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ABSTRACT: The strength of intraprotein interactions or
contact network is one of the dominant factors determining
the thermodynamic stabilities of proteins. The nature and the
extent of connectivity of this network also play a role in
allosteric signal propagation characteristics upon ligand
binding to a protein domain. Here, we develop a server for
rapid quantification of the strength of an interaction network
by employing an experimentally consistent perturbation
approach previously validated against a large data set of 375
mutations in 19 different proteins. The web server can be
employed to predict the extent of destabilization of proteins arising from mutations in the protein interior in experimentally
relevant units. Moreover, coupling distancesa measure of the extent of percolation on perturbationand overall perturbation
magnitudes are predicted in a residue-specific manner, enabling a first look at the distribution of energetic couplings in a protein
or its changes upon ligand binding. We show specific examples of how the server can be employed to probe for the distribution
of local stabilities in a protein, to examine changes in side chain orientations or packing before and after ligand binding, and to
predict changes in stabilities of proteins upon mutations of buried residues. The web server is freely available at http://pbl.
biotech.iitm.ac.in/pPerturb and supports recent versions of all major browsers.

■ INTRODUCTION

The network of noncovalent interactions in the protein interior
primarily determines the thermodynamic stability of pro-
teins.1−3 These evolutionarily fine-tuned intraprotein inter-
action networks or contact networks display a range of local
and nonlocal connectivity, thus determining protein local
stability and folding mechanisms. Studies on designed
proteins4 and natural sensory proteins5 highlight that it is
this network of interactions that determines the stability and
tunability upon solvent perturbations. Allosteric signals from a
perturbation (ligand binding, mutation, and post-translational
modification) also propagate through these contact networks,
thus determining the functional output.6−10 In fact, recent
works suggest that modulating packing interactions in the
protein interior affect the ligand-binding affinity on the protein
surface.11 A central theme in a majority of these approaches is
that the interaction network is extremely pliable, contributing
to the evolution of proteins, their functionality,12,13 and
cooperativity in protein folding thermodynamics14,15 and even
manifests as disease due to changes in the stability.16

Recent works combining graph-theoretic analysis of protein
structures, all-atom molecular dynamics (MD) simulations, re-
analysis of nuclear magnetic resonance (NMR) experimental
data on perturbations point to an intricate connection between

the packing density (i.e. the distribution of local and nonlocal

interactions) and the extent of percolation of a signal.9,17−19

They highlight that distance constraints alone can provide a

simple avenue to look for allosteric hotspots. The major

conclusions of the above work have also been validated

through extensive analysis of anisotropic network models20 and

experimental dissection of stability−disease effects in three

different proteins.21 Here, we extend these theoretical results

and experimental observations into a web server that can be

used to rapidly predict strongly interacting residues, distribu-

tion of energetic coupling across the protein structure, and

residue-specific parameters that shed light on potential

allosteric hotspots and residues that likely determine

cooperativity. The server can also be employed to predict

the degree of destabilization in proteins upon mutations

involving side chain truncation of uncharged residues in the

protein interior.
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■ COMPUTATIONAL METHODS

Perturbation Protocol. Mutations in the interior of a
protein are generally assumed to affect only the nearest
neighbors (say, within 5−6 Å). However, analysis of MD
simulations of several mutants of Ubiquitin suggest that the
van der Waals (vdW) packing interactions are distinctly
affected at positions 10−15 Å from the perturbed site, and
hence the second shell of residues, but decay in an exponential
manner.17 A large-scale analysis of NMR data corroborates
simulations and reveals that any mutational perturbation
contributes to distinct changes in the chemical shift pattern
(and thus the electronic environment) even at residues 10−20
Å from the side of perturbation, following a similar exponential
pattern.18 Inspired by this, we developed a simple relation that
connects mutational effects to the strength of packing by
recasting the van der Waals interaction energy (EvdW) in terms
of the extent to which the first- and second-shell neighbors are
affected (x1 and x2, respectively) and the nature of the
perturbation (i.e., whether V to A or I to A mutation, for
example).17 These statements can be written in the form

E E x n n

E E x n n

(1 (1 / ))

(1 (1 / ))

i j i j

j k j k

vdW
mut( , )

vdW
WT( , )

1 mut WT

vdW
mut( , )

vdW
WT( , )

2 mut WT

= − −

= − − (1)

