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A recent experiment has probed the electron transfer kinetics in the early stage of photosynthesis in

Rhodobacter sphaeroides for the reaction center of wild type and different mutants [Science 316, 747

(2007)]. By monitoring the changes in the transient absorption of the donor-acceptor pair at 280 and

930 nm, both of which show non-exponential temporal decay, the experiment has provided a strong

evidence that the initial electron transfer kinetics is modulated by the dynamics of protein backbone.

In this work, we present a model where the electron transfer kinetics of the donor-acceptor pair is

described along the reaction coordinate associated with the distance fluctuations in a protein back-

bone. The stochastic evolution of the reaction coordinate is described in terms of a non-Markovian

generalized Langevin equation with a memory kernel and Gaussian colored noise, both of which are

completely described in terms of the microscopics of the protein normal modes. This model provides

excellent fits to the transient absorption signals at 280 and 930 nm associated with protein distance

fluctuations and protein dynamics modulated electron transfer reaction, respectively. In contrast to

previous models, the present work explains the microscopic origins of the non-exponential decay of

the transient absorption curve at 280 nm in terms of multiple time scales of relaxation of the protein

normal modes. Dynamic disorder in the reaction pathway due to protein conformational fluctuations

which occur on time scales slower than or comparable to the electron transfer kinetics explains the

microscopic origin of the non-exponential nature of the transient absorption decay at 930 nm. The

theoretical estimates for the relative driving force for five different mutants are in close agreement

with the experimental estimates obtained using electrochemical measurements. © 2013 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4789346]

I. INTRODUCTION

The early stage of photosynthesis involves an electron

transfer reaction from an excited donor to a neighbouring ac-

ceptor in an environment of protein matrix. In the case of pho-

tosynthetic bacteria Rhodobacter sphaeroides, the donor is a

special pair of bacteriochlorophylls, which on photoexcitation

transfers an electron to a pheophytin to form a charge sepa-

rated species in picoseconds. In a recent experiment by Wang

et al.,1 the reaction center of the wild type and different mu-

tants of Rhodobacter sphaeroides was probed by monitoring

the changes in the transient absorption of the donor-accepter

pair at 930 and 280 nm. While the signal at 930 nm tracked the

kinetics of electron transfer reaction from donor to acceptor,

the signal at 280 nm was sensitive to protein conformational

dynamics. Interestingly, in an interval of around 1–200 ps,

the wild type and mutants showed different temporal decay

for the transient absorption at 930 nm. In the same time inter-

val, however, the temporal decay of the transient absorption

at 280 nm for different mutants was all the same resulting

in data collapse. In spite of these differences, a common fea-

ture of both the profiles was the non-exponential temporal de-

cay profiles. The invariance of the 280 nm signal to different

mutants in the reaction center provided a strong experimen-

tal evidence that protein conformational dynamics occurs on

timescales slower than the electron transfer kinetics, implying

that the former effectively modulates the kinetics of electron

transfer in the early stages of photosynthesis.

In order to fit the experimental data for the transient ab-

sorption curves at 930 and 280 nm, Wang et al. used the

Sumi-Marcus model of electron transfer2, 3 to calculate the

survival probability of excited donor state. The survival prob-

ability, among other parameters, depended on a protein relax-

ation function, Cp(t), and the free energy of a protein back-

bone, Vp(x), where x is the reaction coordinate associated

with protein dynamics. However, since the details of protein

conformational dynamics were not included in the model,

Cp(t) was considered as an unknown function, the empiri-

cal form of which was obtained by fitting a tri-exponential

function to the experimental data at 280 nm which yielded

three relaxation times. Also, Vp(x) was assumed to be a har-

monic potential. Keeping all other parameter fixed, the same

three relaxation times could provide excellent fit to the exper-

imental data at 930 nm for all the different types of mutants

in the reaction center by merely changing the driving force,

!G0, the free energy difference between the donor and accep-

tor. However, since the protein conformational fluctuations

were not included in the model, the microscopic basis for

the tri-exponential form of the empirical function, Cp(t), and

the harmonic nature of the potential Vp(x)—two key quan-

tities which were crucial to fit the experimental data—is not

clear.
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To include the effects of protein conformational fluctua-

tions, a recent work4 models the inter-segment distance fluc-

tuations of a protein by considering a particle in a harmonic

potential driven by the fractional Gaussian noise.5 In this one-

dimensional generalized Langevin equation description, the

complicated dynamics of protein is included in the mem-

ory kernel which depends on the fractional Gaussian noise

through the Hurst index H. Also, Cp(t) is identified with the

time correlation of the inter-segment distance fluctuations of

a protein, the form of which is not empirical but can be cal-

culated within the model. Although the agreement between

the theory and experimental data for the transient absorption

signal at 930 nm is good, the fitting for different mutants in

the reaction center has been obtained by varying both !G0,

the driving force of the reaction and τ , the protein relaxation

time. The variation of τ for different mutants, however, can-

not explain data collapse of the transient absorption curves at

280 nm which occurs because protein conformational dynam-

ics is invariant in different mutants. Moreover, no microscopic

basis for the memory kernel and the choice of noise, both of

which depend on the Hurst index H, can be provided within

the model. In particular, a good fit to the experimental data

has been obtained by taking H = 3/4. From the microscopic

point of view, it is not clear why this special value of the Hurst

index is successful in reproducing the experimental results at

930 nm.

