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Abstract
The COVID-19 lockdowns drastically reduced human activity, emulating a controlled experiment
on human–land–atmosphere coupling. Here, using a fusion of satellite and reanalysis products, we
examine this coupling through changes in the surface energy budget during the lockdown (1 April
to 15 May 2020) in the Indo-Gangetic Basin, one of the world’s most populated and polluted
regions. During the lockdown, the reduction (>10%) in columnar air pollution compared to a five
year baseline, expected to increase incoming solar radiation, was counteracted by a∼30%
enhancement in cloud cover, causing little change in available energy at the surface. More
importantly, the delay in winter crop harvesting during the lockdown increased surface vegetation
cover, causing almost half the regional cooling via evapotranspiration. Since this cooling was
higher for rural areas, the daytime surface urban heat island (SUHI) intensity increased (by
0.20–0.41 K) during a period of reduced human activity. Our study provides strong observational
evidence of the influence of agricultural activity on rural climate in this region and its indirect
impact on the SUHI intensity.

1. Introduction

Human-induced changes in the Earth’s surface cli-
mate have traditionally been difficult to constrain
[1, 2], particularly since these changes typically occur
at time scales similar to natural decadal perturba-
tions. In contrast, the COVID-19 lockdowns—the
restrictions placed by various governing bodies as
a response to the COVID-19 pandemic in 2020—
caused unprecedented slowdown in human activity
[3], were short in duration, and yet intense enough
to produce measurable effects. They can thus serve as
natural experiments on the anthropogenic control on
surface climate.

An ideal study area to explore the results of this
perturbation experiment is the Indo-Gangetic Basin
(IGB), one of the most densely populated regions
on the planet with high levels of air pollution [4].
Covering the majority of North India, the IGB has
a subtropical monsoon climate, and is a global hot

spot for land–atmosphere coupling [5]. From late
March to end of May, a countrywide lockdown was
imposed in India as a response to COVID-19. This
lockdown strictly restricted people’s movement out-
side their homes, suspended educational, industrial,
and hospitality services, and limited all transporta-
tion systems [6].

Being both heavily cultivated and rapidly urb-
anizing [7, 8], the IGB is strongly influenced by
anthropogenic changes in land use and land cover
[9, 10]. Human influence on surface climate is dis-
tinct for urban and rural areas. Urbanization mod-
ifies the biophysical properties of the surface due
to replacement of natural landscapes with built-up
structures. Consequently, cities are usually charac-
terized by higher temperatures compared to their
surroundings—the urban heat island (UHI) effect
[11]. The UHI is commonly calculated as the temper-
ature difference between the city and a non-standard
rural area around the city. Rural areas are influenced
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by land use and land management practices, which is
primarily due to agriculture in this region.

The reduction in atmospheric aerosols during the
lockdown (up to 45% reduction for some Indian
states) is well-documented [12] and, all else remain-
ing constant, would increase incoming surface radi-
ation. Since urban and rural areas may have differ-
ent levels of pollution, this radiative forcing change
can impact the UHI intensity [13, 14]. However, the
UHI, and surface climate in general, is also mod-
ulated by non-radiative pathways [15]. The lock-
down restrictions delayed crop harvesting [16], which
would allow the rural surfaces tomaintain high veget-
ation cover and can enhance latent heat flux (λE),
a non-radiative pathway of surface heat dissipation.
Previous studies have noted that the seasonality of
the UHI in this region is influenced by the vari-
ability in surface vegetation in the rural area [17,
18]. Agricultural influence on surface climate in this
region is not well-captured by land-surface models
due to inaccurate representation of vegetation prop-
erties and the poorly constrained influence of irriga-
tion on the hydrological cycle [10, 19]. Thus, beyond
the widely studied changes in atmospheric composi-
tion [20, 21], the lockdowns provide a unique oppor-
tunity to ask broader questions about human–land–
atmosphere interactions in the IGB. For example, the
role of these interactions in modulating the ensuing
South Asian monsoon circulations is critical to the
livelihood of over a billion people dependent on this
region [22].

Here, we examine the changes in the surface tem-
perature in the IGB during the lockdown with a focus
on the UHI, allowing us to separate human influ-
ence on urban and rural surface climate, particularly
due to air pollution and land use. First, using a suite
of satellite observations, we isolate changes in atmo-
spheric and surface properties over urban areas and
their rural periphery. Second, since satellite observa-
tions are restricted by the presence of clouds and do
not directly provide estimates of the surface energy
budget, we use a reanalysis dataset to gain a mechan-
istic understanding of the observed perturbations in
rural surface climate.