Here, i is the mutated residue and j and k refer to the first- and
second-shell neighbors, respectively. The nature of the
perturbation is introduced via nmut/nWT, which corresponds
to the ratio of the number of heavy atoms in the mutated
residue to that in the wild-type (WT) residue. The van der
Waals interaction energy per residue can be estimated either
from statistical mechanical models or all-atom MD simulations,
as shown before.17 In this case, values for x1 and x2 were
estimated by introducing the above relation into the Wako−
Saitô−Muñoz−Eaton (WSME) statistical mechanical
model22−24 and varying both the interaction cutoff (4−6 Å
for both first and second shells) and the magnitudes of x1 and
x2 (0−1). By generating more than 100 000 unfolding curves
for 375 mutants from 19 different proteins, we arrived at values
of 0.5 and 0.2 for x1 and x2 (at equal 6 Å radius for first- and
second-shell residues), respectively; this involved looking for
consistency in three dimensions involving the slope of the plot

of experimental versus predicted change in stability (ΔΔG),
mean absolute error (MAE), and the correlation coefficient.17

Equation 1 can also be written in terms of contacts, Q,
extracted from the contact map as

Q Q x n n

Q Q x n n

(1 / )

(1 / )

i j i j

j k j k

, ,
WT

1 Mut WT

, ,
WT

2 Mut WT

Δ = −

Δ = − (2)

where ΔQ is the extracted perturbation. Equations 1 and 2 are
directly related as the van der Waals interaction energy terms
in eq 1 can be simply represented as the product of mean-field
interaction energy and the number of pairwise atomic-level
contacts (Q) between residue pairs and assuming that the
mean-field interaction energy itself is not affected by the
mutation. A residue-level contact map (Q terms in eq 2) can
be constructed by counting the number of heavy-atom
interactions between residues within a 6 Å spherical cutoff,
which is conventionally done in nearly all Go̅-type (native-
centric) models of protein folding. This equation alone
captures the exponential pattern seen in experiments, thus
attesting to its usefulness.19 Equation 2 can be employed to
perform in silico alanine-scanning mutagenesis to probe for the
strength of the interaction network across different parts of the
protein as recently performed on three proteins implicated in
diseases.21

Web Server Description. The overall features of the
pPerturb web server are depicted in Figure 1. Briefly, the server
accepts PDB ID/file as input from the user (protein length, N
≤ 400) following which it perturbs specific residues or the
entire protein based on the experimentally consistent empirical
eqs 1 and 2. The perturbation involves truncation of side
chains to alanine and in the case of alanine (glycine) to glycine
(a virtual three-atom residue) while maintaining two shells of
interaction around the perturbed site. The effect of
perturbation (written as ΔQ) will be felt at a distance based
on the extent to which the perturbed residue is connected to
its immediate neighbors or the strength of the interaction
network. The ΔQ thus extracted is plotted as a function of
distance from the perturbed site and fitted to an exponential
function, thus providing an important parameter, the coupling
distance, dC, that captures the extent to which the perturbation

Figure 1. Flowchart depicting the organization of modules in the pPerturb web server. Once the protein structure is loaded into the server,
perturbation profiles at the level of individual residues are generated for individual residues using eq 2, following which residue-specific parameters
are provided for selected residues (perturbation profile) or all residues in the protein (interaction network profile). The residue-specific parameters
are then colored on the protein structure to generate publication-quality images. Users can also request the prediction of changes in stability
involving truncation mutations of uncharged residues wherein the mutational effects are introduced via eq 2. The model output can be downloaded
as text files or high-resolution images.
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has percolated (in a strict equilibrium sense) into the
interaction network. The amplitude of the exponential function
and the overall perturbation magnitude (∑ΔQ) provide
additional information on the network features including the
magnitude of perturbation and the number of interactions that
are perturbed in the immediate neighborhood, respectively.19

If specific regions of the structure are strongly coupled to each
other, then the∑ΔQ will be larger and vice versa.9 The output
is generated in a rapid manner; for example, the results for a
400-residue protein can be generated in just ∼4 min.
The outputs from the server can be readily accessed as a text

file or a graph. In addition to these, we map ∑ΔQ and/or dC
on to the protein structure, enabling the download of
publication-quality images in user-specified orientations,
dimensions, and resolutions. These images afford a direct
visualization of the residues that are affected upon mutation of
a particular residue and can be particularly useful for biologists
to understand mutational effects. Users can also input
multimeric structures and perturb residues at the interface to
explore the nonisotropic percolation of perturbations into the
different subunits. It is also possible to compare the changes in
intramolecular interaction networks of the same protein at two
different states (for example, in the absence and presence of a
ligand/cofactor) by uploading the respective protein struc-
tures. Following this, the user is given the option of predicting
equilibrium unfolding curves from the Wako−Saitô−Muñoz−
Eaton (WSME) model assuming an ensemble of 2N conforma-
tional states22−25 for the truncation mutations involving
uncharged residues. This method thus serves as a good
starting point for identifying mutations that can precisely alter
protein stabilities or to identify regions of structure that
primarily contribute to thermodynamic stabilities. For
mutations involving charged residues, the user is directed to
our pStab web server for predicting changes in stabilities.26

