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Abstract An automated vision system, Teratom-

Eye, was developed for the identification of three

representative tissue types: muscle, gut and neural

epithelia which are commonly found in teratomas

formed from human embryonic stem cells. Muscle

tissue, a common structure was identified with an

accuracy of 90.3% with high specificity and sensi-

tivity greater than 90%. Gut epithelia were identified

with an accuracy of 87.5% with specificity and

sensitivity greater than 80%. Neural epithelia which

were the most difficult structures to distinguish gave

an accuracy of 47.6%. TeratomEye is therefore useful

for the automated identification of differentiated

tissues in teratoma sections.
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Introduction

The generally accepted measure of pluripotency for

human embryonic stem cells (hESC) is their ability to

form differentiated tissues of three representative

germ layers within a teratoma 8–10 weeks after

injection of hESC into severe combined immuno-

deficient disease (SCID) mice (Choo et al. 2005;

Przyborski 2005). This assay though abstract, has

been vigorously debated by the International Stem

Cell Banking Initiative (ISCBI) and for now has been

accepted by the hESC research community as the

standard for pluripotency; as there are no better

methods of measuring early tissues developed from

hESC (Healy et al. 2008). Representatives of these

three different common tissue types such as muscle,

gut and neural epithelia are shown in Fig. 1a.

Typically, single images of these tissues are shown

in publications to indicate that hESC have the

capacity to differentiate into the three germ layers,

without any further quantification of each tissue type.

To aid in the objective identification and partial

quantification of these three types of differentiated

tissues formed within teratomas from hESC, we have

developed three separate algorithms along with a

user-friendly graphical interface, named TeratomEye.

This program provides a more objective means of

identifying tissues, instead of a qualitative one, and

allows quantification of each tissue as a measure of

pluripotency. Depending on the sites of injection of

hESC, the types of tissues that result can be
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haphazard and difficult to identify (Cooke et al.

2006). TeratomEye will thus be useful in identifying

differentiated tissues in different environments, and

more importantly to compare the pluripotency or

differentiation capability between various hESC lines

deposited in the international stem cell banks.

Materials and methods

Image collection

Human embryonic stem cells were injected into SCID

mice and, after 10 weeks, teratomas were harvested and

sections were prepared and stained with haematoxylin

and eosin (H&E) as described previously (Choo et al.

2005). Images were collected at 109 and 209 objective

magnification using a Carl Zeiss AxioVert microscope

and examined with the imaging software Axio Vision,

Release 4.5. All images were sized at 1300 9 1030

pixels and consolidated into a database of 93 images.

Muscle segmentation

All software was written using Matlab version 7.3.

The GETmuscle algorithm for muscle segmentation

comprises of three stages. Firstly, the image is

converted from RGB color space to L*a*b* color

space, where L*, a* and b* refer to the luminosity

value, chromaticity value on the red-green axis and

chromaticity value on blue-yellow axis respectively.

This is followed by K-means (Duda et al. 2000)

clustering to classify the image into four distinct

components. Muscle tissues are separated from the

background and other tissues since they generally

have a distinct red/pink coloration enables. The

muscle segment is extracted by calculating the

Euclidean distance, with the mean a* and b* for

each cluster, from a threshold/color-marker. Finally,

the identified muscle segment is converted to a binary

image to removing trace elements of the background

after which the outline is created.

Gut segmentation

The GETgut algorithm for gut segmentation is

affected by a series of morphological operations

(Mathworks Inc 1997) which are divided into two

stages. The primary aim of the first stage is to

eliminate the background and remove or mask other

small elements in the image; this helps to reduce the

possibility of neural structures being included in the

segments. Gut tissues can be identified by their

lumen, as they would constitute maxima in the

images. This is followed by conversion to a binary

image via thresholding to obtain gut markers. A

threshold level was determined by trial-and-error

with the images from the training set. This results in a

shortlist of possible gut structures.

Each candidate in the shortlist is then evaluated

individually in the second stage using partial least

squared determinant analysis (PLSDA) (Wise et al.

