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Abstract. We investigate inflationary scenarios driven by a class of potentials which

are similar in form to those that arise in certain minimal supersymmetric extensions

of the standard model. We find that these potentials allow a brief period of departure

from inflation sandwiched between two stages of slow roll inflation. We show that such

a background behavior leads to a step like feature in the scalar power spectrum. We

set the scales such that the drop in the power spectrum occurs at a length scale that

corresponds to the Hubble radius today—a feature that seems necessary to explain the

lower power observed in the quadrupole moment of the Cosmic Microwave Background

(CMB) anisotropies. We perform a Markov Chain Monte Carlo analysis to determine

the values of the model parameters that provide the best fit to the recent WMAP 5-year

data for the CMB angular power spectrum. We find that an inflationary spectrum with

a suppression of power at large scales that we obtain leads to a much better fit (with

just one extra parameter, χ2
eff improves by 6.62) of the observed data when compared to

the best fit reference ΛCDM model with a featureless, power law, primordial spectrum.

PACS numbers: 98.80.Cq, 98.70.Vc, 04.30.-w
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1. Introduction

Measurements of the Cosmic Microwave Background (CMB) anisotropies—from the

early days of the COsmic Background Explorer (COBE) satellite until the most

recent observations of the Wilkinson Microwave Anisotropy Probe (WMAP)—have

consistently indicated a low value of the quadrupole, below the cosmic variance of

the concordant ΛCDM cosmological model with a nearly scale invariant, primordial

spectrum [1, 2, 3, 4, 5]. While there has been a recurring debate about the statistical

significance of the quadrupole and the other outliers (notably, near the multipole

moments 22 and 40) in the CMB angular power spectrum (see Refs. [6, 7, 8, 9]

and references therein), there has also been constant activity to understand possible

underlying physical reasons for the outliers (see, for an inexhaustive list, Refs. [10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]).

Given the CMB observations, different model independent approaches have been

used to recover the primordial spectrum (see, for example, Refs. [4, 33, 34, 35, 36, 37]).

While all these approaches arrive at a spectrum that is nearly scale invariant at the

smaller scales, most of them inevitably seem to point to a sharp drop in power at the

scales corresponding to the Hubble scale today. Within the inflationary scenario, a

variety of single and two field models have been constructed to produce such a drop in

power at the large scales [10, 12, 18, 19, 20, 27, 29, 30, 32]. However, in single field

inflationary models, in order to produce such a spectrum, we find that many of the

scenarios either assume a specific pre-inflationary regime, say, a radiation dominated

epoch, or special initial conditions for the background scalar field, such as an initial

period of fast roll [18, 19, 29, 30]. Moreover, some of them impose the initial conditions

on the perturbations when the largest scales are outside the Hubble radius during the

pre-inflationary or the fast roll regime [18, 29, 30]. Such requirements are rather artificial

and, ideally, it would be preferable to produce the desired power spectrum during an

inflationary epoch without invoking any specific pre-inflationary phase or special initial

conditions for the inflaton. Furthermore, though a very specific pre-inflationary phase

such as the radiation dominated epoch may allow what can be considered as natural (i.e.

Minkowski-like) initial conditions for the perturbations even at super-Hubble scales, we

believe that choosing to impose initial conditions for a small subset of modes when they

are outside the Hubble radius, while demanding that such conditions be imposed on the

rest of the modes at sub-Hubble scales, can be considered unsatisfactory.

It has long been known that power spectra with large deviations from scale

invariance can be generated in inflationary models that admit one or more periods

of departure from the slow roll phase (see, for instance, Refs. [10, 38, 39, 40, 41, 42, 43,

44, 45]). The degree of the deviation from a nearly scale invariant spectrum would be

determined by the extent and duration of the departure, which are, in turn, controlled by

the parameters of the model. A departure from slow roll affects the evolution of modes

that leave the Hubble radius just before the departure. Rather than remaining constant,

the curvature perturbations, say, Rk, corresponding to these modes evolve at super-
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Hubble scales, sourced by the intrinsic entropy perturbations of the inflaton field which,

typically, exhibit a rapid growth during the fast roll regime [46, 47]. Such an evolution on

super-Hubble scales results in dips or bursts of oscillations in the scalar power spectrum.

