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As quantum technologies move from the issues of principle to those of practice, it is important to understand

the limitations on attaining tangible quantum advantages. In the realm of quantum communication, quantum

discord captures the damaging effects of a decoherent environment. This is a consequence of quantum discord

quantifying the advantage of quantum coherence in quantum communication. This establishes quantum discord

as a resource for quantum communication processes. We discuss this progress, which derives a quantitative

relation between the yield of the fully quantum Slepian-Wolf protocol in the presence of noise and the quantum

discord of the state involved. The significance of quantum discord in noisy versions of teleportation, super-dense

coding, entanglement distillation and quantum state merging are discussed. These results lead to open questions

regarding the tradeoff between quantum entanglement and discord in choosing the optimal quantum states for

attaining palpable quantum advantages in noisy quantum protocols.
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I. INTRODUCTION

Quantum information science has shown that the devices

and protocols governed by the laws of quantum mechanics

can have information processing capabilities superior to their

classical counterparts. It has shed light on what properties of

quantum systems could be harnessed for building future tech-

nology and engineering applications. The role of information,

quantified via measures of correlations such as entanglement

between sub-systems, provides vital clues to the superior in-

formation processing capabilities of devices based on quan-

tum mechanics. As emphasized by Landauer[1, 2], informa-

tion is physical and indicates that the information processing

capabilities of a device are not independent of the physics that

governs its operation.

At a more fundamental level, understanding how physical

systems process and exchange information is crucial to gain-

ing insights into the workings of our universe. For exam-

ple, the connections between entropy, information and ther-

modynamics form the cornerstone of statistical mechanics. A

relevant example is Feynman’s path-integral formulation of

non-relativistic quantum mechanics. In this approach, physi-

cal phenomena are described by events. An event can occur

through various alternatives or paths, each of which is charac-

terized by a complex probability amplitude, that has both real

and imaginary components in general. If these paths are in

principle indistinguishable, i.e. there is no information what-

soever in the universe that can help us distinguish them, then

the corresponding probability amplitudes add up causing in-

terference. A canonical instance is the two-slit experiment.

As long as there is no information available as to which slit

the photon takes, we see interference fringes on the screen.
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The photon is considered to be in a superposition of two wave

packets, centered around the classical path out of each slit.

The question as to why the universe cares about which “path”

the photon takes is both philosophical and intriguing. It cer-

tainly tells us that the universe cares about certain kinds of

information or the lack of it in formulating its laws.

Quantum information science has added a whole new per-

spective to the study of quantum mechanics. This has resulted

in a better understanding of quantum phenomena like the en-

tanglement and decoherence, and given us the tools to view

certain quantum properties of physical systems as a resource.

In this spirit, this article is devoted to the study of the nature

of quantum correlations themselves in the light of quantum

information. Quantum correlations are believed to be at the

heart of the weirdness of quantum mechanics since the days

of Einstein[3], and the resource for the potential benefits quan-

tum information processing might provide. Computational

algorithms and communication protocols based on quantum

mechanics that accomplish tasks more efficiently than the best

known classical methods are scenarios where such benefits

can be reaped. Instances include quantum algorithms for inte-

ger factorization[4, 5] and searching an unsorted database[6].

The advantages in quantum cryptography enable communica-

tion with guaranteed security against eavesdropping[7].

One of the simplest yet most intriguing primitives in

quantum information theory is quantum teleportation, or

entanglement-assisted teleportation[8]. It is the process by

which an unknown quantum state can be transmitted from

one location to another, without the state being transmitted

through the intervening space. Expressing teleportation as a

resource inequality

[qq] + 2[c→ c] � [q → q], (1)

shows that a shared ebit and 2 bits of classical communication

to communicate a single unknown quantum bit. Here, we in-

troduce the notation used in the resource theory of quantum
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communication protocols[9]. [q → q] represents one qubit of

communication between two parties and [qq] represents one

shared ebit between two parties. Similarly, [c → c] repre-

sents one classical bit of communication between the parties.

To communicate an unknown quantum bit by a classical pro-

cedure will take exponentially large amount of resources as

compared to teleportation.