2004). Thirteen sub-images depicting gut epithelium

and 25 sub-images depicting non-gut epithelium

structures were used to build the PLSDA model.

Each sub-image was compressed to a standard size of

60 9 64 pixels, then unfolded to form an array X.

Mean centering was used to pre-process X. Y then

contains the corresponding class memberships of

each row in X, where class 1 denotes gut epithelium

and class 2 denotes non-gut. The PLSDA model thus

developed is used for classifying new candidates.

Neural segmentation

The same segmentation process for gut tissues was

adopted for neural tissues in the GETneural algorithm

with thresholds set at different values. The underlying

reason for the differences is the smaller dimensions of

the neural structures, thus the structuring element for

image reconstruction has to be reduced to create the

neural tissue maxima (size 7), and a higher binary

threshold in order to isolate the neural tissues (0.8196).

The development of the PLSDA model for neural

epithelium classification is similar to that for gut.

Twenty-one sub-images depicting neural epithelium

and 35 sub-images depicting non-neural epithelium

structures were used to build the PLSDA model for

neural classification. In both the neural and gut

identification algorithms where there are two phases

of selection and identification, both of these algorithms

run automatically and there is no need for user

intervention for the second phase.

TeratomEye graphical user interface

The graphical user interface shown in Fig. 1b was

designed for users with limited knowledge of Matlab
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and to encourage ease of use. Scanned images can be

stored and opened as an original image, then the tools

GETmuscle, GETgut, GETneural or GETall can be

selected to identify one tissue at a time, or all three

types of tissues by running the processor. After which

the numbers of each tissues are presented at the

bottom left screen. Figure 2 shows an example of

eight gut structures identified by TeratomEye. This

software is available to other researchers for beta

testing from the authors.

Results and discussion

The GETmuscle, GETgut and GETneural algorithms

were developed with training images, after which

independent images were tested to determine the

predictive accuracy, specificity and sensitivity of

various tissue identifications, all of which are sum-

marized in Table 1. Muscle was identified by a two-

step color-based segmentation process in the L*a*b*

color space. By employing K-means clustering as the

Fig. 1 a Typical

representative H&E stained

pictures of gut structure

with a hollow lumen,

striated muscle and neural

epithelia with a rosette-like

structure. b Layout of

TeratomEye user interface

with tools for running

GETmuscle, GETgut and

GETneural as well as

quantification of each tissue
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first stage of segmentation, the distinctive red and

pink colors of muscle enables clear separation from

the background. An example of muscle section

clearly identified by GETmuscle is shown in Fig. 3a.

The user can clearly perceive the entire outline of the

muscle tissues compared to an earlier algorithm

where parts of the muscle tissues were excluded.

Using a test set of 14 images, muscle was identified

with an accuracy of 90.3% with high specificity

and sensitivity of greater than 90%. Only on one

occasion was the algorithm unable to identify a muscle

structure due to poor contrast with the background.

A series of morphological operations was used to

isolate gut/neural epithelial structures which were

then assigned into grayscale sub-images. PLSDA

models were developed to recognize sub-images

containing gut/neural epithelia. Fifty test images for

gut epithelia gave a predictive accuracy of 87.5%

with specificity and sensitivity of greater than 80%.

GETgut was able to correctly identify all five gut

epithelia as shown in Fig. 3b. Gut structures with

large lumen maxima were thus relatively easy to

identify.

It was necessary to use 20 training images and 58

test images for identifying neural epithelia with

GETneural, which were the most difficult structures

to distinguish, giving an accuracy of 47.6%. It is

possible that identification using lumen maxima

results in some neural epithelium cells, which do

not have a distinctive lumen, being excluded during

segmentation. Structural diversity of neural structures

which are sometime elongated and sometimes more

rosette-like further added to the difficulty in predic-

tion. In particular, irregularly shaped neural structures

failed to be identified. Examples of the variety of

neural structures can be seen in Fig. 3c, in this case

only three out of eight neural epithelia with their

borders well-defined, were correctly highlighted.

