in N_{G}(M) \subset L^{\prime}$, by Remark 4.7(i). Hence, In either case, $w \in L^{\prime}$. Hence we get that $\mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: f=I+L^{\prime}$, where $L^{\prime}=\sum_{j=1}^{k} L_{j}$. Now, Using Lemma 4.6, we know that $I^{\prime} \subset L^{\prime}$ which completes the proof.

In the process of understanding colon with symbolic power, in a step-by-step manner, we now study the colon with respect to the partial sums in the decomposition of symbolic powers.

Lemma 4.9. Let G, μ, K, L be as defined in the beginning of the section. Assume that z_{r} is not part of any cycle for all $r=1, \ldots, m$. Let $I=I(G)$ and for $1 \leq i \leq\left\lfloor\frac{s}{n+1}\right\rfloor+1$, set $I_{i-1}=\sum_{t=0}^{i-1} \mu^{t} K^{t} I^{s-t(n+1)}$. Then there exists an ordering of $G\left(\mu^{i} K^{i} I^{s-i(n+1)}\right)=\left\{u_{1}, \ldots, u_{r}\right\}$ such that for all $j=0, \ldots, r-1$,

$$
\left(I_{i-1}+\left(u_{1}, \ldots, u_{j}\right)\right): u_{j+1}=I+L^{\prime \prime}
$$

where $L^{\prime \prime}$ is an ideal containing L and generated by a subset of variables.

Proof. Let $u_{j+1}=\mu^{i} f u$, where $f \in G\left(K^{i}\right)$ and $u \in G\left(I^{s-i(n+1)}\right)$. In order to prove the assertion we claim that for a fixed i and $t<i-1$, if $\mu^{i} g u \notin \mu^{t} K^{t} I^{s-i(n+1)}$, then

$$
\mu^{t} K^{t} I^{s-t(n+1)}: \mu^{i} g u \subset \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: \mu^{i} g u .
$$

We first consider the linear part of the left hand side colon ideal and show that it is contained in the right hand side. Note that

$$
K^{t} I^{s-t(n+1)}: \mu^{i-t} g u=\sum_{j=1}^{k} I^{s-t(n+1)}: \mu^{i-t} \frac{g}{g_{j}} u+\sum_{j=k+1}^{r} \frac{g_{j}}{\operatorname{gcd}\left(g, g_{j}\right)} I^{s-t(n+1)}: \mu^{i-t} \frac{g}{\operatorname{gcd}\left(g, g_{j}\right)} u
$$

where $g_{j} \in K^{t}$ is a divisor of g for $1 \leq j \leq k$ and for $k+1 \leq j \leq r, g_{j} \in K^{t}$ that does not divide g. As in the case of proof Lemma 4.8, it can be shown that the second term in the above summation is contained in the first. Hence, to prove the assertion, it is enough to consider the first summation.

First of all, note that $\mu^{i-t} u \in I^{s-t(n+1)-\left[\frac{i-t+1}{2}\right]}$. Again, as the proof of Lemma 4.8, one can see that this ideal is generated in degree at most 2 , with the degree 2 part generated by some of the edges and even connections. Hence, if $l \in V(G)$ is such that $l \in K^{t} I^{s-t(n+1)-\left[\frac{i-t-1}{2}\right]}$: $\mu^{i-t} g u$, then there exists $l^{\prime} \in V\left(C_{2 n+1}\right)$ or $l^{\prime} \in \operatorname{supp}(g)$ such that $l l^{\prime} \in E(G)$ or an even connection. By Remark 4.7, we get that $l \in \mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: \mu^{i} g u$. Now, note that $u \in I^{s-i(n+1)}$ and $\mu^{i-t} \in I^{(i-t)(n+1)-\left[\frac{i-t+1}{2}\right]}$. Hence by Lemma 4.3, we know that $K^{t} I^{s-t(n+1)-\left[\frac{i-t-1}{2}\right]}: \mu^{i-t} g u=I+L_{t}^{\prime}$, where L_{t}^{\prime} is generated by a set of variables and contains L. This implies that $\mu^{t} K^{t} I^{s-t(n+1)}: \mu^{i} g u \subset I+L^{\prime}=\mu^{i-1} K^{i-1} I^{s-(i-1)(n+1)}: \mu^{i} g u$. This proves the claim.

