Header menu link for other important links
Principal component analysis of urban traffic characteristics and meteorological data
Published in Elsevier Ltd
Volume: 8
Issue: 4
Pages: 285 - 297
Principal component analysis (PCA) is used to analyze one-year traffic, emission and meteorological data for an urban intersection in the Delhi. The 1997 data include meteorological, traffic and emission variables. In urban intersections the complexities of site, traffic and meteorological characteristic may result in a high cross correlation among the variables. In such situations, PCA can provide an independent linear combination of the variables. Here it is used to analyze 1, 8 and 24 h average emission, traffic and meteorological data. It shows that four principal components for the 24 h average have the highest loadings for traffic and emission variables with a strong correlation between them. PC loadings for the 1 and 8 h data indicate the least variation among them. © 2003 Elsevier Science Ltd. All rights reserved.
About the journal
JournalData powered by TypesetTransportation Research Part D: Transport and Environment
PublisherData powered by TypesetElsevier Ltd
Open AccessNo