Usually, such a departure is induced by introducing a sharp feature in the potential of

the inflaton field, such as a step or a sudden change in the slope [10, 26, 31, 45]. However,

this is not necessary, and transitions to fast roll for brief periods can be generated even

with smooth and better motivated effective potentials [38, 40, 46, 47].

Our purpose in this paper is to present a simple model of inflation that supresses

the power spectrum on large scales, a feature—as we discussed above—that seems to be

necessary to fit the lower power in the quadrupole (and, to some extent, in the deviant

power at other lower multipoles such as the octopole and the multipole ℓ = 22) of the

CMB angular power spectrum, using an effective potential of the canonical scalar field

without introducing any ad hoc sharp feature. We find that the form of the potentials

motivated by a class of certain minimal supersymmetric extensions of the standard

model provide us with the desired behavior [48, 49, 50, 51]. These large field models

allow a period of fast roll sandwiched between two stages of slow roll inflation‡. The

first phase of slow roll inflation allows us to impose the standard Bunch-Davies initial

conditions on the modes which exit the Hubble radius during the subsequent fast roll

regime, an epoch due to which the curvature perturbations on the super-Hubble scales

are suppressed. The second slow roll phase lasts for about 50-60 e-folds, thereby allowing

us to overcome the standard horizon problem associated with the hot big bang model.

The advantages of our approach over other single field models mentioned earlier are

twofold. Firstly, we do not need to assume any specific pre-inflationary phase. The

entire evolution of the inflationary era is described by a single inflaton potential and,

therefore, is much simpler. Secondly, the modes which exit the Hubble radius during the

fast roll regime are inside the Hubble radius during the first stage of slow roll inflation

and, hence, we do not have to impose any special initial conditions on the large scale

modes.

This paper is organized as follows. In Sec. 2, we shall review the essential features

of the effective inflaton potential that we shall consider, and describe the background

dynamics in situations of our interest. In Sec. 3, after an outline of the slow roll

‘expectations’ of the scalar spectrum that can arise in such a background, we shall

discuss the spectra that we obtain through numerical integration. In Sec. 4, using the

cosmological Boltzmann code CAMB and the Monte Carlo code COSMOMC, we shall

compare the power spectra from the models we consider with the recent WMAP 5-year

data. Finally, we shall close with Sec. 5, wherein after a brief summary of our results,

we shall discuss as to how the results from our model compare with those that have

been obtained in another closely related single field model.

In the discussions below, we shall set ~ and c as well as M
Pl
= (8 πG)−1/2 to unity.

‡ Earlier, in the literature, two successive stages of slow roll inflation have often been driven by two

scalar fields [52, 53, 54, 55, 56]. Instead, in this paper, we achieve the two stages of slow roll inflation

including a brief period of departure from inflation, all with just a single scalar field.
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Also, throughout, an overdot and an overprime shall denote differentiation with respect

to the cosmic and the conformal times, respectively.

2. The inflaton potential and the background dynamics

The effective potential for the inflation field that we shall consider is described by two

parameters m and λ, and is given by

V (φ) =

(

m2

2

)

φ2 −
(

√

2 λ (n− 1)m

n

)

φn +

(

λ

4

)

φ2(n−1), (1)

where n > 2 is an integer. Such potentials are known to arise in certain minimal

supersymmetric extensions of the standard model [48], and their role as an inflaton

and its related effects have been studied recently [49, 50, 51]. (We should also hasten

to add that the specific case of n = 3 has been considered much earlier for reasons

similar to ours, viz. producing certain features in the primordial spectrum [38].) In the

above potential, the coefficient of the φn term has been chosen in such a way that the

potential has a point of inflection at φ = φ0 (i.e. the location where both Vφ ≡ (dV/dφ)

and Vφφ ≡ (d2V/dφ2) vanish), with φ0 given by

φ0 =

[

2m2

(n− 1) λ

]
1

2 (n−2)

. (2)

Near this point of inflection, the potential exhibits a plateau with an extremely small

curvature, which, as we shall discuss below, proves to be crucial for the desired evolution

of the inflaton field. The potential (1) for the case n = 3 is depicted in Fig. 1.