In this work, we present a model where the electron trans-

fer kinetics of the donor-acceptor pair is described along the

reaction coordinate associated with the distance fluctuations

in a protein backbone. The stochastic evolution of the reac-

tion coordinate is described in terms of a non-Markovian gen-

eralized Langevin equation with a memory kernel and Gaus-

sian colored noise, both of which are completely described

in terms of the microscopics of the protein normal modes.6

This model, apart from providing excellent fits to the experi-

mental data by merely changing the driving force of the elec-

tron transfer reaction for different mutants relative to the wild

type, explains the microscopic basis for the multiexponential

form of Cp(t) in terms of the multiple time scales of relax-

ation of protein normal modes and the harmonic nature of

the potential in terms of the conformational entropy due to

chain connectivity. The microscopic origin of H = 3/4 de-

pendence of the fractional Gaussian noise can also be ex-

plained in terms of the non-Markovian distance fluctuations6

of a protein backbone resulting in a t−1/2 power law decay of

the friction kernel observed experimentally.7 Moreover, the

theoretical estimates for the relative driving force for five

different mutants are found to be in close agreement with

the experimental estimates obtained using electrochemical

measurements.1, 8

The paper is organized as follows. In Sec. II, the key steps

involved in the electron transfer reactions modulated by pro-

tein conformational dynamics are presented. The evaluation

of C(t) [which is similar to Cp(t) in Ref. 1] and the survival

probability S(t) of excited donor state are also presented in

Sec. II. The comparison of the theoretical results with experi-

mental data is presented in Sec. III followed by summary and

conclusions in Sec. IV. The details of the calculation are pre-

sented in Appendices A–D.

II. THE ELECTRON TRANSFER REACTION AND
PROTEIN CONFORMATIONAL FLUCTUATIONS

In the early stage of photosynthesis, slow protein relax-

ation modulates the fast electron transfer kinetics from the

excited donor to the acceptor. This slow relaxation is associ-

ated with the multiple time scales of relaxation of the normal

modes of proteins as a result of which protein conformational

fluctuations decay on time scales longer than or comparable

to the time scales of the electron transfer reaction leading

to dynamic disorder9 in the reaction pathway. Starting from

a Markovian model of protein normal modes relaxation, the

slow conformational dynamics of protein backbone can be

effectively described by a non-Markovian dynamics of end-

to-end distance fluctuations of a protein, R(t).6

If the electron transfer reaction from the excited donor

to acceptor is assumed to follow the first-order kinetics, then

the time evolution of the probability density of the electron

donor state along a reaction coordinate R(t), which evolves

stochastically in time, is given by4

dP (t)

dt
= −k(R(t))P (t), (1)

where as a result of dynamic disorder the rate constant of the

electron transfer reaction depends on the reaction coordinate,

R(t). The latter is associated with the end-to-end distance fluc-

tuations in a protein backbone, indicating that protein con-

formational fluctuations which act on the time scales slower

than or comparable to the electron transfer reaction, effec-

tively modulate the electron transfer kinetics. The expression

for k(R) is given by

k(R) =

(

J 2

¯

√

π

λf kBT

)

exp[−(µ − γ R)2], (2)

which can be obtained by considering the fast and slow

coordinates of potential energy surfaces of reactants and

products1, 2 in terms of the effective bond distance and end-

to-end distance fluctuations of the protein backbone, respec-

tively. The details are provided in Appendix A. In the above

expression, R represents the reaction coordinate associated

with the end-to-end distance of a protein backbone. Also, J is

electronic coupling matrix element. µ =
(!G0+λ)√

4 λf kB T
,1, 2 where

!G0 is the standard free energy difference of the reaction

and λ is the total reorganization energy which is the sum of

λf and λs corresponding to fast reorganization energy due to

harmonic bond fluctuations and slow reorganization energy

due to protein end-to-end distance fluctuations, respectively.

γ =
√

λs

2 λf Nb2 , where N is the number of monomers of size b.

The solution of the above equation is given by

P (t) = P (0) exp

(

−
∫ t

0

k(R(t ′))dt ′
)

. (3)

The above equation when averaged over the distribution of

R(t) yields the survival probability10 of the unreacted electron

donor state that survives up to time t. The latter is directly

proportional to the intensity of transient absorption measured
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in the experiment.4 Carrying out the average yields

S(t) = 〈P (t)〉 = P (0)

〈

exp

(

−
∫ t

0

k(R(t ′))dt ′
)〉

. (4)

The stochastic evolution of the reaction coordinate associated

with the end-to-end distance fluctuations in a protein back-

bone is presented in Sec. II A.

