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The correspondence between linear codes and represemiatoéeds is well known. But a similar correspon-
dence between quantum codes and matroids is not known. \Wetkabrepresentable symplectic matroids over
a finite fieldF, correspond td,-linear quantum codes. Although this connection is stitfdgtvard, it does
not appear to have been made earlier in literature. The sfosrelence is made through isotropic subspaces.
We also show that the popular Calderbank-Shor-Steane (G®#8} are essentially the homogenous symplec-
tic matroids while the graph states, which figure so prontigen measurement based quantum computation,
correspond to a special class of symplectic matroids, nabregrangian matroids. This association is useful in
that it enables the study of symplectic matroids in termsuafrqum codes and vice versa. Furthermore, it has
application in the study of quantum secret sharing schemes.
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. INTRODUCTION Il.  BACKGROUND

Matroids are mathematical structures that abstract the ide A. Symplectic matroids
of independence. Originally, introduced by Whitney, they

have since found applications in various fields most notably Our presentation of the symplectic matroids follows the
in algorithms, combinatorial optimization, graphs, cogita-  exposition in []1] very closely. Consider the sdig =
phy, coding theory to name a few. A particular class of ma-{1,... n} and[n]* = {1*,...,n*}. LetJ = [n] U [n]*
troids called the representable matroids are closelye@let  and define an involution o as

error-correcting codes. In fact, the so-called represiems

of these matroids give rise to linear codes; further, one can «:J = J, wherei — 4" and(i*)" =i (1)
obtain matroids from linear codes. This correspondence go
much deeper in that certain invariants of the code are ess

tially invariants of the matroid as well. (Most well-known is an admissible set of size it is a maximal admissible set.

is the connection between the weight enumerator of a linegk jsider now the group of permutations on the.e per-
code and the Tutte polynomial of the matroid associated Bhutation is said to be admissible if it commutes with the invo

the code.) lytion. This group of admissible permutations #ndenoted

(_Bi\/_en these associations one is tempted to ask if we can fin S, is the hyperoctahedral group of symmetries, the group
a similar correspondence between quantum codes and (a Cla&ﬁsymmetries of the hypercube 1, 1] in n-dimensions
of) matroids? The answer to this question, as we shall see, Is Consider the ordering of the eIéments]oés given by '

surprisingly simple and straightforward. In fact, it goexk
to the many ways we can view matroids. But this connection n>n—1>-->2>1>1">2"-..>n".  (2)
does not appear to have made in the literature so far. i i

The main results of this paper are the correspondence bdYe now define another ordering on the seby means of
tween quantum codes and matroids, and applications of thi&'® adm|5_3|blei ’pel’mlitlfleIQD € W. We say that < j if
correspondence. Strictly speaking we establish a cormespo@nd only ifw™"i < w™"j. Letw be given by the following
dence between quantum codes and objects which are moP§mutation:
general than matroids, called the symplectic matroids. -Sym ( 1 92 £ ogx qx )

®rhis map can be extended naturally to subsetd.ofA set
€l - Jis said to be admissible § N 5* = (). A transversal

plectic matroids generalize matroids, although their dléim e

is somewhat more complicated than matroids. Our result has

important applications. It can be used to study quantumgodeThis permutation induces the orderirggiven by
using matroids and vice versa. We also find an application for
these results in quantum secret sharing. We show how certain

symplectic matroids induce quantum secret sharing schemegiearly, < induces an ordering on the subsets/oft can also
There are many important open problems that arise with thige ysed to order subsets B c .J. Given two subsetsl =

11 12 ... in in+1 ces lop—1 12n

1 <o <o <y <y <o < lap.

connection and we are hopeful that further research anngal, ..,am},andB = {b1,... by}, we say thatd < B
these lines will be fruitful for either communities of quant  jf and only ifa; <* b;, where we assumed thatand B have
information theorists and matroid theorists. been ordered au; < as < --- < ap} and{b < by <

-+ < by, } respectively.