2. Materials andmethods

2.1. Urban–rural Delineations for region of interest
We only consider the Indian portion of the IGB
(figure S1(a); ∼50 000 km2 (available online at
stacks.iop.org/ERL/16/054060/mmedia)), to avoid
uncertainties arising from variations in lockdown
periods in other countries. An urban cluster database
was developed for this region by generating polygons
covering contiguous groups of high-density urban
pixels from the Global Human Settlement Index for
2015 [23]. The corresponding normalized rural refer-
ence (roughly equal to area of urban cluster) for each

of these clusters was created using an iterative buffer-
ing procedure with a step size of 300 m. Our meth-
odology generates 1420 urban–rural delineations for
the region.

2.2. Satellite observations
Multiple satellite-derived products were used to
extract urban–rural differentials in relevant vari-
ables (details in table 1), including land surface tem-
perature (LST) for calculating surface UHI (SUHI)
[24], reflectance data fromModerate Resolution Ima-
ging Spectroradiometer (MODIS) to estimate surface
vegetation [25], and metrics of air pollution, includ-
ing aerosol optical depth (AOD) from MODIS [26]
and individual pollutant estimates from the Sentinel-
5P TROPOspheric Monitoring Instrument (TRO-
POMI) sensor [27]. We also extract cloud fraction
(CF) from Sentinel-5P since clouds strongly affect
the radiative budget and can be higher over cities
[28]. Finally, the black-sky albedo (BSA) and white-
sky albedo (WSA), the reflectivity of the surface for
direct beam and diffuse radiation, respectively, were
extracted fromMODIS [29]. These can be combined
to derive total surface albedo (α; see section 2.3),
which is known to vary between urban and rural areas
[30]. Although theMODIS observations are daily, the
multi-day (see table 1) composites are used to reduce
cloud contamination [31].

The normalized difference vegetation index
(NDVI) is a proxy for green vegetation [33] and
used here to estimate the impact of the lockdown
on surface vegetation cover. We calculate NDVI from
the near infrared (NIR) and RED bands of the 8 day
composite MODIS surface reflectance product, avail-
able for 1 km× 1 km grids (table 1), as:

NDVI=
NIR−RED

NIR+RED
. (1)

The lockdown in India started from midnight 24
March and continued in a limited capacity till 7 June.
To remove the noise from the transition periods, we
considered 1 April to 15May 2020 to be the lockdown
case. The five year (2015–2019)mean of the data from
1 April to 15 May was treated as the baseline (only
1 April to 15 May 2019 for TROPOMI due to data
unavailability). Since the satellite observations are rel-
atively coarse (see table 1), only urban clusters with an
area of above 10 km2 were considered. This threshold,
along with cloud screening, leaves 382 clusters for
the MODIS and Sentinel-derived CF data (figure S2)
and 302 clusters for the Sentinel-derived air pollutant
data.

Urban and rural means of all the variables of
interest were extracted after regridding to 300 m
European Space Agency Climate Change Initiative
(ESA CCI) grids using the Google Earth Engine plat-
form [34]. The urban values were calculated as the
spatial means of all the urban pixels, as defined by
the ESA CCI land cover data [32], within an urban
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Table 1. Summary of satellite products used in the present study.

Satellite Time of Variable(s) Temporal Spatial
product interest of interest resolution resolution Reference

MODIS land surface
temperature (LST) product
(MYD11A2 v006)

2015–2020 Daytime and
nighttime LST
from Aqua

8 day 1000 m [24]

MODIS surface reflectance
product (MYD09A1 v006)

2015–2020 Reflectances in the
near-infrared and red
bands

8 day 500 m [25]

MODIS global
albedo (α) product
(MCD43A3 v006)

2015–2020 Black sky albedo
(BSA) and white sky
albedo (WSA)

16 day 500 m [29]

MODIS aerosol optical
depth (AOD) product
(MCD19A2.006)

2015–2020 AOD Daily 1000 m [26]

Sentinel-5P TROPOMI 2019–2020 Nitrogen dioxide
(NO2), sulfur dioxide
(SO2), ozone (O3),
carbon monoxide
(CO), formaldehyde
(HCHO), methane
(CH4), and cloud
fraction (CF)

2 day 1000 m (downscaled) [27]

European Space Agency
Climate Change Initiative
(ESA CCI) land cover data

2018 Land cover Yearly 300 m [32]

cluster. The corresponding rural values are the spa-
tial means of the non-urban, non-water pixels (from
the ESA data) in the rural references. The urban–
rural differential in LST is the SUHI, while for the
other variables, we use the subscript urb-rur. We also
calculate the averages of each variable (and their dif-
ferences) weighted by the urban cluster areas. Since
larger urban areas are known to have higher SUHI
intensity, area weighing gives us regional mean SUHI
(versus the urban cluster mean SUHI).