Thus by Lemma 4.8, we have $I_{i-1}: u_{j+1}=\left(I^{s-i(n+1)+1}: u\right)+L^{\prime}$. On $G\left(\mu^{i} K^{i} I^{s-i(n+1)}\right)$, define an ordering induced by the ordering in Lemma 4.6 and Definition 4.2. By Lemma 4.3, there exists a largest ideal generated by a subset of variables, say L_{2}, such that $L_{2} \subset$ $\left(u_{1}, \ldots, u_{j}\right): u_{j+1}$ and $\left(u_{1}, \ldots, u_{j}\right): u_{j+1} \subset I^{s-i(n+1)+1}: u+L_{2}$. Take $L^{\prime \prime}=L^{\prime}+L_{2}$. Then it follows from Theorem 4.5 and Lemma 4.6 that $\left(I_{i-1}+\left(u_{1}, \ldots, u_{j}\right)\right): u_{j+1} \subseteq I+L^{\prime \prime}$. Since $L_{2} \subset\left(u_{1}, \ldots, u_{j}\right): u_{j+1}$ and $I_{i-1}: u_{j+1}=\left(I^{s-i(n+1)+1}: u\right)+L^{\prime} \supset I+L^{\prime}$, we get the reverse containment as well.

Remark 4.10. Let H be the induced subgraph on $V(G) \backslash N_{G}\left(C_{2 n+1}\right)$. By Lemma 4.9, we know that

$$
\left(I_{i-1}+\left(u_{1}, \ldots, u_{j}\right)\right): u_{j+1}=I+L^{\prime \prime},
$$

where $L \subset L^{\prime \prime} \subset \mathfrak{m}$. This implies that $I+L^{\prime \prime}$ corresponds to an induced subgraph of H. Therefore, we get

$$
\operatorname{reg}\left(\frac{S}{\left(I_{i-1}+\left(u_{1}, \ldots, u_{j}\right)\right): u_{j+1}}\right) \leq \operatorname{reg}\left(\frac{S}{I(H)}\right)=\nu(H)
$$

Proposition 4.11. Let the notation be as in Lemma 4.9 and H denote the induced subgraph on $V(G) \backslash N_{G}\left(C_{2 n+1}\right)$. If $\nu(G)-\nu(H) \geq 3$, then for $1 \leq i \leq\left\lfloor\frac{s}{n+1}\right\rfloor+1$, $\operatorname{reg}\left(I^{s}\right)=\operatorname{reg}\left(I_{i-1}\right)$.

Proof. Result is true for $i=1$. Assume that it is true for $i-1$. Using Lemma 4.9, write $G\left(\mu^{i} K^{i} I^{s-i(n+1)}\right)=\left\{u_{1}, \ldots, u_{r}\right\}$ such that for all $j=0, \ldots, r-1$,

$$
I_{i}=I_{i-1}+\left(u_{1}, \ldots, u_{r}\right) \text { and }\left(I_{i-1}+\left(u_{1}, \ldots, u_{j}\right)\right): u_{j+1}=I+L^{\prime \prime}
$$

For $j=0$, consider the following exact sequence

$$
0 \longrightarrow \frac{S}{I+L^{\prime \prime}}(-2 s) \xrightarrow{\stackrel{u_{1}}{\longrightarrow}} \frac{S}{I_{i-1}} \longrightarrow \frac{S}{I_{i-1}+\left(u_{1}\right)} \longrightarrow 0 .
$$

From Remark 4.10, we know that

$$
\operatorname{reg}\left(\frac{S}{I+L^{\prime \prime}}(-2 s)\right) \leq 2 s+\nu(H) \leq 2 s+\nu(G)-3<\operatorname{reg}\left(\frac{S}{I^{s}}\right)=\operatorname{reg}\left(\frac{S}{I_{i-1}}\right)
$$

where the third inequality follows from [3, Theorem 4.5]. Hence reg $\left(\frac{S}{I_{i-1}}\right)=\operatorname{reg}\left(\frac{S}{I_{i-1}+\left(u_{1}\right)}\right)$. Assume by induction on j that $\operatorname{reg}\left(I_{i-1}+\left(u_{1}, \ldots, u_{j-1}\right)\right)=\operatorname{reg}\left(I^{s}\right)$. Since $\left(I_{i-1}+\left(u_{1}, \ldots, u_{j}\right)\right)$: $u_{j+1}=I+L^{\prime \prime}$, we get the desired equality from the short exact sequence:

$$
0 \longrightarrow \frac{S}{I+L^{\prime \prime}}(-2 s) \xrightarrow{\cdot u_{j+1}} \frac{S}{I_{i-1}+\left(u_{1}, \ldots, u_{j}\right)} \longrightarrow \frac{S}{I_{i-1}+\left(u_{1}, \ldots, u_{j+1}\right)} \longrightarrow 0 .
$$

We are now ready to prove our second main theorem.
Theorem 4.12. Let G be a graph obtained by taking clique sum of a $C_{2 n+1}$ and some bipartite graphs. Let H be an induced subgraph of G on vertices $V \backslash \bigcup_{x \in V\left(C_{2 n+1}\right)} N_{G}(x)$. Assume that none of the vertices of H is part of any cycle in G. If $\nu(G)-\nu(H) \geq 3$, then $\operatorname{reg}\left(I^{(s)}\right)=\operatorname{reg}\left(I^{s}\right)$.