Definition 1 (Symplectic matroids)Let .J,, be the collection
* |pradeep@phas.ubcica of admissiblek-subsets off and B C Ji.. A tuple(J, x, B)


http://arxiv.org/abs/1104.1171v1
mailto:pradeep@phas.ubc.ca

is a symplectic matroid if and only if it satisfies the follogi A symplectic matroid is said to be homogenous if for every

condition: basisB € B, we have| B N [n]| is same. For such a matroid
For every admissible ordering of the séf there exists a |B N [n]*| is also independent dB. If such a matroid is rep-

unique maximal seB € B such that for allA € B, we have resentable then its representation is of the form

A< B.

The condition mentioned above is often called Maxi-
mality condition. The elements oB are called bases while
B itself is called collection of the bases of the symplectic ma whereX Z! = 0. For the rest of the discussion in this paper
troid. The cardinality of the bases is called is the rank ef th we will assume that the matroid representations are over a fi-
matroid. (All the bases have the same size.) If the rank of thaite field[F,; occasionally we specialize to the caseFeffor
symplectic matroid is the maximal value of then it is said  simplicity.
to be a Lagrangian matroid.

X 0
M—[o Z}

Remark 1. Suppose we set = [r] and instead oV, we lll. CONNECTIONS WITH QUANTUM CODES
consider the symmetric group of all permutations, ie. at-pe

mutations onJ are admissible. Then the tup{d, B), where
Bis a collection ofk-subsets of , is a matroid if and only i3
satisfies the Maximality condition. In this case the inviolut
plays no role. It is common in this case to referfas the
ground set.

We recall some of the notions relevant for quantum codes.
We will confine our discussion to additive quantum codes, in
particular to stabilizer codes. Interested readers camfioick
details in [2] B] for binary quantum codes andl[4—7] for non-
binary versions. Let be the power of a primg andF, a
finite field. Suppose that? denotes theg-dimensional com-
plex vector space. Fix a basis f6f asB = {|z) | € Fy}.

We define error operators @ as X (a)|z) = |z + a) and
(b)|z) = wtar®@)|z), Error operators om suchg-level

tati ; troid. Th tati . %uantum systems are operators@h and are obtained as
representations of a matroid. These representationsgsro tensor products of the operators ©f. These error operators

with a concrete object to work with and study the propertles,form the generalized Pauli group which is denoted as
of the matroid. An ordinary matroid is said to have a repre-

sentation if the elements of the ground set can be identified Pp={wX(a1)Z(b1) @@ X(an)Z(bp)},  (5)

with the columns of a matrix (typically over some field) such

that columns indexed by the bases are maximally linearly inwherew = ¢727/7,

dependent columns of that matrix. An ((n,K,d)), quantum code is & -dimensional sub-
Some symplectic matroids can also be endowed with repspace of the;"-dimensional complex vector spa¥” and

resentations. In this case instead of a standard vectoespagble to detect all errors on fewer thdrsubsystems. When

(with an orthogonal basis), we consider a symplectic vectorx = ¢*, it is also denoted as dfn, k, d]], code. A stabilizer

space. That is a space of dimensizm and endowed with  code is the joint eigenspace of an abelian subgrod},ofThe

B. Representable symplectic matroids

a symplectic fornt:, -), whose basige,, ..., e,,ef,...,e,}  subgroup is called the stabilizer of the code. For a norarivi
satisfies the following relations: quantum code, the stabilizer does not have any scalar reultip
o of identity other than the identity itself.
eieg) = 0,0 # ] ) By defining a map between the Pauli group and the vector
(ei,ei) = —{ef,ei) =1 (4)  spaces ove]an, we can establish a correspondence between

guantum codes and classical codes. This corresponderite wit
the classical codes has been used extensively in the study of
guantum codes [21-7]. An elementX (a,)Z(b) ® --- ®
X (an)Z(by) in P, is mapped taq,...,a,lb1,...,b,) €

