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REFINED BOHR-TYPE INEQUALITIES WITH AREA MEASURE FOR

BOUNDED ANALYTIC FUNCTIONS

YONG HUANG, MING-SHENG LIU ∗, AND SAMINATHAN PONNUSAMY

Abstract. In this paper, we establish five new sharp versions of Bohr-type inequalities
for bounded analytic functions in the unit disk by allowing Schwarz function in place of
the initial coefficients in the power series representations of the functions involved and
thereby, we generalize several related results of earlier authors.

1. Introduction and Preliminaries

Let D := {z ∈ C : |z| < 1} denote the open unit disk in C. A remarkable discovery
of Herald Bohr [10] in 1914 states that if H∞ denotes the class of all bounded analytic
functions f on D with the supremum norm ‖f‖∞ := supz∈D |f(z)|, then

(1.1) B0(f, r) := |a0|+
∞
∑

n=1

|an|rn ≤ ‖f‖∞ for 0 ≤ r ≤ 1/6,

where ak = f (k)(0)/k! for k ≥ 0. Later M. Riesz, I. Shur and F. W. Wiener, independently
proved its validity on a wider interval 0 ≤ r ≤ 1/3, and the family of functions ϕa(z) =
(a − z)/(1 − az) (|a| < 1) as a → 1 demonstrates that the number 1/3 is optimal. This
result is usually referred to as Bohr’s power series theorem for the unit disk and 1/3 is
called the Bohr radius. We refer the paper of Bohr [10] which contains the proof of Wiener
showing that the Bohr radius is 1/3. See also [30, 31] for other proofs. Then it is worth
pointing out that there is no extremal function in B such that the Bohr radius is precisely
1/3 (cf. [7], [13, Corollary 8.26] and [14]). Several aspects of Bohr’s inequality and its
extensions in various settings may be seen in the literature. For example, the Bohr radius
for analytic functions from the unit disk into different domains, such as the punctured
unit disk or the exterior of the closed unit disk or concave wedge-domains, have been
analyzied in [1, 2, 3, 4]. Ali et al. [6, 14] considered the problem of determining Bohr
radius for the classes of even and odd analytic functions and for alternating series. The
articles [7, 19, 24] concerned with the class of all sense-preserving harmonic mappings
and the Bohr radius for sense-preserving harmonic quasiconformal mappings. Defant
[11] improved a version of the Bohnenblust-Hille inequality, and in 2004, Paulsen [26]
proved a uniform algebra analogue of the classical inequality of Bohr concerning Fourier
coefficients of bounded holomorphic functions. In [25, 27], the authors demonstrated the
classical Bohr inequality using different methods of operators. Djakov and Ramanujan
[12] have established the results on Bohr’s phenomena for multidimensional power series.
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Recently, in [22, 23, 28, 29], the authors presented refined versions of Bohr’s inequality
along with few other related improved versions of previously known results. See also the
recent survey articles [5, 17, 18] and [13, Chapter 8]. Especially, after the appearance of
the articles [5] and [15], several approaches and new problems on Bohr’s inequality in the
plane were investigated in the literature (cf. [8, 9, 16, 20, 22, 28, 29]).

One of our aims in this article is to generalize or improve recent versions of Bohr’s
inequalities for functions from H∞.

1.1. Basic Notations. Before we continue the discussion, we fix some notations. Through-
out the discussion, we let

B = {f ∈ H∞ : ‖f‖∞ ≤ 1}, and m ∈ N = {1, 2, · · · },
Bm = {ω ∈ B : ω(0) = · · · = ω(m−1)(0) = 0 and ω(m)(0) 6= 0}.

Also, for f(z) =
∑∞

n=0 anz
n ∈ B and f0(z) := f(z)− f(0), we let for convenience

Bk(f, r) :=
∞
∑

n=k

|an|rn for k ≥ 0, and ‖f0‖2r :=
∞
∑

n=1

|an|2 r2n

so that B0(f, r) = |a0|+B1(f, r) and B0(f, r) = |a0|+ |a1|r +B2(f, r).

1.2. Refined Bohr’s inequalities and basic problems. Recently, Ponnusamy et al.
[28] proved the following refined Bohr inequality.

Theorem A. ([28]) Suppose that f ∈ B, f(z) =
∑∞

n=0 anz
n and a = |a0| = |f(0)|. Then

B0(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1 for r ≤ 1

2 + a

and the numbers 1
2+a

and 1
1+a

cannot be improved. Moreover,

a2 +B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1 for r ≤ 1

2

and the numbers 1
2
and 1

1+a
cannot be improved.

Besides these results, there are plenty of works about the classical Bohr inequality.
Based on the work of Kayumov and Ponnusamy [16], several forms of Bohr-type inequal-
ities for the family B were obtained in [22] when the Taylor coefficients of classical Bohr
inequality are partly or completely replaced by higher order derivatives of f . With the
development of Bohr-type inequalities, the authors in [21] established improved version
of the Bohr-Rogosinski inequality and considered some refined Bohr type inequalities as-
sociated with area, modulus of f − a0(f) and higher order derivatives of f in part. Here
we recall part of them.