Note that the potential (1) roughly behaves as

V (φ) ∼
{

φ2(n−1), for φ > φ0,

φ2, for φ < φ0.
(3)

Recall that, the first potential slow roll parameter is given by [57, 58]

ǫ1 =

(

1

2

) (

Vφ

V

)2

, (4)

and inflation ends as ǫ1 crosses unity. It is then clear that, in a power law potential

of the form V ∼ φ2(n−1), slow roll inflation will occur (i.e. ǫ1 ≪ 1) when φ ≫ 1, and

inflation will end when φend ≃
[√

2 (n− 1)
]

∼ O(1). Thus, for a transition from slow

roll to fast roll to occur, we need to choose the two parameters in the potential (1) so

that φ0 ∼ O(1), i.e. of the order of the (reduced) Planck scale. Restarting inflation after

the fast roll phase and the number of e-folds that can be achieved during the second

phase of slow roll crucially depends on the value of φ0. We rely on the numerics to

choose this parameter carefully since the above slow roll estimate only provides a rough

order of magnitude. Choosing φ0 in such a way is actually fine tuning, but it seems

to be inevitable if we are to achieve the desired slow-fast-slow roll transition as well as

the required number of e-folds. Once the point of inflection has been identified, we find
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Figure 1. Illustration of the inflaton potential (1) for n = 3. The solid line

corresponds to the following values for the potential parameters: m = 1.5368×10−7 and

λ = 6.1517× 10−15 (corresponding to φ0 = 1.9594), values which turn out to provide

the best fit to the WMAP 5-year data (cf. Tab. 4.2). The dashed lines correspond to

values that are 1-σ away from the best fit ones. The black dots denote the points of

inflection.

that the normalization to the CMB angular power spectrum data provides the second

constraint, thereby determining the value of the other free parameter m.

The equation of motion governing the scalar field described by the potential (1),

when expressed as two first order equations for the coupled variables φ and φ̇, has

one attractive fixed point located at the origin, i.e. at (φ, φ̇) = (0, 0). For positive

values of φ, we find that there exists an attractor trajectory towards which all other

trajectories with arbitrary initial conditions on φ and φ̇ quickly converge. For a suitably

chosen φ0, we find that the attractor trajectory exhibits two regimes of slow roll inflation

sandwiching a period of fast roll. Hence, if we start the evolution with φ ≫ φ0, then

the initial values of φ and φ̇ prove to be irrelevant for the subsequent dynamics as they

approach the attractor. This behavior is evident from Fig. 2 where we have plotted the

phase portrait for the n = 3 case. Once the field reaches close to φ0, due to the extreme

flatness of the potential (1), it relaxes and then moves very slowly, commencing the

second stage of the slow roll inflation. This stage ends when the field finally rolls down

towards the minima of the potential at φ = 0.

We had mentioned earlier that potentials of the type (1) are encountered in the

Minimal Supersymmetric Standard Model (MSSM) [48], and that their role as an

inflaton has been analyzed recently [49, 50, 51]. At this point it is important that we

highlight the differences between MSSM inflation and the scenario we are considering. In

MSSM inflation, the point of inflection is located at sub-Planckian values (i.e. φ0 ≪ 1)

which can be an advantage as it avoids the problems associated with having super-

Planckian values for the field. In contrast, in our case, as emphasized above, the saddle
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Figure 2. The phase portrait of the scalar field described by the potential (1) in the

case of n = 3 and for the values of the parameters m and λ mentioned in the last

figure. The arrow points to the attractor. Note that, as discussed in the text, all the

trajectories quickly approach the attractor. We should mention that, though we have

plotted the phase portrait for just the n = 3 case, we find that such a behavior is

exhibited by higher values of n (such as, for example, n = 4, 6) as well.

point should be located around the Planck scale (i.e. φ0 & 1), if we are to achieve the

second period of slow roll before the end of inflation. However, in the MSSM case, to

have successful inflation, the initial values of φ and φ̇ have to be finely tuned so that

φini ≃ φ0 and φ̇ini ≃ 0. But, in our scenario, we do not require such fine tuning of the

initial conditions on φ and φ̇. Instead, we require for the location of φ0.