Let U be an isotropic subspace of a symplectic vector spacdy - Under this mapping the stabilizer of the quantum code
Suppose we write down a basis of this isotropic space as tHé mapped to & ,-linear subspace df2". If the image of the
rows of a matrixM = [A|B] € F¥*2n wherek is the di-  stabilizer is also afff,-linear subspace then we say thatit is an
mension ofV; then we must havelB* = BA?. Index the Fg-linear quantum code. In this paper we restrict our att@ntio
columns of M by the set/ = [n] U [n]*. Let B C J such to Fg-linear codes only. The image of a set of generators of
thatB N B* = () and|B| = k. Then if thek x k minor of M the stabilizer under this map is often called a stabilizetrixa

Definition 2. A vector spacd’ over a fieldIF is said to be
isotropic if and only if for anyu, v € V' we have(u, v) = 0,
where(-, -) is the inner product.

indexed byB is nonzero, then we say thatis a basis of\/. The relevant bilinear form that we endCEg” with is the
Let B denote the collection of bases bf. Then(J,*,B)isa  symplectic inner product defined as follows. Let be two
symplectic matroid ovek. vectors inF." whereu = (alb) = (a1,...,anlb1,...,by)

N andv = (¢|d) = (e1,...,¢nld1,...,dy). Then their sym-
Proposition 1 ([1]). Let the row space oM = [A|B] € piectic inner product is defined as
[F**2" be an isotropic subspace with respect to a symplectic

form. Then)M is the representation of a symplectic matroid. (ulv)s =(a-d—c-D). (6)
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It is F,-linear in the sense thdu|v)s = 0 if and only if ~ dependent sets. Further, the minimally dependent codeword
(au|Bv)s = 0 for all o, 8 € F,. It can be easily checked characterize the matroid completely. (A minimal codewerd

that this form is asymmetric as|v)s = —(v|u);. Denoting  does not contain the support of any other codewgndnless
the standard basis dﬁf?]" as{e;,...,en,e5,...,e5}, wecan yisthe scalar of.) The supports of these minimal codewords
check thatle;|e;)s = 0 for i # j*, and(e;|ef)s = 1. are called circuits of the associated matroid. The conckpt o

In this case the stabilizer matrix of &y-linear[[n, k,d]],  circuits can be generalized for symplectic matroids but cir
guantum code defines an isotropic subspadﬁgﬁfand isan cuits are most useful in the characterization of speciatzas
element Om?gnfk)x‘m' This gives us the following result: of symplectic matroids such as Lagrangian matroids.

Classical (linear) codes have well-defined dual codes, on
Proposition 2 ([2, [3]). Let Q be an|[n,k,d]], F,-linear  the other hand, there is no equivalent notion of a dual quantu
guantum code, then the row space of the stabilizer matrix o€ode for a quantum code be it linear or additive. And not sur-
the code defines an isotropic subspace of dimensienk. prisingly, we find that a similar notion of duality is lackifgy
) ) ) ) . symplectic matroids. There has been a suggestion by Borovik

Putting together with our discussion on the representatlon“ﬁ] to use the involution defined in equatidn (1) for defining
of symplectic matroids the following resultis immediate.  qyals, however this suggestion seems to be most fruitful for
the Lagrangian matroids and not for the general symplectic

Theorem 1. Let@ be an[[n, k, d]|, F,-linear quantum code.
@ [In, k. dll, T d matroids.

Then( induces a representable symplectic matroid oi¥gr
of rankn — k. If Q is a CSS code it induces a representableRemark 2 (Quantum codes and ordinary matroidSuppose
homogenous matroid. that an[[n, k, d]], quantum code i -linear, then we can
Iso associate an ordinary matroid to that code in addition t
symplectic matroid. In this case the stabilizer matrix can
e represented by &n — k)/2 x n matrix overF . In this
Marticular instance, we can associate the vector matroid of
this matrix to the quantum code. Thilg-linear codes afford

It turns out the distance of the quantum code is related ténultiple associations to matroids.
the cardinality of the circuit of smallest size but to prove i
more precisely we must wait till we have a few more results
in hand.