Another simple protocol which shows the advantage of

quantum communications is the super-dense coding[8]. Ex-

pressing it as a resource inequality[9],

[qq] + [q → q] � 2[c→ c], (2)

showing that one can employ a shared ebit and a single bit of

quantum communication to communicate 2 bits of classical

information. Thus, complete classical information about two

particles can be sent by direct manipulation of just one par-

ticle by the sender. The success of both these protocols rely

on pre-existing shared entanglement. Without entanglement,

it is impossible to execute either teleportation and the super-

dense coding. However, quantum entanglement does not fully

capture the quantum character of a system. There are several

other possible resources to which quantum advantages are of-

ten ascribed. These include

1. size of Hilbert Space: The dimension of a quantum sys-

tem of n d-dimensional particles scales as nd. This is a

consequence of the tensor product structure of quantum

mechanics.

2. superpositions: A quantum state can exist in an ar-

bitrary complex linear combination of classical logic

states. A classic example is the “cat state”, named after

Schrödinger.

|ψcat〉 =
|Alive〉+ |Dead〉√

2
. (3)

In a quantum process, both the ‘basis’ states evolve in

parallel according to a given unitary evolution.

3. interference: The quantum wave functions undergo in-

terference, and different paths are explored in parallel

in search of the solution and the probability amplitude

of the path leading to the right solution gradually builds

up.

4. indistinguishability of quantum states: Non-orthogonal

quantum states cannot be unambiguously distinguished.

Moreover, obtaining information about an unknown

quantum state can cause disturbance and actually

change it. This feature is exploited in designing crypto-

graphic protocols.

Yet, these do not comprise the whole story. Although en-

tanglement is still generally believed to the resource of choice,

in recent years there has been some progress in quantifying

the quantum character of composite quantum systems using

measures that go beyond entanglement. Quantum discord

has been suggested as a prospective candidate and aims to

captures all the quantum correlations in a quantum state[10].

There is a considerable interest in the research community

about quantum discord, following evidence that it is responsi-

ble for the exponential speed up of a certain class of quantum

algorithms over classical ones[11, 12].

An important question is whether quantum discord is

merely a mathematical construct or does it have a definable

physical role in information processing. It is known that there

is a link between quantum discord and an actual physical task

involving quantum communication between two parties – an

operational interpretation of quantum discord based on the

quantum state merging protocol[13, 14]. Quantum discord is

the markup in the cost of quantum communication in the pro-

cess of quantum state merging, if one discards relevant prior

information. A subsequent question regards the role of quan-

tum discord in quantum information theory as a whole be-

yond the state merging protocol. We provide the answer to

this question within the domain of quantum communication.

For details on the properties of quantum discord, and its role

in quantum computation, the reader is invited to several recent

review articles[15–17].

The key insight to the findings discussed here is that quan-

tum measurements and environmental decoherence disturb a

quantum system in a way that is unique to quantum theory.

Quantum correlations in a bipartite system are precisely the

ones that are destroyed by such disturbances, and therefore

quantum communication protocols become overloaded by an

amount exactly equal to quantum discord. More specifically,

discord is the markup in the cost of quantum communication

in the process of quantum state merging[18, 19], if the system

undergoes measurement and/or decoherence. We observe that

quantum state merging protocol is a derivative of the more

general fully quantum Slepian-Wolf (FQSW) protocol[20]

and the closely related “mother” protocol. A link between

quantum discord and state merging can be generalised to a

connection between quantum discord and the mother protocol

and role of discord in essentially all bipartite, unidirectional

and memoryless quantum communication protocols.

This is made possible by comparing the performance of

the fully quantum Slepian-Wolf protocol in the presence and

absence of decoherence and linking it to the discord of the

state involved. While decoherence is expected to diminish the

gain provided by a quantum protocol, we provide, for the first

time, a general lower bound on the amount of this deterio-

ration. Our bound is only dependent on the state involved,

independent of the details of the protocol as well as the na-

ture of the decoherence. Within the resource framework of

quantum Shannon theory[9, 21], we couple the performance

of the FQSW protocol to the most general environmental de-

coherence to show that quantum discord of the state partici-

pating in the protocol is the lower bound to the depreciation

of the protocol’s performance. The FQSW protocol - a quan-

tum communication-assisted entanglement distillation proto-

col - is the parent protocol from which all information pro-

cessing protocols emanate[20]. This protocol is the most gen-

eral known in the family of protocols in quantum information

theory. The significance of quantum discord in noisy versions

of teleportation, super-dense coding, entanglement distillation

and quantum state merging are discussed. We also demon-
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strate similar roles for quantum discord in quantum compu-

tation and correlation erasure. Our work shows that quantum

discord captures and quantifies the advantage of quantum co-

herence in quantum communication. The generality of the

FQSW protocol allows us to establish the role of quantum

discord in the performance of noisy versions of quantum tele-

portation, super-dense coding, and distillation[22].