2.3. Reanalysis data
We used two reanalysis products—the European
Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis 5 (ERA5) [35], available at
0.25◦ × 0.25◦, and the Modern-Era Retrospective
analysis for Research and Applications, Version 2
(MERRA-2) [36], available at 0.5◦ × 0.625◦. The five
year (2015–2019) mean of the diffuse fraction (kd) of
the ERA5 reanalysis was used to calculateα from BSA
and WSA [37] using the equation:

α = kdWSA + (1− kd)BSA. (2)

For each case, the centroid of the urban and rural
polygons was located and kd was extracted for the
ERA5 grid containing it, similar to [38].

The MERRA-2 reanalysis assimilates bias-
corrected satellite observations of aerosols and
provides estimates of the aerosol direct radiative
effect, making it ideal for studying the impacts of
the COVID-19 lockdowns. Though MERRA-2 also
includes estimates of kd, inter-reanalysis evaluations
show that it significantly underestimates kd compared

to other products [39]. Thus, MERRA-2 data were
not used to calculate α. Instead, MERRA-2 was used
to get all-sky estimates of perturbations in the sur-
face and atmospheric variables (since satellites only
provide clear-sky estimates) and to diagnose reasons
for perturbations in the rural LST. The MERRA-2
variables were based on hourly data from 12:30 pm
to 2:30 pm local time, corresponding to the 1:30 pm
MODIS Aqua overpass.

2.4. Statistical analysis
To examine reasons for any potential SUHI change,
we considered the temporal changes (∆, variable
value during the lockdown minus value of the refer-
ence period) in AODurb-rur, NDVIurb-rur, αurb-rur, and
CFurb-rur as the predictors. For robustness, we used
two methods—linear regressions and random forest
(RF) regression. For the linear regressions, we con-
sidered each of these four predictors (∆AODurb-rur,
∆NDVIurb-rur, ∆αurb-rur, and ∆CFurb-rur) and all
their combinations and subsets. Since the relation-
ships between the predictors and ∆SUHI are not
necessarily linear, we also checked the consistency of
our results using RF regressions. RF regressions use
ensembles of decision trees to detect non-linear rela-
tionships and are less sensitive to outliers than para-
metric linear models [40]. For the RF regression, to
prevent overfitting, we trained the models using 70%
of the data and checked the model accuracy using
the remaining data. The training and accuracy assess-
ment were repeated 50 times with different random
splits of training and validation data [41]. The sig-
nal can be hard to separate from the noise in the
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satellite observations when examining small perturb-
ations. Thus, we also correlate the variables after bin-
ning the data into five percentile bins, assuming that
this noise is random and contributes to the unex-
plained variance within bins.

2.5. Intrinsic biophysical mechanism
Since the statistical analyses using satellite observa-
tions are primarily for hypothesis generation and
do not necessarily reveal the physical mechanisms
for the SUHI increase, we employed the theory of
Intrinsic Biophysical Mechanism (IBPM) [14, 15, 42,
43], implemented using theMERRA-2 variables [43],
to diagnose and quantify the reasons for the change
in the LSTrur in the region. Conceptually, the total
LST change (∆LST) due to a forcing agent is the sum
of the changes in the blending height temperature
(∆BHT), where the blending height is the height at
which surface heterogeneity has negligible impact on
atmospheric variables [44], and the local temperature
response (∆T):

∆LST = ∆T +∆BHT. (3)

∆BHT is the result of atmospheric factors while
∆T is the surface response to atmospheric forcing.
According to the IBPM theory, the local temperature
response is:

∆T=
λ0

1+ f
∆K↓ (1− a)+

λ0

1+ f
∆L

+
−λ0

(1+ f)2
(R∗

n −G)∆f1 +
−λ0

(1+ f)2

× (R∗
n −G)∆f2 +

λ0

1+ f
∆G. (4)