Theorem B. ([21]) Suppose that f ∈ B, f(z) =
∑∞

n=0 anz
n and a := |a0| = |f(0)|. Then

|f(z)|+B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1
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for |z| = r ≤ ra = 2/
(

3 + a +
√
5 (1 + a)

)

. Then the radius ra is best possible and

ra ≥
√
5− 2. Moreover,

|f(z)|2 +B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for |z| = r ≤ r′a, where r′a is the unique positive root of the equation
(

1− a3
)

r3 − (1 + 2a) r2 − 2r + 1 = 0.

The radius r′a is best possible. Further,we have 1/3 < r′a < 1/ (2 + |a|).

Theorem C. ([21]) Suppose that f ∈ B, f(z) = ∑∞
n=0 anz

n and a := |a0| = |f(0)|. Then

B0(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r + |f0(z)| ≤ 1

for |z| = r ≤ 1
5
and the number 1

5
cannot be improved. Moreover,

a2 +B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r + |f0(z)| ≤ 1

for |z| = r ≤ 1
3
and the constant 1

3
cannot be improved.

Theorem D. ([21]) Suppose that f ∈ B, f(z) = ∑∞
n=0 anz

n and a := |a0| = |f(0)|. Then

|f(z)|+ |f ′(z)| r +B2(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for |z| = r ≤
√
17−3
4

and the constant
√
17−3
4

is best possible.Moreover,

|f(z)|2 + |f ′(z)| r +B2(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for |z| = r ≤ r0, where r0 ≈ 0.385795 is the unique positive root of the equation

1− 2r − r2 − r3 − r4 = 0

and the number r0 is best possible.

Theorem E. ([21]) Suppose that f ∈ B, f(z) =
∑∞

n=0 anz
n and a := |a0| = |f(0)|. Then

for |z| = r ≤ 1
3
,

B0(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r + |f0(z)|2 ≤ 1

is valid if and only if 0 ≤ a ≤ 4
√
2− 5 ≈ 0.656854.

It is natural to raise the following.

Problem 1. Whether we can further generalize or improve Theorems B, C, D and E?
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In this article, we present an affirmative answer to this question in five different forms.
The paper is organized as follows. In Section 2, we present statements of five theorems

which improve several versions of Bohr’s type inequalities for bounded analytic functions,
and several remarks. In Section 3, we state and prove a couple of lemmas which are
needed for the proofs of two theorems. In Section 4, we present the proofs of the main
results.

2. Statement of Main Results and Remarks

We now state a generalization of Theorem B in a general setting.

Theorem 1. Suppose that f(z) =
∑∞

n=0 anz
n ∈ B, a := |a0| and ω ∈ Bm for some m ∈ N.

Then we have

Af(z) := |f (ω(z))|+B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for r ∈ [0, αm], where αm is the unique root in (0, 1) of the equation

(2.1) (1− r)(1− rm)− 2r(1 + rm) = 0.

The constant αm cannot be improved. Moreover,

Bf(z) := |f (ω(z))|2 +B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

is valid for r ∈ [0, βm], where βm is the unique root in (0, 1) of the equation

(2.2) 1− 2r − rm = 0.

The constant βm cannot be improved.

Remark 1. We mention now several useful remarks and some special cases.

(1) One can state each of the two radii in Theorem 1 as a function of a. In that case,
αm and βm should be replaced by αm,a and βm,a which are in fact the unique roots
in (0, 1) of the equation Am(a, r) = 0 and Bm(a, r) = 0, respectively, where

Am(a, r) = (1− r)(1− rm)− (1 + a)r(1 + arm)

and

Bm(a, r) = (1− r)(1− r2m)− r(1 + arm)2.

(2) If we set m = 1 and ω(z) ≡ z in Theorem 1, then we get Theorem B.
(3) If we set m = 1 in (2.1), then we get α1 =

√
5− 2.

(4) If we set m = 2 in (2.1), then it reduces to r3 + r2 + 3r − 1 = 0 which gives the
root α2 ≈ 0.295598 in the interval (0, 1).

(5) If we allow m → ∞ in (2.1) (with ω(z) = zm in Af (z)), then |f(ω(z))| → |f(0)|
and α∞ = 1/3.

(6) The case m = 1 in (2.2) gives the root β1 = 1/3.
(7) The case m = 2 in (2.2) gives the root β2 =

√
2− 1.

(8) If we allow m → ∞ in (2.2) (with ω(z) = zm in Bf(z)), then β∞ = 1/2.



Refined bohr-type inequalities for bounded analytic functions 5

Theorem 2. Suppose that f(z) =
∑∞

n=0 anz
n ∈ B, a := |a0| and ω ∈ Bm for some m ∈ N.

Then we have

Cf (z) := B0(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r + |f (ω(z))− a0| ≤ 1

for r ∈ [0, ζm], where ζm is the unique root in (0, 1/3] of the equation

(2.3) rm(3− 5r) + 3r − 1 = 0,

or equivalently, 3rm + 2
∑m

k=1 r
k − 1 = 0. The upper bound ζm cannot be improved.

Moreover,

Df (z) := |a0|2 +B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r + |f(ω(z))− a0| ≤ 1

for r ∈ [0, ηm], where ηm is the unique root in (0, 1/2] of the equation

(2.4) rm(2− 3r) + 2r − 1 = 0,

or equivalently, 2rm +
∑m

k=1 r
k − 1 = 0. The upper bound ηm cannot be improved.

Remark 2. The following special cases are useful and important to mention.