Though the parameters of the potential that we work with are different from the

MSSM case, we nevertheless believe that it may be possible to realize the potential (1) in

theories beyond the standard model, such as, for instance, string theory (in this context,

see, for example, Refs. [59, 60]). For example, it is known that the existence of a number

of string axion fields can give rise to the following potential describing multi-field chaotic

inflation [61]:

V (φi) =
∑

i

(

1

2

)

m2
i φ

2
i , (5)

with the initial field displacements smaller than unity. The dynamics and the

inflationary predictions in such examples are surprisingly similar to the corresponding

single field chaotic inflation models [62, 63, 64], due to the assisted inflation

mechanism [65]. Similarly, with enough number of fields and with the non-

renormalizable superpotential

W =

(

λ

n

) (

φn

Mn−3
Pl

)

, (6)
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and the corresponding A term and the soft mass term, one might be able to build

an inflation model that is effectively equivalent to the single field one described by

the potential (1). (Note that, for clarity, we have temporarily restored M
Pl

in the

expression (6) above.)

3. The scalar power spectrum

In this section, after providing general arguments for the form of the scalar spectra that

we can expect from our model, we present the spectra evaluated numerically.

3.1. Key equations and essential quantities

Let us begin by quickly summarizing the essential equations and the quantities that

we are interested in [57, 58]. The curvature perturbation Rk satisfies the differential

equation

R′′
k + 2

(

z′

z

)

R′
k + k2Rk = 0, (7)

where the quantity z is given by

z = (a φ′/H) . (8)

The quantity a denotes the scale factor, φ the background inflaton, and H is the

conformal Hubble factor given by (a′/a). The scalar power spectrum P
S
(k) is then

defined as

P
S
(k) =

(

k3

2 π2

)

|Rk|2, (9)

with the amplitude of the curvature perturbation Rk evaluated, in general, in the super-

Hubble limit. The tensor perturbation Uk satisfies the equation

U ′′
k + 2

(

a′

a

)

U ′
k + k2 Uk = 0, (10)

with the tensor power spectrum P
T
(k) being given by

P
T
(k) =

(

k3

2π2

)

|Uk|2, (11)

where, as in the scalar case, the tensor amplitude Uk is evaluated at super-Hubble scales.

Finally, the tensor-to-scalar ratio r is defined as follows:

r ≡
(P

T

P
S

)

. (12)

3.2. Physical ‘expectations’

Before we evaluate the scalar spectra numerically, let us broadly try and understand

the spectra that we can expect to arise in the slow-fast-slow roll scenario that we are

interested in.



Punctuated inflation and the low CMB multipoles 8

3.2.1. The evolution of the scalar modes and the scalar spectrum Consider modes

that exit the Hubble scale during an epoch of slow roll inflation. Provided there is no

deviation from slow roll soon after the modes leave the Hubble radius, the amplitude of

these modes will remain constant at super-Hubble scales. Therefore, their amplitude is

determined by their value at Hubble exit, and the scalar power spectrum corresponding

to these modes can be expressed in terms of the potential as follows [57, 58]:

P
S
(k) ≃

(

1

12 π2

)

(

V 3

V 2
φ

)

. (13)

However, if there is a period of deviation from slow roll inflation, then the asymptotic

(i.e. the extreme super-Hubble) amplitude of the modes that leave the Hubble radius just

before the deviation are enhanced when compared to their value at Hubble exit [46].

While modes that leave well before the deviation remain unaffected, it is found that

there exists an intermediate range of modes whose amplitudes are actually suppressed

at super-Hubble scales [47]. As a result, in the slow-fast-slow roll scenario of our

interest, the scalar power spectrum is initially characterized by a sharp dip and a rise

corresponding to modes that leave the Hubble radius just before the transition to fast

roll. Then arises a regime of nearly scale invariant spectrum corresponding to modes

that leave during the second stage of slow roll inflation.