With appropriate permutation of the columns of its repre-
sentation a representable Lagrangian matroid can be put in Quantum codes from graphs have been studied extensively
the form [ I A ] where 4 is a symmetric matrix. 14 is  in the context of fault tolerance. We now propose a new class
such that its diagonal is all zero then we can identify it with Of quantum codes induced by graphs by way of symplectic
adjacency matrix of a (weighted) graph. Recall that a graptnatroids. These are derived from the graphical symplectic

state oveif, is defined as the quantum state whose stabilizeMatroids proposed by Chol [10]. .
is given by The graphical symplectic matroids are defined as follows.

Let G be a graph of, edges. Label the edges of the graph by
> @) atransversal’ C [n] U [n]*. (Recall that a transversal in an

Proof. This is an immediate consequence of Propositlon 2 an
Propositiof L. The stabilizer matrix of a CSS code is prégise b
the same form as in equatidn{11), (s€e [2]) and consequent]
it induces a homogeneous symplectic matroid.

A. New quantum codes from graphical symplectic matroids

admissible set of size.) A cycle inG is called balanced if
there are an even number of edges labeled with elements from
[n]*, otherwise it is said to be unbalanced. An admissible set
S C [n] U [n]* is an independent set if it is either a forest or
every connected component is a tree plus an edge such that
the cycle has an odd number of edgeifi. It is the import
> of [1Q, Theorem 2], that the maximal independent sets form
8

S—<KU|vGV(G);Kv_XU 11 2.

u€eN (v)

whereV(G) is the vertex set ofy and N (v) is the set of
neighbors ofv. If G is a weighted graph we can define a
graph state oveF, with stabilizer as follows:

the bases of a symplectic matroid.

Assuming a connected graph, we can state some properties
of these symplectic matroids. If the graph is a tree, then the
rank of the symplectic matroid i3/| — 1. If the graph is not
atree, then the rank |¥|. If these matroids are representable
then we have a quantum code from Theofém 1. However, all
graphic symplectic matroids are not representable [10p- Su
Corollary 2. Every graph state induces a representable La-Posing that it is representable then the code has parameters
grangian matroid. ([E(G)],|E(G)| — [V(G)|.d]]q, whered > the smallest cy-

cle in the graph.

We pause to note a few differences with respect to the cor- As an example, the complete graph on three vertices is iden-
respondence between matroids and classical codes. In caseal to the graph state on that graph. For dense graphs the
of classical codes the independent sets correspond to a sulssociated codes are not likely to have good distance. On
set of errors that are detectable. The codewords corregpondthe other hand, sparse graphs might lead to good quantum

S = <KU |veV(GQ); K, =X,(1) H Zu(Wuw)

ueN (v)

wherew,, is the weight of the edgev. Seel[8[ 9] for more
details on nonbinary graph states.

Since a stabilizer state corresponds to[fano, d]], code,
Theorent ]l implies the following:
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codes. The main reason for proposing these codes is to iwith the associated bases being
lustrate the possibility that matroids can provide newpees  {{1,2, 3}, {1*,2*,3},{1*,2,3*}} On the other hand,
tives on quantum codes. the symplectic matroid of graph state on the complete graph

on three vertices which is local Clifford equivalent to itsha

the representation
B. New symplectic matroids via quantum codes

100/011
Unlike matroids, symplectic matroids are a little more re- 010/101
001110

stricted in obtaining new symplectic matroids from exigtin
ones. There are a however, few constructions known for con- . ) ) )
structing symplectic matroids: contraction, truncatisiiggs ~ 1hiS Symplectic matroid has its collection of bases
lift and direct suml[[iL]. For the representable symplectic ma {{1, 2,3}, {1%,2%,3},{1%,2,3"}, {1,2*,37}}. This prompts
troids which correspond tB,-linear quantum codes one can the guestion is there an operation by which we can express
relate these constructions to familiar coding theoretierap ~ this transformation of the symplectic matroid in terms of an

tions. operation on its bases?
Consider a symplectic matroid of ratkwhose collection One of the methods to obtain an equivalent symplectic ma-
of bases are given h§. Contraction (alongy. € J is defined  troid is via the torus action defined as follows. Let|B]
by the following operation: be the representation of a symplectic matroid. Then for
any invertiblen x n diagonal matrixT", the representation
B’ ={B|(BU/{a}) € B}, (9)  [AT'|BT)]is also a representation of the symplectic matroid.