Although it is known that entanglement is often necessary

for the success of quantum protocols, and that the presence of

decoherence affects its performance, we have now provided a

quantitative result of the amount of such a depreciation. We

show that the amount by which a protocol suffers in the pres-

ence of decoherence is an inherent property of the quantum

states involved. It suggests that the choice of the best state

for any noisy quantum protocol must be a tradeoff between

the entanglement and discord of the state involved. Given the

non-monotonic relation between quantum discord and entan-

glement in quantum states[23–25], choosing the optimal state

for a quantum task is a non-trivial one, though for which we

now have the proper certificate.

II. CLASSICAL AND QUANTUM COMMUNICATION

Shannon provided the mathematical theory of commu-

nication, laying the foundation of classical information

theory[26]. During the latter half of the previous century, this

led to enormous progress in understanding the key resources

and issues surrounding communication and information tech-

nology. The central concept in classical information theory

is the Shannon entropy, a measure of the uncertainty associ-

ated with a random variable. It quantifies the expected value

of the information contained in a message, usually in the unit

of bits. A ‘message’ is a specific realization of the random

variable, whose symbols or alphabets appear with probabili-

ties {p(1), p(2), ..., p(i)...}. The Shannon entropy H associ-

ated with such a probability distribution is

H = −
∑

i

p(i) log p(i). (4)

This entropy is related to the physical resources required

to solve certain information processing tasks. For example,

Shannon’s source coding theorem says the entropy represents

an absolute limit on the best possible lossless compression of

any source of information. This operational interpretation of

Shannon entropy in terms of lossless data compression is the

cornerstone of classical information theory. Classical infor-

mation theory also sheds light on the nature of correlations be-

tween two information sources, or, the input and the output of

a channel and how they determine the rate at which messages

can be exchanged securely. Shannon’s noisy channel coding

theorem states that the capacity of a channel is given by the

maximum of the mutual information between the input and

output of the channel, where the maximization is with respect

to the input distribution. Another example pertinent to us is

the Slepian-Wolf theorem[27]. For that, consider a party Bob

having access to some incomplete information about a random

variable Y, and another party Alice having the missing partX.

If Bob wishes to learn X fully, how much information must

Alice send to him ? Evidently, she can send H(X) bits to sat-

isfy Bob. However, Slepian and Wolf showed that she can do

better, by merely sendingH(X |Y ) = H(X,Y )−H(Y ) bits,

the conditional information[26]. Since H(X |Y ) ≤ H(X),
Alice can take advantage of correlations between X and Y
to reduce the communication cost needed to accomplish the

given task.

Quantum states can also be used for information processing

and communication. In such cases, questions related to chan-

nel capacities, existence of a reliable compression scheme etc.

about those quantum states become relevant. For example,

Schumacher’s quantum source coding theorem[8] says that if

R ≥ S(ρ), then there exists a reliable compression scheme of

rateR for an independent and identically distributed source of

ρ. If R ≤ S(ρ) then no compression scheme of rate R is reli-

able. Here S(ρ) is the von Neumann entropy of the quantum

state ρ. Another example which is useful to us is the quantum

state merging protocol which is the extension of the classical

Slepian-Wolf protocol into the quantum domain where Alice

and Bob share the quantum state ρ⊗n
AB , with each party having

the marginal density operators ρ⊗n
A and ρ⊗n

B respectively. Let

|ΨABC〉 be a purification of ρAB. Assume, without loss of

generality, that Bob holds C. The quantum state merging pro-

tocol quantifies the minimum amount of quantum information

which Alice must send to Bob so that he ends up with a state

arbitrarily close to |Ψ〉⊗n
B′BC , B

′ being a register at Bob’s end

to store the qubits received from Alice. It was shown that in

the limit of n → ∞, and asymptotically vanishing errors, the

answer is given by the quantum conditional entropy[18, 19]

S(A|B) = S(A,B)− S(B). When S(A|B) is negative, Bob

obtains the full state with just local operations and classical

communication, and distill −S(A|B) ebits with Alice, which

can be used to transfer additional quantum information in the

future.

After realizing that quantum states can be used for infor-

mation theoretic tasks, the next question is whether the con-

ceptual breakthroughs promised by quantum communication

can be palpably harnessed. In other words, what features of

quantum mechanics can be used to give us information pro-

cessing capabilities and communication protocols that are far

superior to their classical counterparts. We discuss both these

questions in the next section in terms of quantum discord.