A. Generalized Langevin equation for
the end-to-end vector

The expression for the survival probability obtained

above is similar to the one presented in Ref. 4. However,

in Ref. 4 the time evolution of the reaction coordinate, the

inter-segment distance x, was modelled as a particle in a

one-dimensional harmonic potential driven by the fractional

Gaussian noise. In the present work, the protein conforma-

tional fluctuations about the ground energetic state, occurring

in a three-dimensional space, are parametrized by rn(t) = r0
n

+ un(t), where r0
n is the position vector of the nth monomer in

the energetic ground state and un(t) is the deviation of the nth

monomer from its ground state conformation. Protein confor-

mation dynamics can, therefore, be effectively described by

considering the stochastic dynamics of the end-to-end vector,

R(t) = rN(t) − r0(t) = R0 + uN(t) − u0(t), of a protein back-

bone, where R0 = r0
N − r0

0 is the end-to-end vector of a pro-

tein chain in its energetic ground state and subscripts 0 and N

label the first and last monomers, respectively. It is to be noted

that the consideration of the end-to-end distance as opposed to

the inter-segment distance Rnm(t) = R0
nm + un(t) − um(t) as

the reaction coordinate while simplifying the present analysis

does not affect the quantitative results.6

The scalar component of the end-to-end vector, R(t),

is related to the reaction coordinate, R(t), through R(t)

=
√

R(t) · R(t). Using the simplest Rouse-like dynamics for

the harmonic deviations un(t), introduced earlier6 to explain

the two-point and four-point autocorrelations of the fluores-

cence lifetime fluctuations associated with the distance fluc-

tuations of the protein flavin reductase,5 the stochastic time

evolution of the displacement vector is given by

ζ
∂un(t)

∂t
= k

∂2un(t)

∂n2
+ fn(t). (5)

The above equation is a force balance equation, where the first

term is due to the dissipative force, the second term represents

the force due to entropic elasticity arising from the chain con-

nectivity, and the last term represents the random noise term.

Here, ζ is a friction coefficient, k = 3kBT/b2 is an entropic

spring constant and fn is a Gaussian white noise satisfying

〈fn(t)fm(t′)〉 = 2kBTζ δnmδ(t − t′).

In what follows, we use the Markovian dynamics of

protein normal modes to describe the non-Markovian dy-

namics of the reaction coordinate associated with protein

distance fluctuations. Given that the two ends of the chain

are free of external force, the displacement at the two ends

should satisfy ∂un/∂n = 0 at n = 0 and n = N. In terms

of the normal modes, therefore, the displacement vector is

given by un(t) = 2
∑∞

p=1 Qp(t) cos(pπn/N ) − R0
n, resulting

in the following equation for the time evolution of the protein

normal modes:

ζp

∂Qp(t)

∂t
= −kpQp(t) + Fp(t), (6)

where ζ p = 2Nζ is the friction coefficient of the pth mode,

kp = 6p2π2kBT/Nb2 is the entropic spring constant of the pth

mode and fn(t) = 2
∑∞

p=1 Fp(t) cos(pπn/N ).11

From the above equation, the time-correlation function of

the protein normal modes follows

〈Qp(0) · Qq(t)〉 = δpq

Nb2

(p2 + q2)π2
exp(−p2t/τ ). (7)

The above equation shows that each mode is uncorrelated

with all other modes and relaxes as a single exponen-

tial with its own distinct relaxation time, τ /p2, where τ

= Nb2ζ p/6π2kBT is the longest relaxation time associated

with the first normal mode. These features of the correlation

function show that the fluctuations of the individual normal

mode are governed by the Ornstein-Uhlenbeck process,12 and

are thereby Gaussian and Markovian in nature. Since the end-

to-end vector is related to the sum of the normal modes, R(t)

= −4
∑

p = 1, odd Qp(t), the time correlation of distance fluctu-

ations is given by

ρ(t) = 8
∑

p:odd

Nb2

p2π2
e−p2t/τ , (8)

indicating that the end-to-end distance fluctuations are gov-

erned by the superimposed Ornstein-Uhlenbeck process and

are therefore Gaussian and non-Markovian in nature.12 As a

result of the latter, the time evolution of the end-to-end vector

is governed by the underdamped non-Markovian generalized

Langevin equation with a memory kernel and the Gaussian

colored noise given by6, 13, 14

∫ t

0

dt ′K(t − t ′)
dR(t ′)

dt ′
= −

3kBT

Nb2
R(t) + f(t), (9)

where the mean and the variance of the Gaussian colored

noise are given by 〈f(t)〉 = 0 and 〈fα(0)fβ(t)〉 = kBTK(t)δαβ ,

respectively, with K(t) being the friction kernel. Also, the first

term on the right hand side represent the effective elastic force

due to chain connectivity originating from the entropic contri-

bution to the free energy,11 given by F (R) = 3KBT

2Nb2 R2, which

is harmonic in nature. To obtain a closed form analytical ex-

pression for K(t), the above equation can be multiplied with

R(0), averaged, and Laplace transformed to yield

K(s) =
3kBT

Nb2

C(s)

1 − sC(s)
, (10)

where K(s) = 3kBT

Nb2

∫ ∞
0

dt exp(−st)K(t) is the Laplace trans-

form of K(t) and C(s) = ρ(s)/ρ(0). A closed form analytical

expression for K(s) can be obtained by replacing the summa-

tion by integration in Eq. (8), Laplace transforming the result-

ing expression and substituting it in the above expression to

yield

K(s) =
3kBT

Nb2

√

τ

s

[

1 − 1√
sτ

[

π
2

− tan−1
(

1√
sτ

)]

]

[

π
2

− tan−1
(

1√
sτ

)

] . (11)
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For times longer than the longest relaxation time, sτ ' 1, the

above expression reduces to K(s) ≈ kBT

Nb2 τ ≈ Nζ , which im-

plies that the friction memory kernel is given by K(t) ≈ ζ Rδ(t),

where ζ R = Nζ is the total friction coefficient of the chain.11

Since K(t) ∝ δ(t), the Markovian limit is reassuringly recov-

ered at long times.13, 14 In contrast, for times shorter than the

longest relaxation time, sτ * 1, K(s) ≈ kBT

Nb2

√
τ/s, implying

that K(t) ∝ 1/
√

t .