■ RESULTS AND DISCUSSION

Visualization of Local Stability or Interaction Net-
work Profiles. We take the challenging case of neurotensin
receptor 1 (NTSR1, a G-protein coupled receptor (GPCR))
characterized by seven transmembrane helices (TM1−TM7,
Figure 2A). Recent experimental studies point to an activation
mechanism involving structural changes in TM5 and TM6.27

To identify any intrinsic differences in packing density, the
perturbation protocol was applied to all residues in the protein
and the resulting total perturbation magnitude (∑ΔQ) was
mapped on to the structure. We employ ∑ΔQ rather than dC

as the former does not require recourse to fitting routines, thus
reducing any error arising from potential nonexponential
decays. The structure is colored in the spectral scale with red
and blue representing strong and weak coupling, respectively.
It can be seen that the color map of ∑ΔQ is varied with the
majority of the buried residues displaying strong coupling (red
to green), while those on the lipid-exposed sites are weakly
coupled (blue). Interestingly, we find that TM helices 5 and 6
are weakly coupled to the rest of the structure (not apparent in
Figure 2A), thus suggesting that any early structural changes
during unfolding or conformational transitions are potentially
localized to these regions, in good agreement with experi-
ments.27

Structural Changes on Ligand Binding. Many proteins
undergo minor or major structural changes on ligand binding,
contributing to allosteric effects. Identifying regions that have
undergone structural changes requires calculating root-mean-
squared deviation (RMSD), a parameter that is agnostic to
whether a specific region transitions to a more strongly or
weakly packed state on ligand binding. The pPerturb web
server provides precisely this information while also accounting
for second-shell effects, which we present in Figure 3 in terms
of ligand binding to the proteins bACBP, phosphofructokinase
(PFK), and PDZ3.28−30 In each case, we color residues in the
spectral scale and depending on whether residues pack
stronger (red) or weaker (blue) on ligand binding, as
calculated from ∑ΔQb − ∑ΔQu, where b and u stand for

Figure 2. Structural model of GPCR NTSR1 (PDB 6OS9) without
(panel A) and with ∑ΔQ mapped on to the structure (panel B). The
structure in panel B is colored in the spectral scale between the two
extremes of well-packed residues (red) and weakly packed residues
(blue). Note the stretch of dark blue in the TM helices 5 and 6
pointing to weak packing.

Figure 3. Left column presents a superimposition of ligand/inhibitor-
unbound and -bound structures of the proteins bACBP (PDB ids
2ABD/1ACA for ligand-unbound and -bound states), PDZ3 (1BFE/
1BE9), and PFK (3PFK/6PFK for inhibitor-unbound and -bound
states) in gray and light brown, respectively. The overall RMSD values
(including C

α
and side chain) between the bound (b) and unbound

(u) forms are 2.3, 1.1, and 1.6 Å, respectively. The cartoons in the
middle and right columns are colored in the spectral scale (red to blue
as in the color bar provided) according to ∑ΔQb − ∑ΔQu. Spheres
represent the C

α
atoms of specific residues whose difference in ∑ΔQ

fall in the extremes, with Z-score ≥ 1 in the middle column and Z-
score ≤ −1 in the right column. Note that such vivid details in terms
of packing differences (middle and right columns) cannot be
extracted from structural superimposition alone (left column).
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ligand-bound and -unbound conformations of the protein,
respectively. Perturbation analysis shows that that the packing
of a large number of residues is affected by ligand binding in all
of the three cases considered, in agreement with experiments
on PDZ3.31 In PDZ3, residues that exhibit high ∑ΔQ
difference or Z-scored ∑ΔQ values greater than 1 highlight a
connection between the ligand-binding site (peptide colored in
magenta in Figure 3B, middle column) and the phosphor-
ylation site located at the helix-sheet overhang of PDZ3
(residue Y92), exactly as observed in experiments (note the
red spheres in Figure 3B, middle column).32 It is important to
emphasize here that our approach does not provide any signal
transduction routes but can hint at likely connectivity patterns
based on which graph-theoretic tools can be employed to
construct signal propagation paths. Moreover, the ligands are
not considered in this analysis as ligand binding manifests as
changes in packing or coupling, which we extract through
perturbation of the conformation that the protein adopts on
ligand binding.
Predicting Stability Changes on Truncation Muta-