The torus action gives rise to an equivalent quantum code wit
the same parameters. Furthermore, the weight distribofion
the code is unchanged under the torus action.

wherel3’ is the collection of bases of the resulting symplectic
matroid. This translates to obtaining gin — 1, k], from an
[[n, k]]4 code. Truncation modifiel as

B ={AeJy1]ACBehB}. (10)

. . - . .. D. Representable homogeneous symplectic matroids
In coding theoretic terms this is equivalent to obtaining an

[[n,n — k + 1]], quantum code from ajfn, n — k||, quantum , ] ) , o ]
code. Given a symplectic matroid define a circuit to be a min-
On the other hand deletion corresponds to puncturing on thignally dependent admissible subset #f Then we have
underlying code and as this does not always preserve a seff?e following characterization for the homogenous symplec
orthogonality of the code, this construction does not galner tic matroids. These results will be needed later in the spcti

ize. An interesting method for constructing new symplecticOn duantum secret sharing.
matroids is the so-called Higgs lift/[1]. This corresponds t
obtaining an[n, k — 1]], code from ar{[n, k]|, code.

Two symplectic matroids can be combined to give rise to &
third matroid in many ways. The simplest method is the direc . o o
sum method. Concgtengtion isa po?aular method to constru%}ﬁrOOf' Suppose that there is a minimally dependent admissi-

new codes and if done appropriately it gives rise to anothe%v(i:’thsci}tc; ogs gf Zue?\r:ertgﬁglcazs[ﬁr]njtrgg ?10 4 [T;]n (fng_

e e i Tl ofConCemBel 1.y Assume tha e representain f e symplec
q : Sic matroid is given by

to equivalent constructions of symplectic matroids.

Lemma 3. Every circuit of a representable homogeneous
ymplectic matroid consists of either elementgiiror [n]*.

M:[g‘g] (11)
C. Transformations of symplectic matroids

. . As C is a circuit, there exists a linear combination of the
One of the most studied equivalence of quantum codes Solumns{1,...,m} and the columng(m + 1)*,...,p*}.

local equivalence, especially local Clifford equivalenéieis o wever given the fact that the representation of the métroi
natural to ask if this corresponds to any equivalence onshe a5 of the form equation[(11), the columdd, ..., m} and

souatgd symplectic rnatrmds. The (representable) sw:nple m +1),...,p*} are linearly dependent as well. But this
matroids are not going to be preserved under local Cliffordpypjies thatC' is not a minimally dependent set. Therefore

operations in general. This can be checked with the completgyery circuit of the homogenous symplectic matroid is eithe
graph on 3 vertices and the graph obtained by local comple; g ,pset ofn] or [n]* but not both. 0

mentation at any of the vertices. The symplectic matroid-ass

ciated with the line graph on 3 vertices has the representati Theorem 4. Representable homogenous symplectic matroids,

100l011 satisfy the Circuit elimination property: If;, Cy € C, such
010/100 thate € C; N Cy andCy U C5 is admissible, then there exists
001l100 acircuitC' € C such that” C (C1 U Cy) \ {e}.
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Proof. Let C; andC, be two circuits ofM. By Lemma B, restricted Tutte-Martin polynomial is the same as the later
every such circuit consists of elementgiihor [n]*. Suppose polynomial of a graptG with adjacency matrixd. Note that
thatCy N Cy # (0. Then this is possible if and only if both the interlace polynomialy (z) is defined ad[13]