In a previous work, the dynamics of inter-segment dis-

tance which effectively modulate the electron transfer reac-

tion was described by considering the time evolution of a par-

ticle in a harmonic potential driven by the fractional Gaussian

noise.4 In this model, the effective friction coefficient was as-

sumed to be given by K(t) = 2H(2H − 1)t2H − 2, where H is

the Hurst index lying between 1/2 and 1. A good fit to exper-

imental data was obtained by taking H = 3/4. However, no

physical interpretation for this special choice, which yields

K(t) ∝ 1/
√

t , was provided. In the non-Markovian general-

ized Langevin equation approach used here, the colored Gaus-

sian noise is fully described in terms of the microscopics of

the non-Markovian distance fluctuations arising from the su-

perposition of the Markovian fluctuations of the protein nor-

mal modes. The power law, t−1/2, dependence of the friction

kernel, observed experimentally,7 therefore arises naturally.

For times shorter than the longest relaxation time, the power

law decay of the friction kernel is due to the non-Markovian

distance fluctuations which at long times recovers the ex-

pected Markovian limit resulting in delta-function correlated

white noise. The expression for the fractional Gaussian noise

in Ref. 4, however, does not recover the expected limit of

delta-function correlated white noise at long times.

B. Survival probability of electron donor state

To obtain the expression for the probability distribution

of R(t), the generalized Langevin equation can be transformed

into the Smoluchowski equation by following the calculation

presented in Appendix B. The resulting expression is

∂P (R, t)

∂t
=D(t)

[

∂

∂R
· RP (R, t) +

Nb2

3

∂2

∂R2
P (R, t)

]

,

(12)

where D(t) = − Ċ(t)

C(t)
is the time dependent diffusion

coefficient and C(t) is the time correlation of the distance

fluctuations in a protein, given by

C(t) =
ρ(t)

ρ(0)
=

8

π2

∑

p:odd

1

p2
exp(−p2t/τ ). (13)

If P(R, t|R0, 0) represents the conditional probability that

the end-to-end vector of a chain which was R0 at time t = 0 is

R at time t then this probability is obtained from the following

Smoluchowski equation:

∂P (R, t |R0, 0)

∂t

= D(t)

[

∂

∂R
·{RP (R, t |R0, 0)} +

Nb2

3

∂2

∂R2
P (R, t |R0, 0)

]

(14)

along with the initial condition11

P (R, 0|R0, 0) = δ(R − R0). (15)

The solution of the above equations, which is presented in

Appendix C, yields the following Gaussian distribution:

P (R, t |R0, 0) =

(

3

2πNb2
[

1 − C2(t)
]

)3/2

× exp

[

−
3 (R − R0C(t))2

2Nb2
[

1 − C2(t)
]

]

. (16)

In the long time limit, t → ∞ when the correlation of the end-

to-end vector at time t is completely uncorrelated with time

t = 0, C(t) = 0 and the steady state distribution is given by

Pss(R) =

(

3

2πNb2

)3/2

exp

[

−
3R2

2Nb2

]

. (17)

Following Ref. 4, an approximate closed form expression for

the survival probability can be obtained by expanding the ex-

ponential function on the right hand side of Eq. (4) to the sec-

ond order in cumulants with stationary correlations, resulting

in

S(t) = exp

[

−
∫ t

0

dt ′〈k(R(t ′))〉

+

∫ t

0

dt ′(t − t ′)(〈k(R(t ′))k(R(0))〉

−〈k(R(t ′))〉〈k(R(0))〉)
]

. (18)

Substituting the expression for the rate constant from Eq. (2)

followed by integration over t′ yields

S(t) = exp

[

−t α β

∫ ∞

0

dx x2 exp

[

−x2

(

γ ′ 2 +
3

2

)

+ 2 µ γ ′ x

]

+

∫ t

0

dt ′(t − t ′)

{

α2β2

(

(1 − C2(t ′))−1/2

3C(t ′)

)

∫ ∞

0

dx

∫ ∞

0

dx0 xx0 exp

[

−
(

x2 + x2
0

)

(

γ ′ 2 +
3

2(1 − C2(t ′))

)

+ 2 µ γ ′ (x + x0)

]

× sinh

[

3 C(t ′) x x0
(

1 − C2(t ′)
)

]

− α2β2

(∫ ∞

0

dx x2 exp

[

−x2

(

γ ′ 2 +
3

2

)

+ 2 µ γ ′ x

])2
}]

, (19)
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where x = R
N1/2b

, x0 = R0

N1/2b
, α = ( J 2

¯

√

π
λf kB T

), β

= 4π
(

3
2π

)3/2
exp(−µ2), µ =

(!G0+λ)√
4 λf kB T

, and γ ′ =
√

λs

2 λf
.

The key steps involved in obtaining the above expression for

the survival probability are summarized in Appendix D.