3.2.2. The effects on the tensor modes and the tensor spectrum Let us now understand

the behavior of the tensor modes. In the case of the scalar modes, the quantity (z′/z)

that appears in the differential equation (7) turns out to be negative during a period

of fast roll, and it is this feature that proves to be responsible for the amplification or

the suppression of the modes at super-Hubble scales [46, 47]. In contrast, the coefficient

of the friction term in the equation (10) that describes the tensor modes, viz. (2H),

is a positive definite quantity. Hence, we do not expect any non-trivial super-Hubble

evolution of Uk. We find that, in the models that we consider, the tensor-to-scalar ratio

r remains smaller than 10−4 over scales of cosmological interest, which is below the

levels of possible detection by forthcoming missions such as PLANCK [66].

3.3. Numerical results

It is the background quantity (z′/z) that appears in the differential equation (7) for

the curvature perturbation which essentially determines the form of the scalar power

spectrum. The quantity (z′/zH) can be expressed in terms of the first two Hubble

slow roll parameters, viz. ǫ = −(Ḣ/H2) and δ = (φ̈/H φ̇), with H = (ȧ/a) being the

standard Hubble parameter. It is given by [46]
(

z′

zH

)

= (1 + ǫ+ δ) , (14)

and it is clear from this expression that, during slow roll inflation (i.e. when ǫ ≪ 1 and

δ ≪ 1), the quantity (z′/zH) will remain close to unity [46, 47]. In Fig. 3, we have
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plotted the evolution of (z′/zH) as a function of the number of e-folds N for the cases

of n = 3 and n = 4 in the potential (1). And, in Fig. 4, we have plotted the evolution of

the field in the plane of the Hubble slow roll parameters ǫ and δ for the n = 3 case. It

5 10 15 20 25 30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(

z′

zH
)

N

Figure 3. The background quantity (z′/zH) has been plotted as a function of the

number of e-folds, say, N , for the cases of n = 3 and n = 4 in potential (1). The

solid line represents the n = 3 case with the same values for the potential parameters

as in the previous two figures. The dashed line corresponds to the n = 4 case with

m = 1.1406 × 10−7 and λ = 1.448 × 10−16 (corresponding to φ0 = 2.7818) and, as

in the n = 3 case, we have chosen these values as they provide the best fit to the

WMAP 5-year data. Also, note that we have imposed the following initial conditions

for the background field in both the cases: φini = 10 and φ̇ini = 0. Evidently, the

n = 3 case departs from slow roll when 7 . N . 15, while the departure occurs during

4 . N . 12 in the case of n = 4.

is manifest from these figures that the departure from slow roll occurs roughly between

e-folds 7 . N . 15 in the n = 3 case and between e-folds 4 . N . 12 for n = 4.

We should also point out that inflation is actually interrupted for about a e-fold during

the fast roll. In Fig. 5, we have plotted the corresponding scalar spectra evaluated

numerically. The broad arguments we had presented in the previous subsection are

evidently corroborated by these two figures. Note that, in plotting all these figures, we

have chosen parameters that eventually provide the best fit to the WMAP 5-year data.

Also, in the inset in the top panel of Fig. 5, we have highlighted the difference between

the scalar spectra in our model and the power law case (i.e. when P
S
(k) = A

S
kn

S
−1,

with A
S
= 2.1 × 10−9 and n

S
≃ 0.955). Moreover, we should stress here that the

standard sub-Hubble, Bunch-Davies, initial conditions have been imposed on all the

modes in arriving at these spectra.

The scalar power spectrum with a drop in power at large scales is often

approximated by an expression with an exponential cut off of the following form [18,



Punctuated inflation and the low CMB multipoles 10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

δ

ǫ

Figure 4. The evolution of the scalar field has been plotted (as the solid black line)

in the plane of the first two Hubble slow roll parameters ǫ and δ in the case of n = 3

and for the best fit values of the parameters m and λ we have used earlier in Figs. 1

and 2. The black dots have been marked at intervals of one e-fold, while the dashed

line corresponds to ǫ = −δ. Note that ǫ > 1 during 8 < N < 9. In other words, during

fast roll, inflation is actually interrupted for about a e-fold.