III. QUANTUM DISCORD

Characterizing the resources behind the enhancements and

speedups provided by quantum mechanics over best known

classical procedures is one of the most fundamental questions

in quantum information science. Quantum entanglement[28]

is generally seen to be the key resource that gives quan-

tum information processors their power. There are, how-

ever, quantum processes which provide an exponential advan-

tage in the presence of little or no entanglement[29, 30]. In

the realm of mixed-state quantum computation, for example,

quantum discord[10, 31] has been proposed as a resource[12]

and there has been progress in this direction since[16, 32–
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34]. It has also been shown to be a resource in quantum state

discrimination[35, 36] and quantum locking[37, 38].

Quantum discord aims at generalizing the notion of quan-

tum correlations in a quantum state, beyond entanglement[10,

31]. It aims to capture all the nonclassical correlations in a

quantum system. Quantum measurements disturb a quantum

system in a way that is unique to quantum theory. Quantum

correlations in a bipartite system are precisely the ones that are

destroyed by such disturbances. As we discuss below, this fea-

ture of quantum systems can be used to quantify the amount

of purely quantum correlations present in a bipartite quantum

system.

Quantum mutual information is generally taken to be the

measure of total correlations, classical and quantum, in a

quantum state. For two systems, A and B, it is defined

as I(A : B) = S(A) + S(B) − S(A,B). Here S(·) de-

notes the von Neumann entropy of the appropriate distri-

bution. For a classical probability distribution, Bayes’ rule

leads to an equivalent definition of the mutual information as

I(A : B) = S(A) − S(A|B). This motivates a definition of

classical correlation in a quantum state.

Suppose Alice and Bob share a quantum state ρAB ∈ HA⊗
HB. If Bob performs a measurement specified by the POVM

set {Πi}, the resulting state is given by the shared ensemble

{pi, ρA|i}, where

ρA|i = TrB(ΠiρAB)/pi, pi = TrA,B(ΠiρAB).

A quantum analogue of the conditional entropy can then be

defined as S̃{Πi}(A|B) ≡ ∑

i piS(ρA|i), and an alternative

version of the quantum mutual information can now be de-

fined as J{Πi}(ρAB) = S(ρA) − S̃{Πi}(A|B), where S(·)
denotes the von Neumann entropy of the relevant state. The

above quantity depends on the chosen set of measurements

{Πi}. To capture all the classical correlations present in ρAB,
we maximize J{Πi}(ρAB) over all {Πi}, arriving at a mea-

surement independent quantity

J (ρAB) = max
{Πi}

(S(ρA)− S̃{Πi}(A|B)). (5)

Then, quantum discord is defined as[10]

D(ρAB) = I(ρAB)− J (ρAB)

= S(ρB)− S(ρAB) + min
{Πi}

S̃{Πi}(A|B)

= min
{Πi}

S̃{Πi}(A|B) − S(A|B). (6)

The minimization can be restricted to rank-1 operators by sup-

posing a POVM on B can be fine-grained into

Πi =
∑

k

Πik.

Then

pikρA|ik = TrB(ρABΠik), pik = Tr (ρABΠik).

Evidently,
∑

k pik = pi whereby we can define pk|i = pik/pi.

Also,

ρA|i = TrB(ρABΠi)/pi =
∑

k

pik
pi

TrB(ρABΠik)/pik

=
∑

k

pk|iρA|ik, (7)

and,

∑

j

pjS(ρA|j) =
∑

i

piS

(

∑

k

pk|iρA|ik

)

≥
∑

i,k

pipk|iS(ρA|ik)

=
∑

i,k

pikS(ρA|ik). (8)

Since any POVM element can be written in terms of its eigen-

decomposition, the minimum conditional entropy, and there-

fore the discord is always attained on a rank-1 POVM.

For information theoretic considerations, the asymptotic

limit needs to be studied. When Alice and Bob share n copies

of the state ρAB, we can define a regularized version of quan-

tum discord as

D(ρAB) = lim
n→∞

D(ρ⊗n
AB)

n
(9)

≡ I(ρAB)− J (ρAB),

where

J (ρAB) = lim
n→∞

J (ρ⊗n
AB)

n
. (10)

The quantity J (ρAB) has an operational interpretation

as a measure of classical correlations, as the distill-

able common randomness (DCR) with one-way classical

communication[39], which is identical to the regularized ver-

sion of the measure of classical correlations as defined by

Henderson and Vedral[31]. Using the monogamy between

DCR and the entanglement costEC , the regularized version of

the entanglement of formation [28, 40], it has been shown that

quantum discord is subadditive[13]. Thus, the operational and

other interpretations of quantum discord based on multicopy

quantum protocols only provide a lower bound. Interestingly,

for separable states, quantum discord is additive. This follows

from the trivial additivity of EC for separable states.