III. RESULTS AND DISCUSSION

The expression for C(t) [Eq. (13)] provides a measure of

the time-scale over which protein conformational fluctuations

are correlated. The expression for S(t) [Eq. (19)], on the other

hand, estimates the protein conformational dynamics modu-

lated survival of the electron donor state up to time t. In Ref. 1,

the time dependent diffusion coefficient Dp(t) = − Ċp(t)

Cp(t)
had

the same expression as here [Eq. (12)], where Cp(t) was the

protein relaxation function. However, since protein confor-

mational fluctuations were not explicitly included in Ref. 1,

Cp(t) was considered as an empirical function, the functional

form of Cp(t) which was obtained by fitting a tri-exponential

function, with three distinct relaxation times as the fitting pa-

rameters, to the transient absorption signal at 280 nm. In the

present work, C(t), which has the same physical interpreta-

tion as Cp(t), is not an empirical function but derived from

the non-Markovian dynamics of protein distance fluctuations.

The multiple exponential decay of C(t) which corresponds to

the multiple relaxation times, τ p = τ /p2, over which protein

normal modes relax naturally explain the multi-exponential

empirical form of Cp(t) which was necessary to obtain a good

fit with the transient absorption signal at 280 nm. It also ex-

plains the microscopic origins of the non-exponential decay

of the experimental data in terms of the multiple time scales

over which protein normal modes relax.

Data points in Fig. 1 correspond to the temporal decay of

the transient absorption change at 280 nm due to protein con-

formational fluctuations which are invariant in different mu-

tants leading to data collapse. The solid line in Fig. 1 shows

the fitting of C(t) [Eq. (13)] with the transient absorption sig-
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FIG. 1. The temporal decay of the transient absorbance change at 280 nm

due to protein conformational fluctuations as measured in experiment1 is

compared with the end-to-end distance correlation of the protein backbone

C(t) [Eq. (13)]. The solid line represent theoretical fit to experimental data for

three different mutants of Rhodobacter sphaeroides, which yields the longest

relaxation time corresponding to the first mode as τ = 25 ps.
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FIG. 2. The temporal decay of the transient absorbance change at 930 nm

measured in experiment1 is compared with the theoretical expression for

survival probability S(t) [Eq. (19)] for wild type and twelve different mu-

tants [seven (top) and six (bottom)] of Rhodobacter sphaeroides. Solid lines

represent theoretical fit to the experimental data for the fitting parameters J

= 40 cm−1, λf = 350 meV, λs = 90 meV, T = 300 K, and τ = 25 ps.

While the standard free energy difference of wild type is taken to be !G0
wt

= −172 meV, the fitting to different mutants is obtained by merely changing

the relative free energy, tabulated in Table I as !!G0
a .

nal at 280 nm which only requires one fitting parameter—the

longest relaxation time associated with the first mode, τ—as

it fixes the relaxation time for all the higher modes through τ p

= τ /p2. The good fitting is obtained for τ = 25 ps which fixes

the value of C(t) in Eq. (19) for the survival probability, S(t).

The solid lines in Fig. 2 show the fitting of the survival

probability S(t), evaluated numerically from Eq. (19), with the

transient absorption signal at 930 nm. For the wild type re-

action center the fitting parameters are !G0
wt = −172 meV,

J = 40 cm−1, λf = 350 meV, λs = 90 meV, τ = 25 ps,

and T = 300 K. Keeping all these parameter fixed, the tran-

sient absorption signal at 930 nm for different mutants can

be fitted by merely varying the standard free energy differ-

ence !G0
mut for different mutants with respect to the wild

type reaction center, represented by the relative free energy

difference, !!G0 = !G0
mut − !G0

wt . Table I shows the fit-

ting parameters for the relative free energy difference !!G0

for different mutants, where the subscripts a, b, c correspond

to the fitting parameters used in the present study, Refs. 1

and 4, respectively. In Ref. 1, where protein conformational

fluctuations were not explicitly included in the model, the fit-

ting parameters used were !G0 = −200 meV (wild type),

J = 39 cm−1, λf = 280 meV, λs = 70 meV, and T = 300 K.
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TABLE I. Comparison of the fitting parameters for the relative free energy

for different mutants, !!G0
a,b,c . The subscript a, b, c correspond to the fitting

estimates for the present work, Refs. 1 and 4, respectively. In Ref. 4, good

fitting has been obtained by additionally varying the relaxation time for the

inter-segment distance fluctuations, τ , the values of which are denoted within

the square brackets.

!!G0
a !!G0

b !!G0
c [τ (ps)]

Species (meV) (meV) (meV)

L131LH+M160LH+M197FH 152 180 155 [210]

L153HD 131 148 131 [190]

L131LH+M197FH 118 140 118 [185]

L131LH+M160LH 117 136 117 [180]

M203GL 90 105 93 [165]

L131LH 84 99 85 [154]

L153HF 52 57 50 [89]

L153HV 37 28 26 [55]

M160LH 27 27 25 [50]

Wild type 0 0 0 [40]

L170ND −1 −7 −0.7 [31]

L168HE −40 −48 −44 [21]

L168HF −68 −75 −60 [6]

In Ref. 4, on the other hand, where protein conforma-

tional fluctuations were included by considering the stochas-

tic dynamics of a particle in a harmonic potential driven by

the Gaussian fractional noise, the best fitting was obtained by

considering the same fitting parameters [J, λf, λs, and T] as in

Ref. 1. However, in contrast to the present work and Ref. 1,

the value of the protein relaxation time, τ , was not obtained

by fitting the theoretical curve with the signal at 280 nm, but

by considering τ as an additional fitting parameter. In Table I,

the values of these additional fitting parameters [τ ] are speci-

fied within the square brackets against !!G0
c values for each

mutant. Since data collapse for the signal at 280 nm for dif-

ferent mutants shows that protein conformational fluctuations

are insensitive in different mutants and decays as a single non-

exponential curve [Ref. 1], it is not clear why different val-

ues of the protein relaxation times are needed to obtain fitting

for 930 nm signal for different mutants. One possible reason

for this could be that the fractional Gaussian noise in Ref. 4

does not recover the expected limit of delta function corre-

lated white noise at long times14 and only provides a reason-

able description for times shorter than the longest relaxation

time of a protein.