19, 25]:

P
S
(k) = A

S

(

1− exp [−(k/k∗)
α]
)

kn
S
−1. (15)

In Fig. 5, we have also plotted this expression for values of A
S
, n

S
, α and k∗ that closely

approximate the spectra we obtain. It is useful to note that the spectra we obtain

correspond to A
S
= 2 × 10−9, n

S
≃ 0.945, α = 3.35 and k∗ = 2.4 × 10−4 Mpc−1 when

n = 3, while A
S
= 2 × 10−9, n

S
≃ 0.95, α = 3.6 and k∗ = 9.0 × 10−4 Mpc−1 in the

n = 4 case. We should emphasize here that we have arrived at these values for A
S
, n

S
,

α and k∗ by a simple visual comparison of the numerically evaluated result with the

above exponentially cut off spectrum.

4. Comparison with the recent WMAP 5-year data

In this section, we shall discuss as to how our model compares with the recent WMAP

5-year data.

4.1. The parameters in our model and the priors we work with

In the standard concordant cosmological model—viz. the ΛCDM model with a power

law inflationary perturbation spectrum—six parameters are introduced when comparing

the theoretical results with the CMB data (see, for instance, Ref. [67]). Four of them
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Figure 5. The scalar power spectrum P
S
(k) (the solid black line) have been plotted

as a function of the wavenumber k for the cases of n = 3 (on top) and n = 4 (at

the bottom). We have chosen the same values for the potential parameters as in the

earlier figures. Moreover, we should emphasize that we have arrived at these spectra

by imposing the standard, Bunch-Davies, initial condition on all the modes. The red

line in these plots is the spectrum (15) with the exponential cut off. It corresponds

to A
S
= 2 × 10−9, n

S
≃ 0.945, α = 3.35 and k∗ = 2.4 × 10−4 Mpc−1 in the n = 3

case, while A
S
= 2 × 10−9, n

S
≃ 0.95, α = 3.6 and k∗ = 9.0 × 10−4 Mpc−1 in the

case of n = 4. Note that the vertical blue line denotes k∗. The inset in the top panel

illustrates the difference between our model and the standard power law case (i.e. when

P
S
(k) = A

S
knS

−1, with the best fit values A
S
= 2.1×10−9 and n

S
≃ 0.955) at smaller

scales. This disparity leads to a difference in the CMB angular power spectrum at the

higher multipoles, which we have highlighted in the inset in Fig. 8.
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are the following background parameters: the baryon density (Ωb h
2), the density of

cold dark matter (Ωc h
2), the angular size of the acoustic horizon θ, and the optical

depth τ , with h denoting the Hubble constant today (viz. H0) expressed in units of

100 km s−1 Mpc−1. The parameters that are introduced to describe the inflationary

perturbation spectrum are the scalar amplitude A
S
and the scalar spectral index n

S
.

The tensor-to-scalar ratio r is also introduced as a parameter provided the ratio is

sufficiently large, say, when r & O (10−2). However, in the models we consider, the

tensor-to-scalar ratio proves to be smaller than 10−4 over the scales of cosmological

interest. So, we completely ignore the contribution due to the gravitational waves in our

analysis. We retain the standard background cosmological parameters, and we introduce

the following three parameters to describe the inflationary perturbation spectrum: m,

φ0 and a0. While m appears explicitly in the potential (1), φ0 has been chosen in place

of λ. The quantity a0 denotes the initial value of the scale factor (i.e. at N = 0),

and it basically determines the location of the cut-off in the power spectrum. Thus, we

have one additional parameter in comparison with the standard case. Essentially, we

have traded off the scalar amplitude A
S
for m, and the scalar spectral index n

S
for φ0.

In Tab. 4.1, we have listed the ranges of uniform priors that we have imposed on the

various parameters.

Model Parameter Lower limit Upper limit

Ωb h
2 0.005 0.1

Common Ωc h
2 0.001 0.99

parameters θ 0.5 10.0

τ 0.01 0.8

Reference log [1010A
S
] 2.7 4.0

model n
S

0.5 1.5

log [1010m2] −9.0 −8.0

Our model φ0 1.7 2.3

a0 0.1 2.0

Table 1. The priors on the various parameters describing the reference ΛCDM model

with a power law primordial spectrum and our model. While the first four background

cosmological parameters are common for both the models, the fifth and the sixth

parameters describe the power law primordial spectrum of the reference model. As

discussed in the text, in our model, we have traded off the scalar amplitude A
S
for

m and the spectral index n
S
for φ0. The additional parameter in our model, viz. a0,

represents the value of the scale factor at N = 0 and it essentially identifies the location

of the cut-off in the power spectrum.