IV. THE MOTHER PROTOCOL AND THE QUANTUM
INFORMATION FAMILY TREE

Abeyesinghe et al. showed that essentially all unidirec-

tional, bipartite and memoryless quantum communication

protocols are actually siblings originating from one “mother”.

The mother protocol can be seen to provide a hierarchical

structure to the family of quantum protocols[20].

The mother protocol starts with n copies of a quantum state

|ψABR〉. Alice holds the A shares and Bob the B shares. The

reference systemR is “purification” of theAB system (which
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might be described by a mixed state) and does not actively par-

ticipate in the protocol. The mother protocol can be viewed as

an entanglement distillation between A and B when the only

type of communication permitted is the ability to send qubits

from Alice to Bob. The transformation can be expressed in

the resource inequality as

〈ψAB〉+ 1

2
I(A : R)[q → q] ≥ 1

2
I(A : B)[qq]. (11)

Here, |ψAB〉 refers to the state shared between Alice and Bob

whose purification is the state |ψABR〉. The above inequality

states that n copies of the state |ψAB〉 can be converted to
1

2
I(A : B) EPR pairs per copy, provided Alice is allowed

to communicate with Bob by sending him qubits at the rate
1

2
I(A : R) per copy.

A stronger version of the mother protocol, the FQSW pro-

tocol not only enables the two parties, Alice (A) and Bob (B),

to distill 1

2
I(A : B) EPR pairs per copy, in addition Alice can

“merge” her state with Bob. This implies that Alice is able

to successfully transfer her entanglement with the reference

system R to Bob. Writing the FQSW in terms of a resource

inequality

〈ψAB〉+ 1

2
I(A : R)[q → q] ≥ 1

2
I(A : B)[qq]

+State Merging between A and B (12)

In a more rigorous mathematical notation, we write the above

as

〈US→AB : ψS〉+ 1

2
I(A : R)[q → q] ≥ 1

2
I(A : B)[qq]

+ 〈IS→B̂ : ψS〉,(13)

where we have a noisy resource mixed state, ψS inserted be-

tween a “〈·〉”. Thus a mixed state is represented by 〈ψS〉,
and a noisy channel by 〈N〉. A channel is a relative resource

〈US→AB : ψS〉 meaning that the protocol only works pro-

vided the input to the channel is the state ψS . On the LHS, U
takes the state ψS and distributes it to Alice and Bob. On the

RHS, the symbol I is an identity channel taking the state ψS to

Bob alone. The state ψS on the left-hand side of the inequality

is distributed to Alice and Bob, while on the right-hand side,

that same state is given to Bob alone. This inequality states

that starting from the state |(ψABR)⊗n〉, and using 1

2
I(A : R)

bits of quantum communication from Alice to Bob, they can

distill 1

2
I(A : B) EPR pairs per copy, and in addition Alice

can accomplish merging her state with Bob, in which she is

able to successfully transfer her entanglement with the refer-

ence system R to Bob. This means that Alice transfers her

portion of the state to Bob. In other words, they manage to

create the state |(ψRB̂)⊗n〉, where B̂ is a register held with B

and |(ψRB̂)〉 = |(ψABR)〉 in the limit n → ∞. Finally, the

asymptotic nature of the equivalence is denoted by the symbol

≥.

V. QUANTUM DISCORD AS A MEASURE OF
COHERENCE IN THE FQSW PROTOCOL

The FQSW is essentially a non-dissipative protocol in that

no information is leaked to the environment in each step of

the protocol, but any practical implementation of a quantum

information protocol will be affected by loss and noise. In

particular, we will consider loss of information and coherence

at Bob’s end. This can be studied by considering a unitary

coupling between Bob’s system B and an ancillary environ-

ment system, say C, and then tracing C out. Physically, such

a quantum operation will emulate environmental decoherence.

We begin by expanding the size of the Hilbert space so that

an arbitrary measurement (or any other quantum operation)

can be modeled by coupling to the auxiliary subsystem and

then discarding it. We assume the ancilla C to initially be in a

pure state |0〉, and a unitary interaction U between B and C.