The terms on the right-hand side of equation (4),
from left to right, are the contributions to ∆T
from shortwave radiative forcing, longwave radiat-
ive forcing, energy redistribution through evapora-
tion, energy redistribution through convection, and
change in ground heat flux. Here,∆K↓ is the change
in incoming shortwave radiation, ∆L is the change
in absorbed longwave radiation,∆G is the change in
groundheat flux, andR∗

n is the apparent net radiation.
The intrinsic climate sensitivity is given by λ0, f is
the energy redistribution factor and ∆f1 and ∆f2 are
the changes in f due to evaporation and convection,
respectively. Check supplementary material for more
details.

3. Results

3.1. Changes in urban–Rural differentials during
lockdown
The daytime SUHI increased (non-weighted mean
from 0.23 K to 0.43 K; area-weighted mean from
0.56 K to 0.97 K) during the COVID-19 lock-
down period compared to the five year baseline
(figures 1 and S3), with 67% or 257 of the 382 urban

clusters showing an increase (figure S4). In contrast,
the nighttime ∆SUHI was statistically insignificant
(p-value > 0.01). Daytime LST decreased during the
lockdown (compared to baseline), though the mean
decrease over rural locations was greater (−1.96 K
non-weighted; −1.55 K weighted) compared to that
over urban regions (−1.76 K non-weighted;−1.14 K
weighted).

To explain this differential perturbation in day-
time LSTurb and LSTrur, we consider major atmo-
spheric (CF and AOD) and surface (NDVI and
α) factors that impact the SUHI. The air qual-
ity over both urban and rural locations improved
during the lockdown. This reduced air pollution is
evident from both MODIS-derived AOD (∼5%–6%
decrease; figures 2(a) and S5(a)) and individual
air pollutants measured by TROPOMI (∼14% and
∼19% decrease in urban NO2 and SO2, respectively;
figure S6). AOD decreases in roughly 67% of the
urban clusters (increasing in others) and for most
non-urban grids in the IGB (figure S7(a)). The small
magnitude of MODIS-derived AODurb-rur could be
due to the large contributions from natural dust
and biomass burning aerosols, as well as occurrence
of turbulently mixed deep boundary layers, in this
region during this period [45]. Moreover, there was
a surprisingly large (>36% for non-weighted; >43%
for weighted) increase in CF during the lockdown
(figures 2(d) and S5(d)), though some regions show
a decrease (figure S7(b)).

We find large (>12%) increases in NDVI dur-
ing the lockdown period. These increases are gen-
erally higher in rural references (13.3% or 0.043)
than in urban areas (12.8% or 0.038; figure 2(b)),
with ∆NDVIurb-rur being negative in ∼59% of the
urban clusters (figures S4(b), S7(a), and S8(a)). The
positive ∆NDVIrur (figure S8(b)) is consistent with
the impact of the lockdown on agricultural activity,
which is the predominant land use for ∼88% of this
area according to the ESA CCI data (figure S2(b)).
The lockdown overlapped with the harvesting sea-
son for rabi (winter) crops, which, together with the
drier conditions during this period, reduces surface
vegetation during regular years, as can be seen from
themoving average ofMODIS-derived 8 dayNDVIrur
in figure 3(c). The delay in harvesting activity [16]
may have temporally shifted this normal drop in
NDVIrur, contributing to surface greening compared
to the baseline (figure 3(c)). The∆NDVIrur is higher
than the inter-annual standard deviation of NDVIrur
during this period, also demonstrated by the largest
standardized anomalies of the year during the lock-
down. Most of IGB shows this surface greening, with
∆NDVIrur, ranging from −0.01 (5th percentile) to
0.11 (95th percentile), as well as a reduction in LSTrur

(figures 3(a) and (b)) from −4.3 K (5th percentile)
to 0.4 K (95th percentile), with the SUHI increasing
compared to baseline (figure 3(d)). Simultaneously,α
decreased in both urban (−2.6%) and rural (−2.9%)
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Figure 1. Perturbations to land surface temperature (LST) and surface urban heat island (SUHI) intensity. Sub-figures (a) and (b)
show the mean (not weighted by urban cluster area) land surface temperature (LST) and surface urban heat island (SUHI) for
urban clusters and their rural references for the baseline period, as well as their perturbed values during the lockdown period, for
daytime and nighttime, respectively. The values above the bars show the mean values (percentage change during lockdown period
for SUHI) and the error bars represent the 95% confidence interval of the mean. The changes shown here are summarized in table
S1. Sub-figure (c) shows a map of the urban clusters in the region of interest and the change in their spatial mean daytime SUHI
during the lockdown compared to the five year baseline.

areas (figures 2(c) and S5(c)). Paired two-sample
t-tests confirm that all the satellite-observed changes
in the variables, other than that for nighttime SUHI,
are statistically significant (p-value < 0.01). The 95%
confidence intervals for the mean of each variable are
in table S1.