(1) The case m = 1 and ω(z) ≡ z in Theorem 2 gives Theorem C.
(2) The case m = 1 in (2.3) gives the root ζ1 = 1/5.
(3) The case m = 2 in (2.3) reduces to −5r3+3r2+3r−1 = (1− r)(5r2+2r−1) = 0

which gives the root ζ2 =
√
6−1
5

≈ 0.289898 in the interval (0, 1/3).
(4) If we allow m → ∞ in (2.3) (with ω(z) = zm in Cf(z)), then ζ∞ = 1/3.
(5) The case m = 1 in (2.4) gives the root η1 = 1/3.
(6) The case m = 2 in (2.4) reduces to (1 − r)(3r2 + r − 1) = 0 which gives the root

η2 =
√
13−1
6

≈ 0.434259 in the interval (0, 1/2).
(7) If we allow m → ∞ in (2.4) (with ω(z) = zm in Df(z)), then η∞ = 1/2.

In Table 1, we include the values of αm, βm, ζm and ηm for certain values of m ≥ 3.

Theorem 3. Suppose that f(z) =
∑∞

n=0 anz
n ∈ B, a := |a0| and ω ∈ Bm. Then we have

Ef(z) := |f (ω(z))|+ |ω(z)| |f ′(ω(z))|+B2(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for r ∈ [0, γm], where γm is the unique root in (0, 1) of the equation

(2.5) rm(rm + 2)[2r2 − r + 1] + 2r2 + r − 1 = 0.

The upper bound γm cannot be improved. Moreover,

Ff(z) := |f (ω(z))|2 + |ω(z)| |f ′(ω(z))|+B2(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for r ∈ [0, δm], where δm is the unique root in (0, 1) of the equation

(2.6) rm(rm + 1)[rm − r + 2] + r − 1 = 0.

The upper bound δm cannot be improved.
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m αm βm ζm ηm
3 0.319053 0.453398 0.318201 0.469396
4 0.328197 0.474627 0.328083 0.484925
5 0.331555 0.486389 0.331541 0.492432
6 0.332731 0.492836 0.332729 0.496184
7 0.333131 0.496292 0.333131 0.498077
8 0.333266 0.498105 0.333266 0.499033
9 0.333311 0.499040 0.333311 0.499515
10 0.333326 0.499516 0.333326 0.499757
15 0.333333 0.499985 0.333333 0.499992
20 0.333333 0.500000 0.333333 0.500000
25 0.333333 0.500000 0.333333 0.500000
30 0.333333 0.500000 0.333333 0.500000

Table 1. Numbers αm, βm, ζm and ηm are the unique roots in (0, 1) of the
equations (2.1), (2.2), (2.3) and (2.4), respectively.

Theorem 4. Suppose that f(z) =
∑∞

n=0 anz
n ∈ B, a := |a0| and ω ∈ Bm. Then we have

Gf(z) := |f (ω(z))|+ |z| |f ′(ω(z))|+B2(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for r ∈ [0, θm], where θm is the unique root in (0, 1) of the equation

(2.7) 2r2m+2 − r2m+1 + r2m + 4rm+2 + 3r − 1 = 0.

The upper bound θm cannot be improved. Moreover,

Hf(z) := |f (ω(z))|2 + |z| |f ′(ω(z))|+B2(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤ 1

for r ∈ [0, ϑm], where ϑm is the unique root in (0, 1) of the equation

(2.8) r2m+2 − r2m+1 + r2m + 2rm+2 + 2r − 1 = 0.

The upper bound ϑm cannot be improved.

Remark 3. Obviously, if we set m = 1 and ω(z) ≡ z in Theorem 3 or Theorem 4, then
we get Theorem D.

In Table 2, we include the values of γm, δm, θm and ϑm for certain values of m ≥ 2.

Theorem 5. Suppose that f(z) =
∑∞

n=0 anz
n ∈ B, a := |a0| and ω ∈ Bm for some m ≥ 1.

We have the following:

(1) If m = 1, then we have

(2.9) If(z) := B0(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r + |f (ω(z))− a0|2 ≤ 1 for |z| = r ≤ 1/3

if and only if 0 ≤ a ≤ a∗ = −5 + 4
√
2 ≈ 0.656854. The constant 1/3 cannot be

improved.
(2) If m ≥ 2, then (2.9) holds, and the constant 1/3 cannot be improved.
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m γm δm θm ϑm

2 0.391490 0.486848 0.316912 0.445688
3 0.441112 0.535687 0.327911 0.472325
4 0.467644 0.564540 0.331520 0.485708
5 0.482442 0.582935 0.332726 0.492642
6 0.490660 0.595034 0.333131 0.496239
7 0.495127 0.603062 0.333266 0.498091
8 0.497496 0.608373 0.333311 0.499037
9 0.498727 0.611827 0.333326 0.499515
10 0.499357 0.614117 0.333331 0.499757
15 0.499980 0.617662 0.333333 0.499992
20 0.500000 0.618000 0.333333 0.500000
25 0.500000 0.618031 0.333333 0.500000
30 0.500000 0.618034 0.333333 0.500000

Table 2. Numbers γm, δm, θm and ϑm are the unique roots in (0, 1) of the
equations (2.5), (2.6), (2.7) and (2.8), respectively.

Remark 4. Obviously, the case m = 1 and ω(z) ≡ z of Theorem 5 gives Theorem E.