The relative free energy difference for different mutants,

!!G0
P/P + can be measured electrochemically, where P/P+

is the midpoint potential of each mutant and P is the initial

electron donor.1, 8 The open circles in Fig. 3 represent the ex-

perimental estimates for !!G0
P/P + for five different mutants.

These values are compared with the theoretical fitting esti-

mates, !!G0
f it , given in Table I corresponding to the present

work and diffusion-reaction model of Ref. 1. Figure 3 shows

that the theoretical estimates of the present model, !!G0
a

[squares] compare well with the theoretical estimates of the

diffusion-reaction model,1 !!G0
b [triangles] and experimen-

tal estimates, !!G0
P/P + [circles] in Ref. 8.
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−100

−50

0

50

100

150

∆∆G
0
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∆

G
0 fi

t(m
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L131LH

L168HE

L168HF

M160LH

L131LH+M160LH

FIG. 3. Comparison of the theoretical estimates of the relative free en-

ergy difference, !!G0
a,b , tabulated in Table I for the present study, !!G0

a

[squares], and the diffusion-reaction model,1 !!G0
b [triangles], with the

experimental estimates !!G0
P/P+ [circles] obtained using electrochem-

ical measurements in Ref. 8 for five different mutants of Rhodobacter

sphaeroides. The solid line is a guide to the eye.

IV. SUMMARY AND CONCLUSION

In this work, we have used a non-Markovian general-

ized Langevin equation approach to describe the stochas-

tic dynamics of the reaction coordinate associated with pro-

tein distance fluctuations, which effectively modulates the

electron transfer kinetics in early stage photosynthesis. The

non-Markovian generalized Langevin equation description

includes a memory kernel and colored Gaussian noise, both of

which are completely described in terms of the microscopics

of the protein normal mode fluctuations. This model yields an

analytical expression for protein distance fluctuations, C(t) as

a superposition of the protein normal modes relaxation with

each mode decaying with its own relaxation time, resulting

in multiple time scales of relaxation. C(t) provides excellent

fit to the 280 nm signal associated with the protein conforma-

tional relaxation and yields the relaxation time of the first nor-

mal mode through which the relaxation time of all the higher

modes can be obtained. The non-exponential relaxation of the

latter can be understood in terms of the multiple time scales

of relaxation of the normal modes. The harmonic potential as-

sumed in Ref. 1 also finds its microscopic meaning in terms of

the conformational entropy due to chain connectivity. The ex-

pression for the survival probability for electron donor state,

on the other hand, provides excellent fits to the transient ab-

sorption signal at 930 nm, using the same C(t) obtained by

fitting the 280 nm signal, for different mutants in the reaction

center just by varying the driving force of the reaction relative

to the wild type. The non-exponential decay of the latter is due

to dynamic disorder in the electron transfer reaction pathway

because of protein conformational fluctuations that occur on

time scales slower than or comparable to the electron trans-

fer reaction. The theoretical estimates for the relative driv-

ing force for five mutants are in reasonably good agreement

with the experimental estimates obtained using electrochemi-

cal measurements.

The non-Markovian Langevin equation approach used

here has earlier6 provided excellent fits to the experimental
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data measuring the two-point and four-point autocorrelations

of the fluorescence lifetime fluctuations associated with the

distance fluctuations of the protein flavin reductase over five

decades in time and has also demonstrated a symmetry of

these functions observed experimentally.5 Given that the same

model provides accurate fits to the transient absorbance sig-

nals for protein dynamics modulated electron transfer kinet-

ics, explains the microscopic origin for the non-exponential

decay of these signals, clarifies in terms of the protein normal

mode fluctuations why the consideration of a tri-exponential

empirical form for Cp(t) and a harmonic potential for protein

distance fluctuations in Ref. 1 were sufficient to recover the

experimental results, shows that several universal aspects of

protein conformational fluctuations can be captured by the

non-Markovian Langevin equation approach for distance fluc-

tuations used here.
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APPENDIX A: PROTEIN DYNAMICS MODULATED
ELECTRON TRANSFER RATE CONSTANT

In Sumi-Marcus model, the electron transfer kinetics in

a viscous solvent has been described in terms of the fast and

slow reaction coordinates.2, 3 When the electron transfer ki-

netics is modulated by the conformational dynamics of a pro-

tein backbone, then the potential energy surface of reactants

and products along the fast and slow reaction coordinates1 can

be given by

V r (q,R) =
1

2
kf q2 +

1

2
ksR

2, (A1)