Letting primes denote the state of the system after U has acted

we have S(A,B) = S(A′, B′C′) as C starts out in a product

state with AB. We also have I(A : BC) = I(A′ : B′C′).
As discarding quantum systems cannot increase the mutual

information, we get I(A′ : B′) ≤ I(A′ : B′C′).
Now consider the FQSW protocol between A and B in the

presence of C. We can always view the yield of the FQSW

protocol on the system AB to be the same as that of perform-

ing the protocol between systemsA andBC, whereC is some

ancilla (initially in a pure state) with which B interacts coher-

ently through a unitary U . Such an operation does not change

the cost or yield of the FQSW protocol, as shown, but helps

us in counting resources. Discarding system C yields

I(A′ : B′) ≤ I(A′ : B′C′) = I(A : BC) = I(A : B),
(14)

or alternatively,

S(A′|B′) ≥ S(A′|B′C′) = S(A|B). (15)

Now consider a protocol which we call as FQSWDB

(FQSW after decoherence), where the subscript refers to the

decoherence at B. The resource inequality for FQSWDB is

〈US′→A′B′

: ψS′〉+ 1

2
I(A′ : R′)[q → q] ≥ 1

2
I(A′ : B′)[qq]

+〈IS′→B̂ : ψS′〉.
The primed letters, A′, B′ etc., indicate that the protocol is

taking place in the presence of decoherence at Bob’s end.

As in the fully coherent version, Alice is able to transfer

her entanglement with the reference system R′, and is able

to distill 1

2
I(A′ : B′) EPR pairs ([qq]) with Bob. The net

quantum gain for the fully coherent protocol is G = 1

2
I(A :

B)− 1

2
I(A : R) = −S(A|B) ebits. This is the difference be-

tween the yield obtained and the cost of quantum communica-

tion incurred. Likewise, the net gain for the protocol suffering

decoherence at B is GD = 1

2
I(A′ : B′) − 1

2
I(A′ : R′) =

−S(A′|B′). Therefore, the net advantage of the coherent pro-

tocol over the decohered one is given by D = G − GD =
S(A′|B′) − S(A|B) ebits. Evidently, this quantum advan-

tage depends on the exact nature of the environment and the
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system’s interaction with it via U. Employing the original def-

inition of quantum discord due to Zurek[41] (Zurek’s origi-

nal definition of discord did not consider optimizing over all

measurements), D quantifies the loss in the yield of a quan-

tum protocol due to environmental decoherence. Our results

therefore provide a standard way of quantifying, in entropy

units, the damage to the performance of quantum process and

protocols in the presence of any decoherence process in any

experimental scenario.

The strength of our result, however, comes from the next

step of minimizing D over all environmental operations per-

forming measurements. Using the measurement model of

quantum operations[8], the state ρAB under measurement of

subsystem B, changes to ρ′AB =
∑

j pjρA|j ⊗ πj , where

{πj} are orthogonal projectors resulting from a Neumark ex-

tension of the POVM elements[42]. The unconditioned post-

measurement states of A and B are

ρ′A =
∑

j

pjρA|j = ρA, ρ′B =
∑

j

pjπj . (16)

Invoking these relations, we get

S(A′|B′) =
∑

j

pjS(ρA|j). (17)

After minimization over all POVMs, D reduces to D(A : B)
as defined in Eq. (6). Quantum discord thus quantifies the

minimum loss in yield of the FQSW protocol due to decoher-

ence. This is our main result, and shows that the performance

of all the protocols in the quantum information family tree

must be judged by the quantum discord. The connection be-

tween quantum discord and the FQSW protocol provides a

metric for studying the advantage of coherence in accomplish-

ing any of the children protocols that can be derived from the

FQSW protocol. For example, we look at the noisy versions

of quantum teleportation, super-dense coding, and entangle-

ment distillation.

The connection we have made here is crucial. While it

is known that entanglement is necessary for the success of

the protocol, and that the presence of decoherence affects its

performance, we have now provided a quantitative result of

the amount of such a depreciation. We have shown that the

amount by which a protocol suffers in the presence of de-

coherence is an inherent property of the quantum states in-

volved. It suggests that the best state to be employed in a noisy

quantum communication protocol should be the outcome of

a tradeoff between the entanglement and discord of the state

involved, since the variation of discord and entanglement in

quantum states in not monotonic[23–25]. In the next section,

we demonstrate the versatility of this result by applying it to

some well-known quantum protocols.