3.2. Attribution of daytime SUHI enhancement
Previous studies have shown relationships between
AODurb-rur and SUHI [13, 14]. Here, we find almost
no associations between the perturbations in the two
during the lockdown period (figure 4(a); r2 = 0.02
for cluster; not statistically significant for binned).
Similarly, AODurb-rur and daytime SUHI are not well-
correlated during the baseline and lockdown periods
(figure S9(b); r2 ∼ 0). However,∆NDVIurb-rur shows
a relatively strong inverse relationship with ∆SUHI
(figure 4(b); r2 = 0.16 for cluster; 0.76 for binned).
Given the generally higher ∆NDVIrur, the pause in
human activity in the rural area may have contrib-
uted to the enhanced daytime SUHI. This impact of
urban–rural vegetation differentials on SUHI is con-
sistent with previous studies [46, 47] and is corrob-
orated by the relatively strong associations between
NDVIurb-rur and daytime SUHI for the two periods
(figure S9(a)). Although ∆αurb-rur shows a positive

relationship with ∆SUHI (r2 = 0.05 for cluster; 0.52
for binned), this relationship is not physically possible
in isolation, since a higher α implies lower absorp-
tion of solar insolation by the surface, and thus, lower
∆SUHI. Since α and NDVI are correlated (figure
S10), the positive relationship between∆αurb-rur and
∆SUHI may be a statistical artifact of the relat-
ively higher NDVIrur. Neither CFurb-rur and daytime
SUHI intensity, nor their perturbations from the
baseline to the lockdown, are correlated (figures 4(d)
and S9(c)).

We use multiple linear and RF regressions to
provide further statistical robustness to our find-
ings (table S2). In general,∆NDVIurb-rur explains the
largest portion of the variability in∆SUHI (adjusted
R2 = 0.15), followed by ∆αurb-rur, ∆AODurb-rur, and
CFurb-rur. The permutation importance scores from
the RF models also support the primary control of
∆NDVIurb-rur on∆SUHI (table S2).

The percentage changes in the atmospheric vari-
ables (AOD andCF) are higher over urban areas com-
pared to the rural areas during the lockdown period
and the surface properties (NDVI and α) change
more for rural areas (figures 2 and S5). Although
2020 was already wetter than regular years [18], a
further reduction in AOD over the study area may
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Figure 2. Changes in major surface and atmospheric factors. Sub-figures (a)–(d) show the mean (not weighted by urban cluster
area) aerosol optical depth (AOD), normalized difference vegetation index (NDVI), surface albedo (α), and cloud fraction (CF)
for urban clusters and their rural references for the baseline period, as well as their perturbed values during the lockdown. The
values above the bars show the mean values for the baseline period (2015–2019 baseline for everything other than CF; 2019
baseline for CF) and the percentage change from that value. The error bars represent the 95% confidence interval of the mean.
The changes shown here are summarized in table S1.

Figure 3. Regional changes in vegetation cover and land surface temperature (LST). Sub-figures (a) and (b) show maps of the
changes in rural normalized difference vegetation index (NDVIrur) and daytime rural land surface temperature (LSTrur) during
the lockdown compared to the five year baseline. Sub-figure (c) shows the seasonal change in NDVI for baseline years (2015–2019;
in red) and the year 2020 (in blue) over all rural pixels in the study area. The standardized anomaly of NDVIrur (the difference in
NDVIrur between the baseline and lockdown divided by the inter-annual standard deviation of NDVIrur) for each 8 day period is
shown in orange. The red shaded region shows the standard deviation of the baseline value across years, while the grey shaded
region shows the overall lockdown period. To reduce noise, the moving average of three points is used to compute the 2020 values.
Sub-figure (d) is similar to sub-figure (c), but for seasonal variability of daytime surface urban heat island (SUHI) intensity.