4.2. The best fit values and the joint constraints

We have compared the power spectra for the n = 3 and the n = 4 cases with the

recent WMAP 5-year data for the temperature-temperature, the temperature-electric
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polarization and the electric-electric polarization angular power spectra of the CMB

anisotropies [5]. We have used a modified version of the cosmological Boltzmann code

CAMB [68, 69] to calculate the angular power spectra of the CMB anisotropies, with

the inflationary perturbation spectrum computed from a separate routine. We have

evaluated the likelihood function using the likelihood code that has been made publicly

available by the WMAP team [70]. We have obtained the best fit values for the

parameters of our model using COSMOMC [71, 72], the publicly available, Markov

Chain Monte Carlo (MCMC) code for the parameter estimation of a given cosmological

model. The MCMC convergence diagnostics are done on multiple parallel chains using

the Gelman and Rubin (“variance of chain means”/“mean of chain variances”) R

statistics for each parameter, demanding that (R−1) < 0.01, a procedure that essentially

looks at the fluctuations amongst the different chains and decides when to terminate

the run. We find that while the n = 3 case provides a better fit to the data than the

reference concordant model [67], the n = 4 case leads to such a poor fit to the data

that we do not consider it hereafter. We attribute the poor fit by the n = 4 case (and

also in the cases wherein n > 4) to the large bump in the scalar power spectrum that

arises just before the spectrum turns scale invariant (cf. Fig. 5). We have plotted the

one-dimensional marginalized and mean likelihood curves for the various parameters in

the n = 3 case in Fig. 6. And, in Fig. 7, we have plotted the corresponding 1-σ and 2-σ

two-dimensional joint constraints on the various parameters. We have listed the best fit

values and the 1-σ constraints on the various parameters describing the reference model

and the n = 3 case in Tab. 4.2. We find that the n = 3 case provides a much better fit to

the data than the reference model with an improvement in χ2
eff of 6.62. It is clear from

Parameter Reference model Our model

Ωb h
2 0.02242+0.00155

−0.00127 0.02146+0.00142
−0.00108

Ωc h
2 0.1075+0.0169

−0.0126 0.12051+0.02311
−0.02387

θ 1.0395+0.0075
−0.0076 1.03877+0.00979

−0.00931

τ 0.08695+0.04375
−0.03923 0.07220+0.04264

−0.02201

log [1010A
S
] 3.0456+0.1093

−0.1073 —

n
S

0.9555+0.0394
−0.0305 —

log [1010m2] — −8.3509+0.1509
−0.1473

φ0 — 1.9594+0.00290
−0.00096

a0 — 0.31439+0.02599
−0.02105

Table 2. The mean values and the 1-σ constraints on the various parameters that

describe the reference model and our model. As we mentioned in the text, we find that

the n = 3 case provides a much better fit to the data than the reference model with

an improvement in χ2
eff

of 6.62.

Figs. 6 and 7 that the constraint on the parameter m is prior dominated. In our model,

it is the parameter m that determines the amplitude of the power spectrum when it is

nearly scale invariant. This amplitude, in turn, is essentially determined by the first
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Figure 6. The one-dimensional mean (the solid lines) and marginalized (dashed lines)

likelihood curves for all the input parameters (and the derived parameter H0) in the

n = 3 case.

peak of the CMB angular power spectrum. We should mention here that our choice of

priors for the parameter m has been arrived at by a simple visual fit to the first peak.

4.3. The CMB angular power spectra for the best fit values

In Fig. 8, we have plotted the angular power spectrum of the CMB temperature

anisotropies for the best fit values of the parameters for the n = 3 case. For comparison,

we have also plotted the angular power spectrum for the best fit reference model. It is

immediately obvious from the figure that our model fits the lower multipoles much better
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Figure 7. The 1-σ and 2-σ two-dimensional joint constraints on the different input

parameters (and the derived parameter H0) in the n = 3 case.

than the reference model. As we have mentioned above, we obtain an improvement in

χ2
eff of 6.62 at the cost of introducing just one additional parameter when compared to

the standard power law case. We should also emphasize here that the improvement in

the fit that we have achieved is not only due to the cut-off in the scalar power spectrum,

but also because of the presence of the oscillations at the top of the spectrum, just before

it turns scale invariant. Also, note the difference in the angular power spectrum for our

model and the standard power law spectrum at the higher multipoles, which we have
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Figure 8. The CMB angular power spectrum for the best fit values of the n = 3 case

(dashed line) and the best fit power law, reference model (solid line) (cf. Tab. 4.2).