VI. QUANTUM DISCORD IN THE CHILDREN
PROTOCOLS

The connection between quantum discord and the FQSW

protocol provides a metric for studying the effect of coherence

in accomplishing any of the so called “children protocols” that

can be derived from the FQSW protocol. In this section, we

show that by connecting quantum discord with the FQSW pro-

tocol, we can interpret discord as the advantage of quantum

coherence in noisy versions of teleportation, super-dense cod-

ing, and entanglement distillation. Finally, we reproduce an

earlier result on the connection of quantum discord and quan-

tum state merging.

A. Noisy teleportation

The noisy teleportation resource inequality can be ex-

pressed as

〈ΨAB〉+ I(A : B)[c→ c] ≥ I(A〉B)[q → q], (18)

obtained by combining the mother protocol with

teleportation[9]. Here, I(A〉B) = −S(A|B) is also

known as the coherent information[43]. When Bob undergoes

decoherence, we get,

〈ΨA′B′〉+ I(A′ : B′)[c→ c] ≥ I(A′〉B′)[q → q]. (19)

The above can be interpreted as following: The net loss in

the number of qubits that can be teleported when comparing

the coherent teleportation (the one without any decoherence),

Eq. (18), and the one which suffers decoherence, Eq. (19), is

given by I(A〉B) − I(A′〉B′) = S(A′|B′) − S(A|B). We

assume the classical communication to be free in this case,

as long as we are teleporting unknown quantum states. We

have S(A|B) = S(A) − I(A : B) = S(A) − I(A : BC) =
S(A|BC).As in Sec. (V), the application of the unitaryU , but

before discarding the subsystem C, the cost of teleportation is

still given by S(A′|B′C′) = S(A|B). From Eq. (14),

S(A′|B′) ≥ S(A′|B′C′) = S(A|B). (20)

Therefore, we see that the advantage of the coherent protocol

over the noisy version in teleporting unknown quantum states

is equal to the quantum discord of the original state.

For a particular class of two-qubit quantum states, it was

recently shown that the fidelity of remote state preparation is

equal to the geometric quantum discord[33]. This was also

demonstrated experimentally using photonic qubits[44]. Re-

mote state preparation is a special case of quantum telepor-

tation, and the relation between discord and the fidelity has

been suggested as an operational interpretation for quantum

discord.

B. Noisy super-dense coding

Noisy super-dense coding can be derived by combining the

mother protocol with super dense coding[9]

[qq] + [q → q] � 2[c→ c], (21)

showing that one can employ a shared ebit and a single bit of

quantum communication to communicate 2 bits of classical
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information. Here, [q → q] represents one qubit of communi-

cation between two parties and [qq] represents one shared ebit

between two parties. Similarly, [c → c] represents one classi-

cal bit of communication between the parties. The symbol �
is used to denote exact attainability as compared to ≥ which is

to denote asymptotic attainability. Combining these, the noisy

super-dense coding protocol can be expressed as,

〈ΨAB〉+ S(A)[q → q] ≥ I(A : B)[c→ c]. (22)

When the partyB is undergoing decoherence, the noisy super-

dense coding can be expressed as,

〈ΨA′B′〉+ S(A′)[q → q] ≥ I(A′ : B′)[c → c]. (23)

We note that S(A) = S(A′). Thus, due to decoherence, the

number of classical bits communicated through this protocol

gets reduced by the amount I(A : B) − I(A′ : B′), which is

equal to the discord of the original state.

While all our results are derived for finite-dimensional

cases, gaussian quantum discord[45] has been related to a gen-

eralisation of quantum dense coding for continuous-variable

states, when all the states and operations involved are gaus-

sian. The problem was cast as the advantage that can be har-

nessed by using nonlocal quantum interactions. This connec-

tion was also explored experimentally in the same work[46].

C. Entanglement distillation

The one-way entanglement distillation can be expressed as

〈ΨAB〉+ I(A : R)[c→ c] ≥ I(A〉B)[qq]. (24)

This inequality can be derived by combining the FQSW pro-

tocol Eq. (13) and recycling the 1

2
I(A : R) ebits out of the

total 1

2
I(A : B) produced for teleportation, as shown in[9].

Decoherence at Bob’s end B provides

〈ΨA′B′〉+ I(A′ : R′)[c → c] ≥ I(A′〉B′)[qq]. (25)

The net change in entanglement distillation is I(A′〉B′) −
I(A〉B) = S(A|B) − S(A′|B′), which is the negative of the

quantum discord of the original state. As is well known, clas-

sical communication between parties cannot enhance entan-

glement, and we can neglect the overhead of I(A : R)−I(A′ :
R′) classical bits.