have perturbed the regional circulation and ther-
modynamics [48, 49], creating an environment con-
ducive to more cloud formation. It may also be
possible that the lower aerosol loading reduced the

cloud-burning effect [50], thus increasing CF. Finally,
the surface greening could also enhance CF [51].
We expect a greater decrease in AOD over urban
clusters to correspond to an increase in K↓, which
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Figure 4. Statistical examination of daytime surface urban heat island (SUHI) enhancement. Sub-figures (a)–(d) show the
correlations between daytime change in surface urban heat island (SUHI) (∆SUHI) during the lockdown compared to the five
year baseline and the respective change in urban–rural differential in aerosol optical depth (∆AODurb-rur), normalized difference
vegetation index (∆NDVIurb-rur), surface albedo (∆αurb-rur), and cloud fraction (∆CFurb-rur), respectively. Each data point for
the raw case (in orange) corresponds to an urban cluster. The lines of best fit are shown, and their corresponding equations (along
with their sample sizes and p-values) are annotated. Values that are outside the 1–99 percentiles of the change in the predictor
variables are considered outliers and not shown in these scatter plots. Correlations (in red) are also shown after binning every 5th
percentile of∆SUHI and the corresponding changes in the predictors. The vertical black lines show the standard deviation of
∆SUHI in each bin.

can enhance SUHI intensity. However, our statistical
analysis does not support this hypothesis. Instead,
the observed positive ∆SUHI is associated with the
higher vegetation cover over rural areas. This control
of vegetation cover on LST is further corroborated
by the negative correlations between LST and NDVI
for the urban and rural units (figure S11). The rel-
atively weaker correlations for the cluster-level data
in figure 4(b) compared to figures S9(a) and S11
(and previous studies [46, 47, 52]) is because we are
dealing with differences of differences in figure 4(b)
during a time of the year with low expected SUHI
intensities (figure 3(d)), making the signal hard to
isolate from the noise.

3.3. Perturbations to rural Background surface
climate
The lack of large-scale continuous observations of
meteorological variables in urban areas makes dia-
gnosing these patterns for all-sky conditions diffi-
cult using in-situ data. Instead, we use the MERRA-
2 reanalysis, which is observationally constrained

by ground-level measurements of surface meteoro-
logy and satellite measurements of columnar AOD,
and physically constrained by the model compon-
ents [36]. MERRA-2 primarily represents the rural
background since it does not incorporate urban land
cover. Since, as suggested by the satellite-derived
NDVI and α (figure 2), urban surfaces changed
less than rural surfaces during the lockdown, the
reanalysis data can be used to generate mechanistic
insights about the SUHI enhancement.

The MERRA-2 reanalysis captures the direc-
tion of the changes in the region during the lock-
down compared to satellite observations (table
S3). Although the midday aerosol direct radiative
effect in MERRA-2 decreases by almost 25% (from
−78.4 ± 12.6 W m−2 to −58.7 ± 13.3 W m−2) dur-
ing the lockdown, with the potential to increase K↓

by 19.8 ± 5.1 W m−2, we find an overall reduction
in K↓ (−10.5 ± 39.8 W m−2). This decrease in K↓ is
due to the compensating effect of increased cloudi-
ness during the lockdown, as well as the higher water
vapor content in the atmospheric column, as seen
from the higher near-surface relative humidity (table
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Figure 5. Contributions of different pathways to regional land surface temperature (LST) change. Sub-figure (a) shows
contributions of all pathways, namely shortwave radiative forcing, longwave radiative forcing, evaporation, convection, and
ground heat storage to the total calculated local temperature change (∆T) in the Indo-Gangetic Basin during the lockdown
compared to the five year baseline. The corresponding∆T,∆LST, and change in blending height temperature (∆BHT) in
MERRA-2 are also shown. The standard errors are displayed in all cases. Sub-figure (b) shows the correlations between the
MERRA-2 grid-averaged leaf are index (LAI) and the corresponding∆T from MERRA-2, the calculated∆T using the IBPM
framework, and the contributions to∆T through the evaporative pathway and convective pathways. Each data point corresponds
to a grid cell average. The lines of best fit are shown and the corresponding equations (including confidence bounds for the slopes
of the lines, sample sizes, and p-values) are annotated. Values that are outside the 1–99 percentile of the total diagnosed local
temperature change are considered outliers and not shown in the scatter plot.

S3). Overall, the total absorbed energy by the surface
decreases slightly (−10.4 ± 32 W m−2) during the
lockdown despite the negative∆AODrur.