V p(q,R) =
1

2
kf (q − q0)2 +

1

2
ks(R − R0)2 + !G0, (A2)

where q and R are the respective fast and slow reaction coor-

dinates associated with the harmonic fluctuations of the effec-

tive bond distance and end-to-end distance of a protein chain

with kf = kBT/b2 and ks = kBT/Nb2 being the respective en-

tropic spring constants.11 q0 and R0 are the equilibrium values

of q and R, respectively, and !G0 is the standard free energy

difference between the reactants and products. The fast and

slow components of the total reoganizational energy λ are

given by λf = kf q2
0/2 and λs = ksR

2
0/2, respectively, such

that λ = λs + λf.
1, 2 In Ref. 1, where the protein conforma-

tional fluctuations are not explicitly included, the functional

form of the potential, Vp(x), associated with the slow reaction

coordinate was not specified, but was assumed to be harmonic

in nature. In the present work, the probability distribution of

the effective bond distance and the end-to-end distance fol-

low the Gaussian distributions.6, 11 The quadratic dependence

of the effective bond distance and end-to-end distance, asso-

ciated with the fast and slow reaction coordinates, therefore,

appears naturally.

The potential energy surfaces of reactants and products

intersect when V r (q†, R) = V p(q†, R),2 yielding

q† =
(!G0 + λ) − ksR R0

kf q0

. (A3)

Given that the electron transfer rate is given by k(R)

= ν f exp ( − !G†(R)/kBT), where νf = J 2

¯

√

π
λf kBT

is the

frequency factor and !G†(R) = V r (q†, R) − V r (0, R) is the

free energy difference, Eqs. (A1) and (A3) yield2

!G†(R) =
1

2
kaq

†2 =

(

!G0 + λ −
√

2λskBT

Nb2 R

)2

4λf

(A4)

resulting in

k(R) =

(

J 2

¯

√

π

λf kBT

)

exp[−(µ − γ R)2], (A5)

where µ =
(!G0+λ)√

4 λf kB T
and γ =

√

λs

2 λf Nb2 . The above expres-

sion is the same as Eq. (2). It is to be noted that in real systems

the electronic coupling matrix J and the fast reorganization

energy λf can depend on the distance and orientation of the

donor-acceptor pair.15, 16 Here, the presence of protein con-

formational fluctuations which effectively modulate electron

transfer kinetics require the presence of slow reaction coor-

dinate along with the fast one. This makes the present analy-

sis complex compared to earlier works. Given the complexity

of the present calculation, we have assumed J and λf to be

constant.

APPENDIX B: DERIVATION OF THE SMOLUCHOWSKI
EQUATION

The expression for the probability distribution of R(t)

can be obtained by transforming the generalized Langevin

equation into the Smoluchowski equation. The details of the

method are given in Refs. 17–21. Here we outline the key

steps relevant to the present calculation.

The Laplace transform of the generalized Langevin equa-

tion [Eq. (9)] yields

R(s) = R(0) C(s) + f(s) φ(s)
Nb2

3kBT
, (B1)

where C(s) =
K(s)

s K(s)+
3kB T

Nb2

and φ(s) = 1 − s C(s).

Equation (B1) can be Laplace inverted to yield

R(t) = R(0) C(t) +
Nb2

3kBT

∫ t

0

dt ′ φ(t − t ′) f(t ′). (B2)

The time derivative of Eq. (B2) yields

Ṙ(t) = −D(t) R(t) +
Nb2

3kBT
C(t)

d

dt

∫ t

0

dt ′
φ(t − t ′)

C(t)
f(t ′),

(B3)

where D(t) = − Ċ(t)

C(t)
.

Defining P (R, t) = 〈δ(R(t) − R)〉 and differentiating it

with respect to t yields

∂P (R, t)

∂t
= −

∂

∂R
〈δ(R(t) − R)Ṙ(t)〉. (B4)
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Substitution of Eq. (B3) into Eq. (B4) results in

∂P (R, t)

∂t
= D(t)

∂

∂R
· R P (R, t)

−
Nb2

3kBT

∂

∂R
〈δ(R(t) − R) f(t)〉, (B5)

where f(t) = C(t) d
dt

∫ t

0
dt ′ φ(t−t ′)

C(t)
f(t ′).

Using Novikov’s theorem in Eq. (B5)

〈δ(R(t) − R) f(t)〉

= −
∂

∂R

∫ t

0

dt ′ 〈f(t) f(t ′)〉
〈

δ(R(t) − R)
δR(t)

δf(t)

〉

. (B6)

The functional derivative in Eq. (B6) is obtained using the

solution of Eq. (B3), resulting in

δR(t)

δf(t)
=

Nb2

3kBT
exp

[

−
∫ t

t ′
dt1 D(t1)

]

. (B7)

From Eqs. (B5)–(B7), the corresponding Smoluchowski

equation is given by

∂P (R, t)

∂t
= D(t)

∂

∂R
· R P (R, t)

+

(

Nb2

3kBT

)2
∂2

∂R2
P (R, t) A(t), (B8)

where A(t) =
∫ t

0
dt ′ 〈 f(t) f(t ′) 〉 exp[−

∫ t

t ′
dt1 D(t1)].

The explicit expression for f(t) when substituted in the

expression for A(t) yields

A(t) =
1

2
C2(t)

d

dt

1

C2(t)
kB T

∫ t

0

dt1

×
∫ t

0

dt2 φ(t − t1) φ(t − t2) K(t2 − t1). (B9)

Following Fox,21 the double integral part of Eq. (B9) can be

solved using the method of double Laplace transform, result-

ing in

3kBT

Nb2
[1 − C2(t)]. (B10)

Substituting the above expression into Eq. (B9) yields

A(t) =
3(kBT )2

Nb2
D(t). (B11)

Substitution of Eq. (B11) into Eq. (B8) results in Eq. (12).