3. Key lemmas and their Proofs

In order to establish our main results, we need the several lemmas which play key role
in proving the subsequent results in Section 4.

3.1. Three known lemmas.

Lemma 1. (Schwarz-Pick Lemma) Let ϕ(z) be analytic and |ϕ(z)| < 1 in the unit disk
D. Then

|ϕ(z1)− ϕ(z2)|
∣

∣

∣
1− ϕ(z1)ϕ(z2)

∣

∣

∣

≤ |z1 − z2|
|1− z1z2|

for z1, z2 ∈ D,

and equality holds for distinct z1, z2 ∈ D if and only if ϕ is a Möbius transformation.
Also,

|ϕ′(z)| ≤ 1− |ϕ(z)|2
1− |z|2 for z ∈ D,

and equality holds for some z ∈ D if and only if f is a Möbius transformation.

Lemma 2. ([14]) Suppose that f(z) =
∑∞

n=0 anz
n ∈ B and a := |a0|. Then we have

∞
∑

n=1

|an| rn ≤



















r
1− a2

1− ra
for a ≥ r,

r

√
1− a2√
1− r2

for a < r.
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Lemma 3. ([28]) Suppose that f(z) =
∑∞

n=0 anz
n ∈ B and a := |a0| Then the following

inequality holds:

B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤

(

1− a2
) r

1− r
for r ∈ [0, 1).

A general version of this lemma is proved in [21, Lemma 4]. In particular, the following
inequality holds (the case N = 2 in [21, Lemma 4]) under the hypothesis of Lemma 3:

(3.1) B2(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤

(

1− a2
) r2

1− r
for r ∈ [0, 1).

3.2. Two key lemmas.

Lemma 4. There is a unique positive root ζm in (0, 1/3) of the equation (2.3), and ζm
satisfies the inequality

ζmm +
ζm

1− ζm
+

ζmm
√

1− ζ2mm
≤ 1.(3.2)

Proof. We first prove the uniqueness of the solution in (0, 1/3) of the equation (2.3).
Let g(r) = rm(3−5r)+3r−1. Then, we find that g(0) = −1 < 0 and g(1/3) = 4

3m+1 > 0.
Also, for r ∈ [0, 1/3], we have

g′(r) = mrm−1(3− 5r) + 3− 5rm > 0,

showing that g(r) is an increasing function of r in [0, 1/3], and thus, g(r) = 0 has a unique
root ζm in (0, 1/3).

Now we verify the inequality (3.2). In fact, by (2.3), we note that

ζmm =
1− 3ζm
3− 5ζm

, ζm ∈ (0, 1/3).

For convenience, we set x = ζm and using the last relation, we have

xm +
x

1− x
+

xm

√
1− x2m

=
1− 3x

3− 5x



1 +
1

√

1−
(

1−3x
3−5x

)2



 +
x

1− x

≤ 1− 3x

3− 5x



1 +
1

√

1−
(

1
3

)2



+
x

1− x

=
4 + 3

√
2

4
· 1− 3x

3− 5x
+

x

1− x

=
(9
√
2− 8)x2 − (12

√
2 + 4)x+ 4 + 3

√
2

4 (3− 5x) (1− x)
,

which is less than or equal to 1 if G(x) ≥ 0, where

G(x) = (28− 9
√
2)x2 + (12

√
2− 28)x+ 8− 3

√
2.

Since the discriminant of the equation G(x) = 0 is less than 0 and G(0) = 8−3
√
2 > 0,

we deduce that G(x) > 0 for x ∈ (0, 1/3). The proof is complete. �
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Lemma 5. There is a unique positive root ηm in (0, 1/2) of the equation (2.4), and ηm
satisfies the inequality

η2mm +
ηm

1− ηm
+

ηmm
√

1− η2mm
≤ 1.(3.3)

Proof. We first prove the uniqueness of the solution in (0, 1/2) of the equation (2.4).
Let h(r) = rm(2− 3r) + 2r − 1. Then it is easy to note that h(0) = −1 < 0, h(1/2) =

(1
2
)m+1 > 0 and, for r ∈ [0, 1/2], we have

h′(r) = mrm−1(2− 3r) + 2− 3rm > 0,

showing that h(r) is an increasing function of r in [0, 1/2], and thus, h(r) = 0 has a unique
root ηm in (0, 1/2).

Now we verify the inequality (3.3). Let y = ηmm. Then according to (2.4), we have
ηm = (1 − 2y)/(2 − 3y). Using this change of variables, we can rewrite (3.3) in the
following equivalent form:

y2 +
1− 2y

1− y
+

y
√

1− y2
≤ 1 for y ∈ [0, 1/2).