Separating the contributions from both radiat-
ive and non-radiative pathways that can change LST
reveals large evaporative cooling (−1.79 ± 0.05 K)
during this period (figure 5(a)), which is expected
if vegetation cover increased. The diagnosed and
MERRA-2 calculated ∆T are similar in magnitude
(−1.29 K versus −1.22 K) and in spatial distribution
(figure 5(b)). MERRA-2 uses prescribed vegetation,
with identical leaf area index (LAI; regional
mean = ∼0.79) for the two periods. However, since
it is constrained by observed surface meteorology, it
captures the decrease in Bowen ratio—the ratio of
sensible heat flux (H) and λE—during midday (from
2.87 ± 3.02 for baseline to 1.24 ± 0.76 during the

lockdown; table S3), which is an expected impact
of surface greening. The higher precipitation, latent
heat, cloud cover, and relative humidity point to a
more intense hydrological cycle during the lockdown
compared to regular years (table S3).

The satellite-observed negative ∆NDVIurb-rur
suggests that the increase in evaporative cooling
during the lockdown was more for rural areas
compared to urban areas. This would be true even if
NDVIurb and NDVIrur had changed identically, since
urban areas are generally more moisture-limited.
Figure 5(b) shows the correlations of ∆T from
MERRA-2, the IBPM calculations, and contributions
due to evaporation and convection with LAI. The
negative correlations between LAI and ∆T demon-
strate a stronger cooling response during the lock-
down over more densely vegetated surfaces. Here,
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the lowest LAI grids represent relatively urbanized
areas. The increasing positive temperature response
through the convective pathway with LAI suggests
that this is a negative feedback to the evaporat-
ive cooling [53]. This convective feedback can be
understood either in terms of energy conservation or
through evaporation-induced near-surface stability.
A relative increase in λE under similar (or reduced)
available energy requires a corresponding decrease in
H. Alternatively, the additional evaporative cooling of
the surface compared to the blending height renders
the lower atmosphere relatively stable compared to
the baseline period, impeding the dissipation of avail-
able energy via H.

Overall, ∆T is almost a third of ∆LST, with the
other two-thirds attributable to atmospheric factors,
including AOD and CF (figure 5(a)). The IBPM res-
ults show that the sum of the evaporative cooling
and its convective feedback accounted for roughly
79% of the midday ∆T, while the evaporative cool-
ing alone accounted for roughly 46% of the corres-
ponding ∆LST (of −3.92 K). The land contribu-
tion to ∆LST found here is probably a lower bound
estimate since there is strong coupling between the
land and the atmosphere. For instance, enhanced
surface evaporation due to the increase in veget-
ation cover would also increase low level cloudi-
ness through condensation feedback [54], lowering
both BHT and LST. A similar theoretical diagnosis
is not possible for the urban surfaces explicitly since
the MERRA-2 land cover dataset does not consider
urban areas. Nonetheless, these results can explain
the SUHI increase, as the implicit assumption is that
the surface characteristics of the rural areas changed
more than those of the urban areas during the lock-
down period, which is reasonable given the time
scale.

4. Discussion and conclusions

The UHI effect is traditionally viewed as an out-
come of the replacement of the natural landscape by
built-up structures. The consequences of this land
cover change are simpler to define in the abstract
than to measure in practice. While cities modify their
local climate as they expand, the UHI intensity is
usually quantified through space-for-time substitu-
tion using snapshot measurements in the urban area
and for some rural reference. For the SUHI, how
to define this rural reference remains a contentious
issue [46, 55–57]. Generally, the urban–rural delin-
eations are more clearly constructed for less sprawl-
ing cities with very little land management surround-
ing the city centers. Here, we show an example of a
region of the world with high human intervention in
both urban and rural areas, the interruption of which
leads to the seemingly counter-intuitive enhance-
ment of the SUHI during a period of low human

activity. Thus, the COVID-19 lockdown period illus-
trates the importance of the rural reference on the
SUHI intensity, as estimated using a traditional
buffer-based method, during a perturbation scen-
ario, the relevance of which has previously only been
examined for the mean climate state in this region
[17, 18, 58].