APPENDIX C: SOLUTION OF THE SMOLUCHOWSKI
EQUATION

The Fourier transform of Eq. (12) yields

dY (k, t | R0, 0)

dt

=

[

−D(t) k
∂

∂k
−

Nb2

3
D(t) k2

]

Y (k, t | R0, 0), (C1)

where

Y (k, t | R0, 0) =

∫ ∞

−∞
dR P (R, t | R0, 0) e−ik·R. (C2)

Equation (C1) can be solved by the method of characteri-

stics,12, 22 which yields

Y (k, t | R0, 0) = exp

[

−
Nb2 k2

6

]

. (k C(t)) , (C3)

where . is an unknown function, the form of which can be

determined in such a way that the initial conditions are satis-

fied.

Using the initial condition, P (R, 0 | R0, 0) = δ(R − R0),

in Eq. (C2) yields

Y (k, 0| R0, 0) = e−ik·R0 = exp

[

−
Nb2 k2

6

]

. (k) , (C4)

resulting in

. (k) = exp

[

−ik · R0 +
Nb2 k2

6

]

. (C5)

Replacing k by k C(t) in Eq. (C5) results

. (k C(t)) = exp

[

−ik · R0 C(t) +
Nb2 k2 C2(t)

6

]

. (C6)

Substitution of Eq. (C6) into Eq. (C3) yields

Y (k, t | R0, 0) = exp [−ik · R0 C(t)]

× exp

[

−
Nb2 k2

6
{1 − C2(t)}

]

. (C7)

The inverse Fourier transform of Eq. (C7) yields the solution

of the Smoluchowski equation, given by Eq. (16).

APPENDIX D: DERIVATION OF THE TIME DEPENDENT
SURVIVAL PROBABILITY

The calcuation of the survival probability requires the

explicit expressions for the rate-rate correlation functions in

Eq. (18) which can be evaluated using Eqs. (2), (16), and (17).

〈k(R(t))〉= 〈k(R(0))〉

=

∫ ∞

−∞
dR k(R) Pss(R)

=

(

J 2

¯

√

π

λf kBT

) (

3

2πNb2

)3/2

4π exp(−µ2)

×
∫ ∞

0

dR R2exp

[

−R2

(

γ 2+
3

2Nb2

)

+2µγ R

]

.

(D1)
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〈k(R(t))k(R(0))〉 =

∫ ∞

−∞
dR

∫ ∞

−∞
dR0 k(R) P (R, t |R0, 0) k(R0) Pss(R0)

=

(

J 2

¯

√

π

λf kBT

)2 (

3

2 π Nb2

)3 (

1

1 − C2(t)

)3/2

8 π2 exp(−2 µ2)

∫ ∞

0

dR

∫ ∞

0

dR0 R2 R2
0 exp

[

−
(

R2 + R2
0

)

(

γ 2 +
3

2 Nb2
(

1 − C2(t)
)

)

+ 2 µ γ (R + R0)

]

∫ π

0

exp

[

3 C(t) R R0 cos θ

Nb2
(

1 − C2(t)
)

]

sin θ d θ

=

(

J 2

¯

√

π

λf kBT

)2 (

3

2 π Nb2

)3
Nb2

3C(t)
(

1 − C2(t)
)1/2

16 π2 exp(−2 µ2)

∫ ∞

0

dR

∫ ∞

0

dR0 R R0 exp

[

−
(

R2 + R2
0

)

(

γ 2 +
3

2 Nb2
(

1 − C2(t)
)

)

+ 2 µ γ (R + R0)

]

× sinh

[

3 C(t) R R0

Nb2
(

1 − C2(t)
)

]

. (D2)

Substituting Eqs. (D1) and (D2) into Eq. (18) the expression of the survival probability becomes

S(t) = exp

[

−t α β

(

1

Nb2

)3/2 ∫ ∞

0

dR R2 exp

[

−R2

(

γ 2 +
3

2 N b2

)

+ 2 µ γ R

]

+

∫ t

0

dt ′(t − t ′)

{

α2 β2

(

1

Nb2

)2

(

(

1 − C2(t)
)−1/2

3C(t)

)

∫ ∞

0

dR

∫ ∞

0

dR0 R R0 exp

[

−
(

R2 + R2
0

)

(

γ 2 +
3

2 Nb2
(

1 − C2(t)
)

)

+ 2 µ γ (R + R0)

]

× sinh

[

3 C(t) R R0

Nb2(1 − C2(t))

]

− α2β2

(

1

Nb2

)3 (∫ ∞

0

dR R2 exp

[

−R2

(

γ 2 +
3

2 Nb2

)

+ 2 µ γ R

])2
}]

, (D3)

where α = ( J 2

¯

√

π
λf kB T

), β = 4π
(

3
2π

)3/2
exp(−µ2), µ

=
(!G0+λ)√

4 λf kB T
and γ =

√

λs

2 N b2 λf
.

Equation (D3) can be made dimensionless by consider-

ing R
N1/2b

= x and R0

N1/2b
= x0 and the final expression of the

survival probability is given by Eq. (19).
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