We note that

y2 +
1− 2y

1− y
+

y
√

1− y2
− 1 =

y[(−y2 + y − 1)
√

1− y2 + 1− y]

(1− y)
√

1− y2
,

and therefore, the inequality (3.3) is valid if and only if (−y2+ y− 1)
√

1− y2+1− y ≤ 0
for y ∈ [0, 1/2), which holds if and only if y2(y3 − y2 + y + 1) ≥ 0 for y ∈ [0, 1/2). Since
the last inequality is obviously true, the proof is complete. �

4. Bohr-type inequalities for bounded analytic functions

4.1. Proof of Theorem 1. Firstly, we consider the first part. Suppose that f ∈ B,
a := |a0| and ω ∈ Bm. Then, by the classical Schwarz lemma and the Schwarz-Pick
lemma or Lemma 1, we have

|ω(z)| ≤ |z|m, z ∈ D,(4.1)

|f(u)| ≤ |u|+ a

1 + a|u| , u ∈ D,(4.2)

which implies

|f(ω(z))| ≤ |ω(z)|+ a

1 + a|ω(z)| ≤
rm + a

1 + arm
, |z| = r < 1.(4.3)

According to Lemma 3 and (4.3), we have

B1(f, r) +
1 + ar

(1 + a)(1− r)
‖f0‖2r ≤

(1− a2)r

1− r
,

and thus,

Af(z) ≤ 1−
[

1− rm + a

1 + arm
− (1− a2)r

1− r

]

= 1− (1− a)Am(a, r)

(1 + arm) (1− r)
,
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where Am(a, r) = (1−r)(1−rm)−(1+a)r(1+arm), which is clearly a decreasing function
of a ∈ [0, 1]. Thus,

Am(a, r) ≥ Am(1, r) = (1− r)(1− rm)− 2r(1 + rm),

and obtain that Af (z) ≤ 1 if Am(1, r) ≥ 0, which holds for r ≤ αm, where αm is the
unique positive root in (0, 1) of the equation Am(1, r) = 0.

To show that the radius αm is best possible, we consider the functions

(4.4) ω(z) = zm and ϕa(z) =
z + a

1 + az
= a +

(

1− a2
)

∞
∑

n=0

(−a)nzn+1, a ∈ [0, 1).

For the two functions, we get that (for z = r)

Aϕa
(z) = |ϕa(z

m)|+B1(ϕa, r) +
1 + ar

(1 + a)(1− r)
‖ϕa0 − a‖2r

=
a+ rm

1 + arm
+

(1− a2) r

1− ar
+

(1− a2)
2
r2

(1 + a)(1− r)(1− ar)

=
rm + a

1 + arm
+

r (1− a2)

1− r
,

and this expression is bigger than 1 provided r > αm,a, where αm,a is the unique positive
root in (0, 1) of the equation Am,a(r) = 0. Allowing a → 1− gives that αm,1 = αm is the
best possible constant.

Next, we prove the second part. As in the previous case, by Lemma 3 and (4.3), it
follows easily that

Bf (z) ≤ 1−
[

1−
(

rm + a

1 + arm

)2

− (1− a2)r

1− r

]

= 1− (1− a2)Bm(a, r)

(1 + arm)2 (1− r)
,

where Bm(a, r) = (1− r)(1− r2m)− r(1+ arm)2, which is clearly a decreasing function of
a ∈ [0, 1]. Thus,

Bm(a, r) ≥ Bm(1, r) = (1− r)(1− r2m)− r(1 + rm)2 = (1 + rm)(1− 2r − rm) =: Bm(r).

We see that Bf (z) ≤ 1 if Bm(r) ≥ 0, which holds for r ≤ βm, where βm is the unique
positive root in (0, 1) of the equation Bm(r) = 0, namely, (2.2) given by 1− 2r− rm = 0.

To show the radius βm is best possible, we consider the functions ω(z) = zm and ϕa(z)
as above, and find that (for z = r)

Bϕa
(z) = |ϕa(z

m)|2 +B1(ϕa, r) +
1 + ar

(1 + a)(1− r)
‖ϕa0 − a‖2r

=

(

rm + a

1 + arm

)2

+
r (1− a2)

1− r
,

and this expression is bigger than 1 provided r > βm,a, where βm,a is the unique positive
root in (0, 1) of the equation Bm,a(r) = 0. Allowing a → 1− gives that βm,1 = βm is the
best possible constant. Thus the proof of Theorem 1 is complete. �



Refined bohr-type inequalities for bounded analytic functions 11

4.2. Proof of Theorem 2. We begin to recall from Lemma 2 that (as ω ∈ Bm so that
|ω(z)| ≤ rm and f(ω(0)) = a0 with a = |a0|),

(4.5) |f(ω(z))− a0| ≤
∞
∑

k=1

|ak|rmk ≤



















rm
1− a2

1− rma
for a ≥ rm,

rm
√
1− a2√
1− r2m

for a < rm.

For the first part of the proof of the theorem, we first consider a ≥ rm. Then it follows
from (4.1), the first inequality on the right of (4.5) and Lemma 3 that

Cf(z) ≤ a+
r (1− a2)

1− r
+

rm (1− a2)

1− arm
= 1− (1− a)Cm(a, r)

(1− arm) (1− r)
,

where

Cm(a, r) = rm+1a2 −
(

r − 3rm+1 + 2rm
)

a−
(

rm − rm+1 + 2r − 1
)

.

Now, for fixed the value of r in the expression, we obtain

∂Cm(a, r)

∂a
= r

[

2arm −
(

1− 3rm + 2rm−1
)]

≤ ∂Cm(a, r)

∂a

∣

∣

∣

∣

a=1

= r
[

5rm − 2rm−1 − 1
]

,

which is non-positive for r ≤ νm, νm ≥ 3/5, where νm is the unique root in (0, 1) of the
equation 5rm − 2rm−1 − 1 = 0. So, Cm(a, r) is a decreasing function of a ∈ [rm, 1] and
thus, we have

Cm(a, r) ≥ Cm(1, r) = 5rm+1 − 3rm − 3r + 1 =: Cm(r).