Visually, it is evident that our model fits the data much better than the standard power

law case at the lower multipoles. The inset highlights the difference between our model

and the power law spectrum at the higher multipoles. This difference arises due to

the fact that, while the spectral index in the power law case is about ns ≃ 0.955, the

asymptotic spectral index in our case turns out to be ns ≃ 0.945.

illustrated in the inset in Fig. 8. This disparity essentially arises due to the difference

in the asymptotic spectral index in our model (which proves to be about ns ≃ 0.945)

and the spectral index in the power law case (which is about ns ≃ 0.955, cf. Tab. 4.2).

The PLANCK mission [66] is expected to provide more accurate data at these higher

multipoles and, therefore, may aid us discriminate between these models better.

5. Summary and discussion

In this section, after a quick summary of our results, we compare the results we obtain

with those obtained in another single scalar field model that has been considered

earlier. We emphasize the fact that the difference between these models has immediate

observational consequences.

5.1. Summary

In this work, we have investigated a two stage slow roll inflationary scenario sandwiching

an intermediate period of deviation from inflation, driven by potentials that are similar

in shape to certain MSSM potentials [49]. In the MSSM case, inflation occurs when

the field values are much smaller than the Planck scale [49, 50, 51]. However, in our
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case, since we demand two epochs of slow roll, it necessarily requires that the initial

values of the field (assuming, say, about 60 e-folds of inflation) be greater than M
Pl
. The

period of fast roll period produces a sharp drop in the scalar power spectrum for the

modes that leave the Hubble radius just before the second slow roll phase. We choose

our scales such that the drop in power corresponds to the largest cosmological scales

observable today. We find that the resulting scalar power spectrum provides a much

better fit to the recent WMAP data than the canonical, nearly scale invariant, power

law, primordial spectrum.

5.2. Discussion

At this stage, it is important that we compare our results with those obtained in another

single field model that has been studied before. As we had mentioned in the introduction,

an initial kinetic dominated (i.e. fast roll) stage preceding slow roll inflation, driven by

a quadratic potential has been considered earlier to provide a sharp drop in the scalar

power spectrum at large scales [18, 30]. At first glance, one may be tempted to conclude

that the model we have studied here is equivalent to such a scenario if we disregard the

first slow roll stage, since we have a kinetic dominated phase preceding a period of slow

roll inflation. However, there are crucial differences between the two models which we

have outlined below.

To begin with, in the model we consider, there is no freedom to choose the type of

fast roll (say, the equation of state during the epoch of fast roll). It is fixed once we have

chosen the parameters so as to fit the observations. Secondly, in the scenario considered

earlier, the modes which are outside the Hubble radius during the kinetic dominated

phase would have always remained so in the past [18, 30]. The authors assume that

somehow there may have been a previous phase of inflation, during which they were

inside the Hubble radius and began life in the Bunch-Davies vacuum. While it is not

impossible to think of situations where there may have been a previous inflationary

epoch—for instance, it can be achieved by invoking another scalar field [54, 55, 56]—the

consequences can be quite different. In contrast, in the scenario that we have considered

here, the standard, sub-Hubble, Bunch-Davies, initial conditions have been imposed on

all the modes. Thirdly, it was argued that, since the suppression of power for the scalar

spectrum proves to be sharper than that of the tensor, the tensor-to-scalar ratio r

displays a sharp rise towards large physical scales [30], a feature that may possibly be

detected by upcoming missions such as, for instance, PLANCK [66]. However, in the

models that we consider, the tensor amplitude on scales of cosmological interest proves

to be too small (r < 10−4) to be detectable in the very near future. In conclusion, we

would like to mention that a detection of the C
BB

ℓ modes corresponding to, say, r > 10−4,

can rule out the class of models that we have considered in this work.
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