D. Quantum state merging

Quantum state merging protocol is the extension of the clas-

sical Slepian-Wolf protocol into the quantum domain where

Alice and Bob share the quantum state ρ⊗n
AB , with each party

having the marginal density operators ρ⊗n
A and ρ⊗n

B respec-

tively. Let |ΨABC〉 be a purification of ρAB. Assume, with-

out loss of generality, that Bob holds C. The quantum state

merging protocol quantifies the minimum amount of quantum

information which Alice must send to Bob so that he ends up

with a state arbitrarily close to |Ψ〉⊗n
B′BC , B

′ being a regis-

ter at Bob’s end to store the qubits received from Alice. It

was shown that in the limit of n → ∞, and asymptotically

vanishing errors, the answer is given by the quantum condi-

tional entropy: S(A|B) = S(A,B) − S(B). When S(A|B)
is negative, Bob obtains the full state with just local opera-

tions and classical communication, and distill −S(A|B) ebits

with Alice, which can be used to transfer additional quantum

information in the future. Quantum state merging provides

an operational interpretation for quantum discord[13, 14]. It

is the markup in the cost of quantum communication in the

process of quantum state merging, if one discards relevant

prior information. An intuitive argument for the above in-

terpretation of quantum discord can be made through strong

subadditivity[19]

S(A|B,C) ≤ S(A|B). (26)

From the point of view of the state merging protocol, this has

a very clear interpretation. Having more prior information

makes state merging cheaper. In other words, throwing away

information will make state merging more expensive. Thus,

if Bob discards system C, it will increase the cost of quantum

communication needed by Alice in order to merge her state

with Bob.

Quantum state merging can be derived from the FQSW if

the entanglement produced at the end of the FQSW protocol

can be used to perform teleportation. As a resource inequality

〈ΨAB〉+S(A|B)[q → q]+I(A : B)Ψ[c→ c] ≥ 〈IS→B̂ : ΨS〉,
(27)

it accomplishes state merging from Alice to Bob at the cost

of S(A|B) bits of quantum communication. When S(A|B)
is negative, Alice and Bob can distill this amount of entan-

glement in the form of Bell pairs. Thus, quantum state merg-

ing provides an operational interpretation of S(A|B). As in

Sec. (V), the resource inequality for the noisy version of the

quantum state merging protocol

〈ΨA′B′〉+S(A′|B′)[q → q]+I(A′ : B′)Ψ[c→ c] ≥ 〈IS→B̂ : ΨS〉.
(28)

The cost of quantum communication in this case is S(A′|B′),
and the mark up in this cost is S(A′|B′)− S(A|B), which is

equal to the quantum discord of the original state.

VII. SUMMARY AND OUTLOOK

The role of quantum entanglement as a resource in quantum

information science is well established and acknowledged. It

is also well known that maximizing the amount of entangle-

ment in a system does not monotonically enhance the quan-

tum advantages it may provide. This is true at a conceptual

level due to results such as the Gottesman-Knill theorem[8],

as well as at a practical level, where the more entangled the

state, the more it is susceptible to decoherence. Our work

clarifies and establishes the central role played by quantum

discord in the latter scenario. We have shown that quantum

discord is a quantity of fundamental significance in quantum
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information theory, by virtue of its role in the performance of

a large class of quantum communication protocols.

To harness the enhancements promised by quantum tech-

nologies in the real world, it is essential that we go beyond

the idealized scenarios in which most of the now-famous pro-

tocols such as teleportation, and dense-coding were designed.

This article summarizes the recent advances made in that di-

rection. The outcome is that quantum discord quantifies, in a

very direct manner, the damage that a decohering environment

inflicts on the advantages promised by a quantum protocol. If

our goal is to maximize the extraction of such quantum advan-

tages, we must design quantum states that minimize the dele-

terious effects of the environment. This inexorably leads us

to identifying quantum states that provide a balance between

its entanglement and discord content. Given the nontrivial in-

terrelation between the two quantities, and the geometry of

entangled and discordant states, this provides a promising and

engaging avenue for future research.

The generality of the framework – that of the FQSW pro-

tocol – employed by us also allows for additional scopes of

progress. It would be fruitful to extend the protocol to include

multiple parties and multiple rounds of communications, and

then explore the role of quantum discord in the advantages at-

tainable in such scenarios. Broader applicability would also

result from the incorporation of non-markovian environments

into the framework. Activities in this direction are already be-

ing undertaken[47, 48], and unified framework will put such

results in context. It will also allow for the theoretical and

experimental exploration of quantum advantages provided by

discord in atomic, molecular and condensed systems.
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