Clearly, C(z) ≤ 1 if Cm(r) ≥ 0, which holds for r ≤ ζm, where ζm is the unique positive
root in (0, 1/3) of the equation Cm(r) = 0 from Lemma 4.

If a < rm ≤ ζmm , then combining (4.1), Lemma 3 and the second inequality on the right
in (4.5), we have

Cf(z) ≤ a +
r (1− a2)

1− r
+

rm
√
1− a2√

1− r2m
=: C(a, r).

It is easy to see that

∂C(a, r)

∂r
=

1− a2

(1− r)2
+mrm−1

√

1− a2

(1− r2m)3
> 0,

showing that C(a, r) is monotonically increasing with respect to r ∈ [0, ζm] for each fixed
a ∈ [0, 1). Thus, we have from Lemma 4 that

Cf(z) ≤ a +
(1− a2) ζm
1− ζm

+
ζmm

√
1− a2

√

1− ζ2mm

≤ ζmm +
ζm

1− ζm
+

ζmm
√

1− ζ2mm
≤ 1.
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To show the sharpness of the radius ζm, we consider the functions ω and ϕa as in (4.4),
and obtain as before that (by setting z = r for the first term in the definition of Cϕa

(z))

Cϕa
(z) = a+

r (1− a2)

1− r
+

rm (1− a2)

1− arm
,

and the last expression shows the radius ζm is optimal.
For the proof of the second part of the theorem, when a ≥ rm, it follows from (4.1),

Lemma 3 and the first inequality on the right of (4.5) that

Df(z) ≤ a2 +
r (1− a2)

1− r
+

rm (1− a2)

1− arm
= 1− (1− a2)Dm(a, r)

(1− arm) (1− r)
,

where

Dm(a, r) = −arm(1− 2r)− rm(1− r)− 2r + 1.

For r ≤ 1/2, it is clear that Dm(a, r) is a decreasing function of a, a ∈ [rm, 1]. Hence

Dm(a, r) ≤ Dm(1, r) = −rm(2− 3r)− 2r + 1 =: Dm(r).

Obviously, Df(z) ≤ 1 if Dm(r) ≤ 0, which holds for r ≤ ηm ≤ 1/2, where ηm is the
unique positive root in (0, 1/2] of the equation Dm(r) = 0 from Lemma 5.

If a < rm ≤ ηmm, as in the previous case, we have

Df(z) ≤ a2 +
r (1− a2)

1− r
+

rm
√
1− a2√

1− r2m
=: D(a, r).

Since D(a, r) is clearly monotonically increasing with respect to r ∈ [0, ηm], for each fixed
value of a in the expression, it follows from Lemma 5 that

Df (z) ≤ a2 +
(1− a2) ηm
1− ηm

+
ηmm

√
1− a2

√

1− η2mm

≤ η2mm +
ηm

1− ηm
+

ηmm
√

1− η2mm
≤ 1.

The sharpness part follows similarly. Thus, the proof of Theorem 2 is complete. �

It is a simple exercise to see that for 0 ≤ x ≤ x0 (≤ 1), we have

(4.6) Φ(x) = x+ A(1− x2) ≤ Φ(x0) whenever 0 ≤ A ≤ 1/2,

and similarly,

(4.7) Ψ(x) = x2 + A(1− x2) ≤ Ψ(x0) whenever 0 ≤ A ≤ 1.

These two inequalities will be used in the proofs of Theorems 3 and 4.
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4.3. Proof of Theorem 3. Firstly, we consider the first part. In view of (4.1), (4.3),
Schwarz-Pick lemma and (3.1), we have

Ef(z) ≤ |f(w(z))|+ rm

1− r2m
(

1− |f(w(z))|2
)

+
(1− a2) r2

1− r

≤ rm + a

1 + arm
+

rm

1− r2m

[

1−
(

rm + a

1 + arm

)2
]

+
(1− a2) r2

1− r
(by (4.6))

=
rm + a

1 + arm
+

rm (1− a2)

(1 + arm)2
+

(1− a2) r2

1− r

= 1 +
(1− a)Em(a, r)

(1 + arm)2 (1− r)
,

for r ∈ [0, µm], since
rm

1−r2m
≤ 1

2
for r ∈ [0, µm], where µm =

m

√√
2− 1 is the unique root

in (0,1) of the equation r2m + 2rm − 1 = 0, and

Em(a, r) = r2m+2a3 + rm+2 (rm + 2) a2 +
[

r2m(1− r) + r2(2rm + 1)
]

a

+2rm(1− r) + r2 + r − 1.

For each fixed r ∈ [0, 1], it is clear that Em(a, r) is a monotonically increasing function of
a ∈ [0, 1) and thus,

Em(a, r) ≤ Em(1, r) = rm(rm + 2)[2r2 − r + 1] + 2r2 + r − 1 =: Em(r).

Therefore, Ef (z) ≤ 1 if Em(r) ≤ 0, which is valid for r ≤ γm, where γm is the unique
positive root in (0, 1) of the equation Em(r) = 0, and obviously γm < µm.