Thus we are exploring a wavelet image analysis

approach (Misiti et al. 1996) to further improve this

program. It may also be necessary to stain with

antibodies specifically to highlight neural epithelia

prior to identification with TeratomEye to increase

the accuracy of this process.

Currently, the classical method of measuring the

pluripotency of hESC is by qualitative visualization

Fig. 2 An example of eight

gut structures identified and

displayed on TeratomEye,

some of which are indicated

by dark arrows
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Table 1 Number of images tested, predictive accuracy, specificity and sensitivity of GETmuscle, GETgut and GETneural algo-

rithms for the identification of muscle, gut and neural tissues in TeratomEye

Algorithms No. of images testeda Predictive accuracy (%) Specificity (%) Sensitivity (%)

GETmuscle 14 90.3 92.9 91.9

GETgut 50 87.5 83.8 84

GETneural 58 47.6 56 17.2

a Each image contains several tissue structures for identification

Predictive accuracy = True positives/(true positives ? false positives) 9 100%

Specificity = True negatives/(false positives ? true negatives) 9 100%

Sensitivity = True positives/(true positives ? false negatives) 9 100%

Fig. 3 a An example of

muscle structures that are

identified and highlighted

with a green border by

GETmuscle. Image was

captured at 109 objective

magnification. b An

example of multiple gut

structures with several

hollow lumens that are

identified and highlighted

with purple borders by

GETgut. Image was

captured at 109 objective

magnification. c An

example of GETneural

identifying three neural

epithelia highlighted by red

circles, from multiple other

neural epithelia. Image was

captured at 209 objective

magnification
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followed by choosing only one representative image

of each tissue from the three germ layers found in

teratomas of SCID mice models as shown in Fig. 1a.

Examples of such tissues can be found in recent

publications characterising hESC pluripotency (Inter-

national Stem Cell Initiative 2007; Cooke et al. 2006;

Przyborski 2005). This traditional method may require

expert help from a trained pathologist and provides no

quantitative data on the numbers of differentiated

tissues found in teratomas. The International Stem Cell

Banking Initiative has accepted teratoma formation as

a measure of pluripotency (http://www.stemcellforum.

org/forum_initiatives/international_stem_cell_banking_

initiative.cfm) and it has been suggested recently that

teratoma formation may provide a window to study

developmental biology (Aleckovic and Simon 2008).

The creation of the TeratomEye program therefore,

is aimed at providing embryonic stem cell researchers

with a means to more objectively identify and

potentially quantify the number of common structures

such as muscle, gut and to a lesser extent, neural

epithelia. For many stem cell researchers who are not

trained as pathologists, this software could provide an

automated and easy means for qualitatively identify-

ing the three common structures found in teratoma

tissues. As TeratomEye can also count the numbers of

muscle, gut and neural structures in tissue sections,

potentially different hESC lines could be compared for

their propensity to form the three types of differenti-

ated tissues in teratomas. However, TeratomEye has

not yet been tested on different hESC lines, but there is

anecdotal evidence that some hESC lines are more

likely to form cystic structures which are indicative of

poorer teratoma formation. Other structures such as

bone and cartilage which are also found in teratomas

may be added to this program in the future. Potentially,

cartilage may be easy to resolve as it has a distinctive

round shape with spotted nuclei. While there are other

commercially available software which can identify

tissue sections for oncology, opthalmology and dia-

betes research applications, for example that provided

by Aperio (www.aperio.com) there is none available

for the identification of a variety of complex tissues

found in teratoma.

In summary, we have developed an automated

vision system TeratomEye, which identified muscle

with an accuracy of 90.3% with specificity and

sensitivity greater than 90%. Gut epithelia were

identified with accuracy of 87.5% with specificity

and sensitivity greater than 80%. Neural epithelia

which were the most difficult structures to distinguish,

gave an accuracy of 47.6%. With further refinements,

TeratomEye can be a useful tool for the automated

identification of tissues in teratoma sections enabling a

quantitative measure of pluripotency of human embry-

onic stem cells injected into SCID mice models.
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