Cy,Cy C [n] or Cp,Cy C [n]*. Without loss of generality

assume tha€;,C, C [n]. Lete € C; N Cy. Thene can an(Giz) = D (x— 1)FaKEE)), (14)
be expressed a linear combination of columné&’in\ {e} as SCV(G)

well asCs \ {e}. It is then immediate that’; Uy \{e} is

a dependent set and must contain a minimal dependent s\é({?e.reG(S) is. the subgrap.h of: induced byS. Bouchet_who
equivalently a circuit irjn], which is clearly an admissible set. "iginally defined the restricted Tutte-Martin polynomgalve

; : -ft in a slightly different form.
Thus representable homogenous symplectic matr0|ds3sat|sf . .
the circuit elimination property. Recent work[[14] has made the connection between inter-

lace polynomial and orbits of quantum states and codes under
Before we move to some applications of these results, wedge local complementation. Perhaps the most famous poly-
raise the question we address the issue of invariants for thegomial associated to matroids is the rank polynomial or the
symplectic matroids. Tutte polynomial. It does not seem possible to define a Tutte
polynomial for a symplectic matroid in general and might re-
quire an expansion of the definition of symplectic matroid.
E. Invariants for symplectic matroids

An important invariant associated with matroids is the rank V- APPLICATION FOR QUANTUM SECRET SHARING
polynomial. As a weight enumerator captures many of the in-
variants of the code (such as distance), the rank polynomial In [15], connections between matroids and quantum se-
encodes information about many invariants of the matroidscret sharing schemes were investigated. It was shown that
The rank polynomial has been related to other polynomialsdentically self-dual matroids induce quantum secret -shar
of interest such as Tutte polynomial of a graph, the Kauffmaring schemes thereby this establishing a connection between
polynomial of a knot, the partition function and has beenstu matroids and quantum secret sharing schemes. However, it
ied extensively in view of its relevance to complexity theor was somewhat limited in that only quantum secret sharing
But from a coding theoretic point of view the weight enumera-schemes that are realized using a CSS code were within that
tor and the rank polynomial are closely related. All thisigs ~ correspondence. In present section we intend to make this ma
up the question if there are similar polynomials for the sym-troidal correspondence stronger by including a largersotdis
plectic matroids which are of interest to quantum codes. Aschemes some of which can be realized by non-CSS codes.
general answer to this question eludes us, but when we fo- Given a Lagrangian matroifl whose collection of bases is
cus our attention to the Lagrangian matroids, we can pbrtial B, we can define the dual matroid as follows. The collection of
answer this question. bases of the dual matroid are given By = {B* | B € B}.

In [14], Bouchet studied graph polynomials for isotropic Similarly, the collection of circuits of the dual matroidear
systems that are related to the Tutte polynomial of an assocgiven byC* = {C* | C € C}. Elements ofC* are also
ated graph. Isotropic systems are essentially Lagrangan mcalled cocircuits of.

troids. Consequently the following Tutte-Martin polynais Let L be a self-dual Lagrangian matroid, then we define an
as defined by Bouchet are only defined for Lagrangian maaccess structure from the circuits 6fas follows. Define the
troids. mapy : [n] U [n]* — [n] where

Definition 3 (Restricted Tutte-Martin polynomial) et . be a N i ifie(n] 15
Lagrangian matroid. Define the restricted Tutte-Martin ypol pli) = i if i e [n]* (15)

nomial as . o
We obtain an access structure by considefirg [n] as the

m(Liz) = Y (w— 1) S, (12)  dealer. The induced minimal access structure is given as

S€Tn
Limin ={p(4) | AU{i}orAu{i*} eC}, (16)
wheren = rk(L).
) o ) whereC is the collection of circuits of. We say a Lagrangian
We could attempt to define a similar polynomial for sym- matroid is secret sharing if the access structure inducet! by
plectic matroids that are not Lagrangian. For a symplectiGor anyi e [n] is a quantum access structure. (Such an access
matroid, L we define the restricted Tutte-Martin polynomial strycture is monotonic and satisfies the no-cloning theorem
as In terms of minimal access structures, it means that any two
) — _ 1)k—Tk(S) authorized sets are not disjoint.)

m(L;z) = Z (z—1) ’ (13) Itis possible that a Lagrangian matroid can induce a quan-
tum access structure for somes [n] but not alli. For sim-
wherek = rk(L). plicity we consider the case when it induces onial [n].