To show that the radius γm is optimal, as in the proofs of the previous two theorems,
we consider the functions ω and ϕa as in (4.4), and set z = r for the first term in the
definition of Eϕa

(z) and obtain that

Eϕa
(z) =

a+ rm

1 + arm
+

(1− a2) rm

(1 + arm)2
+

r2 (1− a2)

1− r

= 1 +
(1− a)Em(a, r)

(1 + arm)2 (1− r)
,(4.8)

which is larger than 1 if and only if Em(a, r) > 0. Also, the expression on the right is
smaller than or equal to 1 for all a ∈ [0, 1), only in the case when r ≤ γm. Finally, it
also suggests that a → 1 in (4.8) shows that the expression on the right is larger than 1
if r > γm.
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Concerning the second sum in the theorem, it follows from (4.1), (4.3), Schwarz-Pick
lemma and (3.1) that

Ff (z) ≤ |f(w(z))|2 + rm

1− r2m
(

1− |f(w(z))|2
)

+
(1− a2) r2

1− r

≤
(

rm + a

1 + arm

)2

+
rm

1− r2m

[

1−
(

rm + a

1 + arm

)2
]

+
(1− a2) r2

1− r
(by (4.7))

=

(

rm + a

1 + arm

)2

+
rm (1− a2)

(1 + arm)2
+

(1− a2) r2

1− r

= 1 +
(1− a2)Fm(a, r)

(1 + arm)2 (1− r)
,

for r ∈ [0, τm], since
rm

1−r2m
≤ 1 for r ∈ [0, τm], where τm = m

√√
5−1
2

is the unique root in

(0, 1) of the equation r2m + rm − 1 = 0, and

Fm(a, r) = (r2m + rm − 1)(1− r) + r2(1 + arm)2.

Since Fm(a, r) is clearly an increasing function of a in [0, 1), it follows that

Fm(a, r) ≤ Fm(1, r) = rm(rm + 1)[rm − r + 2] + r − 1 =: Fm(r).

Thus, Ff(z) ≤ 1 if Fm(r) ≤ 0, which holds for r ≤ δm, where δm is the unique positive
root in (0, 1) of the equation Fm(r) = 0, and obviously, δm < τm. Sharpness part may be
proved similarly. Thus, we conclude the proof of the theorem. �

4.4. Proof of Theorem 4. Firstly, we consider the first part. Clearly, 2r
1−r2m

≤ 1 if

r ∈ [0, ξm], where ξm is the unique root in (0, 1) of the equation r2m + 2r − 1 = 0. As
before, it follows from (4.1), (4.3), the Schwarz-Pick lemma and (3.1) that

Gf (z) ≤ |f(w(z))|+ r

1− r2m
(

1− |f(w(z))|2
)

+
(1− a2) r2

1− r

≤ rm + a

1 + arm
+

r

1− r2m

[

1−
(

rm + a

1 + arm

)2
]

+
(1− a2) r2

1− r
(by (4.6))

=
rm + a

1 + arm
+

r (1− a2)

(1 + arm)2
+

(1− a2) r2

1− r

= 1 +
(1− a)Gm(a, r)

(1 + arm)2 (1− r)
,

for r ∈ [0, ξm], where

Gm(a, r) = r2m+2a3 + rm+2(rm + 2)a2 + [r2m(1− r) + rm+1(2r + 1) + r(1− rm−1)]a

+rm − rm+1 + 2r − 1,

which, for each fixed value of r ∈ [0, 1], is clearly monotonically increasing with respect
to a ∈ [0, 1), because the coefficients of a3, a2 and a are non-negative for r ∈ [0, 1]. Hence

Gm(a, r) ≤ Gm(1, r) = 2r2m+2 − r2m+1 + r2m + 4rm+2 + 3r − 1 =: Gm(r).



Refined bohr-type inequalities for bounded analytic functions 15

Therefore, Gf (z) ≤ 1 if Gm(r) ≤ 0, which is valid for r ≤ θm, where θm is the unique
positive root in (0, 1) of the equation Gm(r) = 0, and it is clear that θm < ξm.

To show that the radius θm is optimal, we consider the functions ω and ϕa as in (4.4),
and set z = r for the first term in the definition of Gϕa

(z) and obtain that

Gϕa
(z)) =

a + rm

1 + arm
+

(1− a2) r

(1 + arm)2
+

r2 (1− a2)

1− r

= 1 +
(1− a)Gm(a, r)

(1 + arm)2 (1− r)
,

which is larger than 1 if Gm(r) > 0, and using the earlier arguments, this is valid for
r > θm, where θm is the unique positive root in (0, 1) of the equation Gm(r) = 0.

Obviously, 1 − r
1−r2m

≥ 0 if r ∈ [0, χm], where χm is the unique root in (0,1) of the

equation r2m + r − 1 = 0. Again, as in the previous case, we have for r ∈ [0, χm] that

H(z) ≤ |f(w(z))|2 + r

1− r2m
(

1− |f(w(z))|2
)

+
(1− a2) r2

1− r

≤
(

rm + a

1 + arm

)2

+
r

1− r2m

[

1−
(

rm + a

1 + arm

)2
]

+
(1− a2) r2

1− r
(by (4.7))

≤
(

rm + a

1 + arm

)2

+
r (1− a2)

(1 + arm)2
+

(1− a2) r2

1− r

= 1 +
(1− a2)Hm(a, r)

(1 + arm)2 (1− r)
,

for r ∈ [0, χm], where

Hm(a, r) = (1− r)(rm + r − 1) + r2(1 + arm)2.