Our results can help contextualize a larger cur-
rent discussion in the urban climate community
on the utility of the UHI as a metric to examine
urban public health [59–61]. The UHI intensity is
the impact of urbanization on local temperature
[62]. However, urban heat stress is dependent on
the absolute temperature, or more accurately, a com-
bination of temperature, humidity, and other factors
[63]. As such, the relevance of UHI for urban public
health can bemisleading during certain times because
enhancement in UHI intensity does not necessar-
ily imply similar enhancement in heat stress (or
even temperature) in urban areas. In agreement [64],
argues that mitigating the UHI should not be the
goal when addressing the public health consequences
of urbanization. In theory, one can reduce the UHI
intensity by increasing the rural temperature, which
does not change the potential heat stress in the urban
area. Here, we see something similar occurring, with
the SUHI increasing due to rural areas cooling down
more than the urban core between the baseline and
the lockdown periods, rather than due to an increase
in urban temperature. However, this is only the tem-
poral perspective. From the spatial perspective, it is
also true that residents moving from rural to urban
regions in the IGB were exposed to higher temper-
atures than they would have had they remained in
rural areas. This separation of the temporal and spa-
tial perspectives is critical to reconciling the debate
in the community. The criticisms of UHI as a metric
primarily pertain to the total impact of temperature
on human health in urban areas. In contrast, since the
UHI is an abstract isolation of the contribution to that
temperature from urbanization, it remains theoretic-
ally important, assuming we establish a more consist-
ent definition of the rural reference to facilitate accur-
ate inter-urban and inter-study comparisons.

Lastly, our finding demonstrates the importance
of human–land–atmosphere coupling on the regional
climate over South Asia as a whole. Agricultural prac-
tices in this region strongly control the vegetation
phenology of the croplands, modulating how energy
is partitioned and dissipated from the surface through
non-radiative means (figure 3(c)). As seen here, the
importance of these non-radiative components on
the LST is apparent, even when input energy to the
system is relatively stable, providing large-scale obser-
vational evidence of previously modeled results [54].
Over 88% of the landmass in North India is agri-
cultural (figure S1(b)). Therefore, an increase in sur-
face vegetation due to agriculture can lead to large
regional cooling, modify cloud formation, and lower

9



Environ. Res. Lett. 16 (2021) 054060 T C Chakraborty et al

tropospheric stability. Moreover, enhanced evaporat-
ive cooling over the Indian landmass during themon-
soon onset period (as seen here) can also perturb the
land–sea thermal gradient—a major driver of mon-
soonal wind circulation [65]. Our study puts forth
important observational evidence of human-induced
control on surface climate, which strengthens the
need for the ongoing efforts to explicitly include these
in earth system models to better predict long-term
climate change [66, 67]. For the UHI, the inclusion
of human dynamics can help constrain its future
estimates, since urban and rural areas are expected to
change differently in future scenarios [68].

Although our two-pronged approach using satel-
lite observations and reanalysis product demonstrates
the consistency of these perturbations, a few uncer-
tainties remain. First, since 2020 was wetter than
the baseline years (table S3), the NDVI perturba-
tions seen during lockdown may not have been solely
due to the well-documented delay in harvesting in
this region [16]. The lockdown-induced anthropo-
genic pause could influence the natural variability,
cloud cover, and rainfall [69, 70], and in turn also
affect the NDVI/LST. Regardless, the large, stand-
ardized anomaly in NDVIrur during the lockdown,
seen in figure 3(c), strongly suggests that the lock-
down played a role. The higher∆NDVIrur (compared
to ∆NDVIurb) and ∆SUHI is also see when using
18 year (2003–2019) baseline from MODIS Aqua
measurements (figures S12(a) and (b)). Moreover,
NDVI differences are seen at urban-to-urban peri-
phery scale (5–30 km), which is much smaller than
the inherent spatial scale of the anticipated natural
variability. Second, since the perturbations are small
in magnitude, sensor noise could account for some
of the variability. Our results are qualitatively replic-
ated when we calculate the relevant variables from
the MODIS Terra satellite (figures S12(c) and (d)),
which has a different sensor and equatorial over-
pass time (∼10:30 am), indicating that the perturb-
ations are robust and cannot be just random noise
from one sensor. Third, since our study deals with
regional changes using coarse satellite observations,
we neither fully examine the perturbations for indi-
vidual urban clusters, which can vary from the mean
changes (figures S4(a) and (b)), nor characterize
intra-urban distributions. Some of these limitations
can be addressedwith the development of better para-
meterized models for this region with explicit irriga-
tion schemes, which can clearly isolate the impact of
the agricultural cycle on regional climate.
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