SupposeM is a representable Lagrangian matroid, with We do not yet have a condition for which Lagrangian ma-
representatiof/| A], for some symmetric matrix4. Thenits  troids induce quantum access structures and which do not.

SeJy
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We provide partial answers in both directions. First we give The self-duality ofZ implies thatB U {i} is a cocircuit of
a necessary condition for a Lagrangian matroid to induce . By [1, Theorem 4.2.5] it follows that
uantum secret sharing scheme. Then we give a sufficient . .
gondition fora Lagrang?an matroid to induce agsecret skyarin I(Au{i}) N (BU{i})| # 1.
scheme. But this implies thajA N B| > 1 for any pair of minimal
authorized sets. This is the necessary and sufficient dondit
for an access structure to be a minimal quantum access struc-
ture. O

Theorem 5. Suppose that is a graph wihtout loops or multi-
edges and whose adjacency matrix is giverdbyLet L be a
Lagrangian matroid induced b§ such thatl is represented
by [ I A]. If G has no cycles of length 4 and no vertices ~ Corollary 8. A self-dual Lagrangian matroid induces a quan-
of degree 1, then the access structure induced.lig not a  tum secret sharing scheme.

valid quantum access structure. ) )
However, self-dual Lagrangian matroids are not the only

Proof. A Lagrangian matroid of this type corresponds to amatroids which induce valid quantum access structures: Con
graph state whose stabilizer is given by sider the Lagrangian matroid whose representation is diyen

the following matrix.
S =(K,|veV(G)), whereK, = X, H Z;

iEN(v) 0oo0oo000O0OIT1T1T111

. . . 111111000000
andV(G) is the vertex set off and N (v) is the set of neigh- 010010/l001100
bors ofv. The associated Lagrangian matroid has the repre- 001001l000110
sentation[I A}. Consider access structure induced by the 010100l000011
vertexv. 00101001 000O01

ymin = {0(A) | AU {0} or AU {v*} € C}.

Of interest are two elements ¢hthat are induced by the gen-
eratorsK,,, whereu,w € N(v). By assumptionN (v)| > 1.
Therefore there are at least two generatgrs € N(v). The
supports of generators correspond to circuits and are of the N . o e ok
{u}UN (u)* and{w}UN (w)* respectively. Consequently the g f:,)il’g*{’ g;?’g’é ’62’ }3;43;54’ 2}}"

sets induced by these circuits are of the feupp(K,) \ {v} o mo T im e i im e e

andsupp(K,) \ v. We claim that these two sets are disjoint. The access structure induced by the treating the first coordi
Suppose that they are not, then there exists a vertex v nate as the dealer is given by

such thatr € supp(K,,) N supp(K,,). This implies that

The circuits of this matroid are given by
{17 3*7 47 5*}7 {17 4*7 57 6*}’ {17 2*7 5*7 6}7

{17 27 3*7 6*}7 {17 2*7 37 4*}’ {1*7 2*7 47 5}7
C =< {1%,3%,5,6},{1%2,4*, 6}, {1*,2,3,5*},

has a 4-cycle contrary to assumptions. Therefore these two {2,3,4},{2,3,5},{2,3,6},{2,4,5},
circuits induce disjoint authorized sets and the induceess Fimin = {2,4,6},{2,5,6},{3,4,5},{3,4,6},
structure cannot be a quantum access structure. O {3,5,6},{4,5,6}