As Hm(a, r) is an increasing function for a in [0, 1), we obtain that

Hm(a, r) ≤ Hm(1, r) = r2m+2 − r2m+1 + r2m + 2rm+2 + 2r − 1 =: Hm(r).

Thus, H(z) ≤ 1 is valid if Hm(r) ≤ 0, which holds for r ≤ ϑm, where ϑm is the unique
positive root in (0, 1) of the equation Hm(r) = 0, and ϑm < χm holds obviously. The
sharpness part is similar. The proof of the theorem is complete. �

4.5. Proof of Theorem 5. By Theorem E (and its proof), we only need to prove the
case m ≥ 2.

In fact, if m ≥ 2 and a ≥ rm, then it follows from (4.1), Lemmas 2 and 3 that

If(z) ≤ a+
r (1− a2)

1− r
+

[ |ω(z)|(1− a2)

1− a|ω(z)|

]2

≤ a+
r (1− a2)

1− r
+

r2m (1− a2)
2

(1− arm)2

= 1 +
(1− a)Im(a, r)

(1− r)(1− arm)2
,
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where

Im(a, r) = (2r − 1 + ar)(1− 2arm + a2r2m) + r2m(1− r)(1− a2)(1 + a)

= −r3m(1− 2r)a3 − [r2m(2− 3r) + 2rm+1]a2

+[r2m(1− r) + 2(1− 2r)rm + r]a+ (1− r)r2m + 2r − 1.

As
∂2Im(a, r)

∂a2
= −6r3m(1− 2r)a3 − 2[r2m(2− 3r) + 2rm+1] ≤ 0 for r ≤ 1/2,

it follows that for a ≥ rm

∂2Im(a, r)

∂a2
≤ ∂2Im(a, r)

∂a2

∣

∣

∣

∣

a=rm

= −6r3m(1− 2r)− 2r2m(2− 3r)− 4rm+1 ≤ 0,

showing that ∂Im(a,r)
∂a

is a decreasing function of a ∈ [rm, 1]. Thus, we obtain

∂Im(a, r)

∂a
≥ ∂Im(a, r)

∂a

∣

∣

∣

∣

a=1

= r
(

11r2m − 6r2m−1 − 8rm + 2rm−1 + 1
)

,

which is non-negative for r ≤ ξm, where ξm ≈ 0.487478 is the unique root in (0, 1) of the
equation 11r2m−6r2m−1−8rm+2rm−1+1 = 0. Therefore, Im(a, r) is clearly monotonically
increasing with respect to a ∈ [rm, 1], and thus, we see that

Im(a, r) ≤ Im(1, r) = (3r − 1) (1− rm)2 ≤ 0 for r ≤ 1/3.

We conclude that If (z) ≤ 1 and hence, (2.9) holds, for r ≤ 1/3 and a ≥ rm.
Next, we observe that Im(a, r) is an increasing function of r ∈ [0, 1) and may be written

as

Im(a, r) = 1 +
1− a

(1− r)(1− arm)2
[(2a3 + 3a2 − a− 1)r2m+1 − (a3 + 2a2 − a− 1)r2m

−(2a2 + 4a)rm+1 + 2arm + (a+ 2)r − 1].

Now, for r ≤ 1/3, we have

If (z) ≤ Im(a, 1/3) = 1 +
1− a

2 (3m − a)2
[

−a3 − 3a2 + 2a+ 2 + 3m(1− a) (2a− 3m)
]

≤ 1 +
1− a

2 (3m − a)2
[

−a3 − 3a2 + 2a + 2 + 3(1− a)(2a− 3)
]

= 1 +
(1− a)2

2 (3m − a)2
(

a2 + 10a− 7
)

≤ 1,

since a2 + 10a− 7 ≤ 0 if 0 ≤ a ≤ a∗ = −5 + 4
√
2. In the third inequality above we have

used the fact that 3m(2a− 3m) ≤ 3(2a− 3), i.e. 2a− 3m − 3 ≤ 0 for all m ≥ 1.
Finally, if m ≥ 2 and 0 ≤ a < rm ≤ (1

3
)m, then it follows from (4.1), Lemmas 2 and 3

that

If (z) ≤ a+
r (1− a2)

1− r
+

[

|ω(z)|
√
1− a2

√

1− |ω(z)|2

]2

≤ a+
r (1− a2)

1− r
+

r2m (1− a2)

1− r2m
=: Jm(a, r).
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We notice that Jm(a, r) is monotonically increasing with respect to r and thus, for 0 ≤
a < rm ≤ (1

3
)m, we obtain that

If(z) ≤ Jm(a, 1/3) = a +
1

2

(

1− a2
)

+

(

1
3

)2m
(1− a2)

1−
(

1
3

)2m

≤
(

1

3

)m

+
1

2
+

(

1
3

)2m

1−
(

1
3

)2m

≤ 1

9
+

1

2
+

1

80
< 1.

To show that the radius is optimal, we consider the functions ω and ϕa as in (4.4), and
set z = r for the first term in the definition of Iϕa

(z) and obtain that

Iϕa
(z) = a+

r (1− a2)

1− r
+

r2m (1− a2)
2

(1− arm)2
,

and the last expression easily delivers a proof of the sharpness part. The proof of Theorem
5 is complete. �
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