Proof. Let $s \geq 1$ and $k=\left\lfloor\frac{s}{n+1}\right\rfloor$. Consider the following exact sequence

$$
0 \longrightarrow \frac{S}{I_{k}} \longrightarrow \frac{S}{I^{(s)}} \oplus \frac{S}{\mathfrak{m}^{2 s}} \longrightarrow \frac{S}{I^{(s)}+\mathfrak{m}^{2 s}} \longrightarrow 0
$$

where $I_{k}=\sum_{t=0}^{k} \mu^{t} K^{t} I^{s-t(n+1)}$. Since $\nu(G) \geq 2$, we have reg $\left(\frac{S}{I^{(s)}}\right)>\operatorname{reg}\left(\frac{S}{\mathfrak{m}^{2 s}}\right)=$ $\operatorname{reg}\left(\frac{S}{I^{(s)}+\mathfrak{m}^{2 s}}\right)$. Hence reg $\left(\frac{S}{I_{k}}\right)=\operatorname{reg}\left(\frac{S}{I^{(s)}}\right)$. Since $\nu(G)-\nu(H) \geq 3$, by Proposition 4.11, we get that $\operatorname{reg}\left(I^{s}\right)=\operatorname{reg}\left(I^{(s)}\right)$.

Remark 4.13. If the odd cycle in G is of length at least 9 , then the condition $\nu(G)-\nu(H) \geq$ 3 is always satisfied.
(1) If the unique odd cycle in G is of length 7 , then the hypothesis of Theorem 4.12 is satisfied if a P_{3} is attached to C_{7}.
(2) If the unique odd cycle in G is of length 5 , then the hypothesis of Theorem 4.12 is satisfied if either two P_{3} 's are attached to a single vertex or a P_{3} and a P_{2} are attached to adjacent vertices (see figure below).
(3) If the unique odd cycle in G is of length 3 , then the hypothesis of Theorem 4.12 is satisfied if either two P_{3} 's are attached to a single vertex or on each vertex of C_{3} a P_{3} is attached (see figure below).
(4) It may also be noted that the class of graphs considered in Theorem 4.12 is not a subset of unicyclic graphs. It also includes graphs which are obtained by taking clique sum of copies of C_{4} along the edges of an odd cycle (see figure below).

We illustrate with pictures, some of the graphs for which the regularity of the symbolic powers of their edge ideals are same as that of their regular powers.

References

[1] Arindam Banerjee. The regularity of powers of edge ideals. J. Algebraic Combin., 41(2):303-321, 2015.
[2] Arindam Banerjee, Selvi. Beyarslan, and Huy Tài. Hà. Regularity of Edge Ideals and Their Powers. ArXiv e-prints, December 2017.
[3] Selvi Beyarslan, Huy Tài Hà, and Trân Nam Trung. Regularity of powers of forests and cycles. J. Algebraic Combin., 42(4):1077-1095, 2015.
[4] A. Flores-Méndez, I. Gitler, and E. Reyes. Implosive graphs: square-free monomials on symbolic Rees algebras. J. Algebra Appl., 16(8):1750145, 23, 2017.
[5] Y. Gu, H. T. Ha, J. L. O'Rourke, and J. W. Skelton. Symbolic powers of edge ideals of graphs. ArXiv e-prints, May 2018.
[6] Frank Harary and Michael D. Plummer. On indecomposable graphs. Canad. J. Math., 19:800-809, 1967.
[7] Arvind Kumar and S Selvaraja. Upper bounds for the regularity of symbolic powers of certain classes of edge ideals. arXiv e-prints, page arXiv:1907.05366, Jul 2019.
[8] José Martínez-Bernal, Carlos Rentería-Márquez, and Rafael H. Villarreal. Combinatorics of symbolic Rees algebras of edge ideals of clutters. In Commutative algebra and its connections to geometry, volume 555 of Contemp. Math., pages 151-164. Amer. Math. Soc., Providence, RI, 2011.
[9] S. A. Seyed Fakhari. Regularity of symbolic powers of edge ideals of Cameron-Walker graphs. arXiv e-prints, page arXiv:1907.02743, Jul 2019.
[10] S. A. Seyed Fakhari. Regularity of symbolic powers of edge ideals of chordal graphs. (2019), Preprint.
[11] S. A. Seyed Fakhari. Regularity of symbolic powers of edge ideals of unicyclic graphs. J. Algebra, (To Appear).
[12] Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal. On the ideal theory of graphs. J. Algebra, 167(2):389-416, 1994.

E-mail address: jayanav@iitm.ac.in
Department of Mathematics, I.I.T. Madras, Chennai, 600036, INDIA.
E-mail address: gargrajiv00@gmail.com
Department of Mathematics, The LnM Institute of Information Technology, Jaipur, Rajasthan, 302031, INDIA.

[^0]: 2010 Mathematics Subject Classification. Primary 13D02, 13F55, 05E40.
 Key words and phrases. Castelnuovo-Mumford regularity, Edge Ideal, Symbolic Powers.