Lemma 6. Let L be a self-dual Lagrangian matroid whose This is precisely the access structure of (e 5)) threshold

collection of circuits is given bg. Then the collection of Scheme and it can be realized using {fie1, 3]] code. As
cocircuits ofLL is given byC* = {C* | C € C} = C. this matroid is not self-dual, it shows that class of matabid

guantum secret sharing schemes is strictly larger tharidke ¢
Proof. Let 3 be the collection of bases of the matroid. Theninduced by the class of self-dual Lagrangian matroids.
collection of bases of the dual matroid is giveny= { B* | The dual of a matroid/ = (J,B) is given by M* =
B € B}. LetC € C be a circuit of the matroid. SincB*is (., B*), whereB* = {J\ B | B € B}. A matroid is said
also an element a8, C' is not a subset oB* foranyB € B.  to be identically self-dual ifi/ = M*. In [15], it was shown
Therefore,C* is in C as well, andC = C* = {C* | C €  how to construct quantum secret sharing schemes from inden-
C}, which is precisely the collection of circuits of the dual tically self-dual matroids. This construction is a speciabe
matroid. U of Theorentiy.

Theorem 7. Let £ be a self-dual Lagrangian matroid. Then Lemma 9. Let M be an identically self-dual matroid. Then
the access structurg; i, as defined in equatiofl8) is a there exists a self-dual Lagrangian matraidwhose collec-
valid quantum access structure. tion of bases is given bg(L) = {BU ([n]\ B)* | B €
B(M)}. Further L induces the same quantum access struc-

Proof. Let A’ and B’ be two authorized sets ify; ,,;,. Then ture asM.

there exist two circuitst U {a} andB U {b} such thatd’ =
¢(A) and B’ = ¢(B), wherea,b € {i,i*}. Suppose that Proof. To see this consider a identically self-dual matréid
a # b. We observe thaB* U {b*} must be a cocircuit of.  whose collection of bases is given By. The collection of the
Since/ is self-dual it follows thaf3* U {b*} is a circuit of L. bases for the dual matroid are givenBy = B; becausé/ is
Sincep(B) = ¢(B*), we can instead considé*. Without identically self-dual. By definitiol8;- = {[n]\ B | B € B1}.
loss of generality we can assume that b = i. Therefore, for every basiB, [n]\ B is also in3. Now consider



forming a Lagrangian matroid whose collection of bases is Alternatively, find a criterion to test which of these ma-

givenbyB = {B U ([n] \ B)*}. Itis Lagrangian because the  troids are representable.

cardinality of any element i is n. The self-duality of the

symplectic matroid is a consequence of the self-duality/of  2) Find out if the quantum codes derived from the symplectic
By Theoreni¥, the access structure induced.by a valid matroid of a simple connected graph, have good parame-

guantum access structure. We want to show that this access ters.

structure is precisely the access structure induced by #ie m

troid M. Recall that the access structure inducedMiyis  3) What are the necessary and sufficient conditions for La-
given by grangian matroids to induce quantum access structures?
™ (Al AU eC(M Can the;e be sta;ed in terms of the graph underlying the
imin = {4 {iy ec@n}, Lagrangian matroid?
whereC (M) is the collection of circuits of\/.

By Lemmad.3, the circuits of. are either inn] or [n]*. The  4) Given a secret sharing Lagrangian matroid, what is the as-
restriction of L to the transversdl:| gives the matroid\/, sociated quantum code that realizes this access structure?
while the restriction tdn|* gives the identically self-dual ma-
troid M* = M. Every circuit ofL contained in the restriction  5) Define a polynomial that captures the weight enumerator of

[n] (resp.[n]*) is a circuit of M (resp.)M ). Butthese exhaust  the underlying quantum code for representable symplectic
the circuits of L. Thus the access structure induced/hyas matroids.

given in [18), is exactly the same access structu/as [

We hope that the results in this paper will prompt further re-

search into the applications of matroids for quantum infarm
V. CONCLUSION AND OPEN QUESTIONS tion.

In this paper we have established a connection between
guantum codes and symplectic matroids. This opens a new
perspective on quantum codes and has potential applisation
for quantum cryptography. Furthermore, this corresponden

raises a number of interesting questions that are wortrupurs | would like to thank Robert Raussendorf for many help-
ing. We list some of them here. ful discussions, and his support and encouragement through

out this project. This research was sponsored by grants from
1) Find representations for the graphical symplectic ma@sro NSERC, CIFAR, and MITACS.
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