tions. Since the perturbation protocol relies on modulation of
van der Waals interactions, it is straightforward to predict
stability changes by introducing eq 1 into the WSME model, as
discussed before. We had already shown that the changes in
stabilities are predicted with a slope near 1 and a correlation
coefficient of 0.7 for a database of 375 mutations.17 In Figure 4,

we show an illustrative example of the differences in stability
arising from progressively weaker packing of I → V → A → G
mutations in Ubiquitin. The prediction of the WT and mutant
unfolding curves takes just ∼2 min in the web server. The
protocol involves adjusting the van der Waals interaction
energy iteratively to reproduce the experimental melting
temperature of the WT at the user-specified pH and ionic
strength, following which the perturbation protocol (eq 1) is
employed to generate unfolding curves of the mutants. The
user is also provided an option of choosing between a uniform
entropic penalty for all residues and an entropic penalty that
depends on either the residue identity (for glycine and proline)
or the presence in a specific secondary structure element (helix
and strand versus coil).

■ CONCLUSIONS

We have developed a multifaceted web server that performs
rapid alanine-scanning mutagenesis to probe for the strength of
the interaction network accounting for both local and nonlocal
interactions in an experimentally consistent manner. The

rapidity of the method enables simultaneous prediction of
multiple residue-level parameters with implications in identify-
ing pockets of residues that determine local stability and
potential allosteric signal transduction paths and in predicting
destabilization induced by mutations in the protein interior.
The simplicity of our protocol, on the other hand, allows for a
tremendous scope in the improvement of the web server to
account for residue-specific energy terms and conformational
entropy dependent on both the residue identity and secondary
structure type.
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(23) Muñoz, V.; Eaton, W. A. A simple model for calculating the
kinetics of protein folding from three-dimensional structures. Proc.
Natl. Acad. Sci. U.S.A. 1999, 96, 11311−11316.
(24) Naganathan, A. N. Predictions from an Ising-like Statistical
Mechanical Model on the Dynamic and Thermodynamic Effects of
Protein Surface Electrostatics. J. Chem. Theory Comput. 2012, 8,
4646−4656.
(25) Naganathan, A. N. A Rapid, Ensemble and Free Energy Based
Method for Engineering Protein Stabilities. J. Phys. Chem. B 2013,
117, 4956−4964.
(26) Gopi, S.; Devanshu, D.; Krishna, P.; Naganathan, A. N. pStab:
prediction of stable mutants, unfolding curves, stability maps and
protein electrostatic frustration. Bioinformatics 2018, 34, 875−877.
(27) Kato, H. E.; Zhang, Y.; Hu, H.; Suomivuori, C. M.; Kadji, F. M.
N.; Aoki, J.; Krishna Kumar, K.; Fonseca, R.; Hilger, D.; Huang, W.;

Latorraca, N. R.; Inoue, A.; Dror, R. O.; Kobilka, B. K.; Skiniotis, G.
Conformational transitions of a neurotensin receptor 1-Gi1 complex.
Nature 2019, 572, 80−85.
(28) Kragelund, B. B.; Andersen, K. V.; Madsen, J. C.; Knudsen, J.;
Poulsen, F. M. Three-dimensional structure of the complex between
acyl-coenzyme A binding protein and palmitoyl-coenzyme A. J. Mol.
Biol. 1993, 230, 1260−1277.
(29) Schirmer, T.; Evans, P. R. Structural basis of the allosteric
behaviour of phosphofructokinase. Nature 1990, 343, 140−145.
(30) Doyle, D. A.; Lee, A.; Lewis, J.; Kim, E.; Sheng, M.;
MacKinnon, R. Crystal structures of a complexed and peptide-free
membrane protein-binding domain: molecular basis of peptide
recognition by PDZ. Cell 1996, 85, 1067−1076.
(31) Hultqvist, G.; Haq, S. R.; Punekar, A. S.; Chi, C. N.; Engstrom,
A.; Bach, A.; Stromgaard, K.; Selmer, M.; Gianni, S.; Jemth, P.
Energetic pathway sampling in a protein interaction domain. Structure
2013, 21, 1193−1202.
(32) Petit, C. M.; Zhang, J.; Sapienza, P. J.; Fuentes, E. J.; Lee, A. L.
Hidden dynamic allostery in a PDZ domain. Proc. Natl. Acad. Sci.
U.S.A. 2009, 106, 18249−18254.

ACS Omega Article

DOI: 10.1021/acsomega.9b03371
ACS Omega 2020, 5, 1142−1146

1146


