Popularity in the generalized Hospital Residents setting

Meghana Nasre and Amit Rawat
Indian Institute of Technology Madras, India

Abstract

We consider the problem of computing popular matchings in a bipartite graph $G=(\mathcal{R} \cup$ $\mathcal{H}, E)$ where \mathcal{R} and \mathcal{H} denote a set of residents and a set of hospitals respectively. Each hospital h has a positive capacity denoting the number of residents that can be matched to h. The residents and the hospitals specify strict preferences over each other. This is the well-studied Hospital Residents (HR) problem which is a generalization of the Stable Marriage (SM) problem. The goal is to assign residents to hospitals optimally while respecting the capacities of the hospitals. Stability is a well-accepted notion of optimality in such problems. However, motivated by the need for larger cardinality matchings, alternative notions of optimality like popularity have been investigated in the SM setting. In this paper, we consider a generalized HR setting - namely the Laminar Classified Stable Matchings (LCSM^{+}) problem. Here, additionally, hospitals can specify classifications over residents in their preference lists and classes have upper quotas. We show the following new results: We define a notion of popularity and give a structural characterization of popular matchings for the LCSM^{+}problem. Assume $n=$ $|\mathcal{R}|+|\mathcal{H}|$ and $m=|E|$. We give an $O(m n)$ time algorithm for computing a maximum cardinality popular matching in an LCSM^{+}instance. We give an $O\left(m n^{2}\right)$ time algorithm for computing a matching that is popular amongst the maximum cardinality matchings in an LCSM^{+}instance.

1 Introduction

Consider an academic institution where students credit an elective course from a set of available courses. Every student and every course rank a subset of elements from the other set in a strict order of preference. Each course has a quota denoting the maximum number of students it can accommodate. The goal is to allocate to every student at most one course respecting the preferences. This is the well-studied Hospital Residents problem [7]. We consider its generalization where, in addition, a course can classify students - for example, the students may be classified as under-graduates and post-graduates and department-wise and so on. Depending on the classifications, a student may belong to multiple classes. Apart from the total quota, each course now has a quota for every class. An allocation, in this setting, has to additionally respect the class quotas. This is the Classified Stable Matching problem introduced by Huang [10].

Stability is a de-facto notion of optimality in settings where both set of participants have preferences. Informally, an allocation of students to courses is stable if no unallocated student-course pair has incentive to deviate from the allocation. Stability is appealing for several reasons - stable allocations are guaranteed to exist, they are efficiently computable and all stable allocations leave the same set of students unallocated [9]. However, it is known [13] that the cardinality of a stable allocation can be half the size of the largest sized allocation possible. Furthermore, in applications like student-course allocation, leaving a large number of students unallocated is undesirable. Thus, it is interesting to consider notions of optimality which respect preferences but possibly compromise stability in the favor of cardinality. Kavitha and Huang [11|13] investigated this in the Stable Marriage (SM) setting where they considered popularity as an alternative to stability. At a high level, an allocation of students to courses is popular if no majority wishes to deviate from the allocation. Here, we consider popularity in the context of two-sided preferences and one-sided capacities with classifications.

We formally define our problem now - we use the familiar hospital residents notation. Let $G=(\mathcal{R} \cup \mathcal{H}, E)$ be a bipartite graph where $|\mathcal{R} \cup \mathcal{H}|=n$ and $|E|=m$. Here \mathcal{R} denotes the set of residents, \mathcal{H} denotes the set of hospitals and every hospital $h \in \mathcal{H}$ has an upper quota $q(h)$ denoting the maximum number of residents h can occupy. A pair $(r, h) \in E$ denotes that r and h are mutually acceptable to each other. Each resident (resp. hospital) has a strict ordering of a subset of the hospitals (resp. residents) that are acceptable to him
or her (resp. it). This ordering is called the preference list of a vertex. An assignment (or a matching) M in G is a subset of E such that every resident is assigned to at most one hospital and a hospital h is assigned at most $q(h)$ residents. Let $M(r)$ (resp. $M(h)$) denote the hospital (resp. the set of residents) which are assigned to r (resp. h) in M. A hospital h is under-subscribed if $|M(h)|<q(h)$. A matching M is stable if no unassigned pair (r, h) wishes to deviate from M. The goal is to compute a stable matching in G. We denote it by HR^{+}throughout the paper 1 . The celebrated deferred acceptance algorithm by Gale and Shapley 7 proves that every instance of the HR^{+}problem admits a stable matching.

A generalization of the HR^{+}problem is the Laminar Classified Stable Matching (LCSM) problem introduced by Huang [10. An instance of the LCSM^{+}problem is an instance of the HR^{+}problem where additionally, each hospital h is allowed to specify a classification over the set of residents in its preference list. A class C_{k}^{h} of a hospital h is a subset of residents in its preference list and has an associated upper quota $q\left(C_{k}^{h}\right)$ denoting the maximum number of residents that can be matched to h in C_{k}^{h}. (In the LCSM problem [10, classes can have lower quotas as well.) We assume that the classes of a hospital form a laminar set. That is, for any two classes C_{j}^{h} and C_{k}^{h}, either the two classes are disjoint ($C_{j}^{h} \cap C_{k}^{h}=\emptyset$), or one is contained inside the other ($C_{j}^{h} \subset C_{k}^{h}$ or $C_{k}^{h} \subset C_{j}^{h}$). Huang suitably modified the classical definition of stability to account for the presence of these classifications. He showed that every instance of the LCSM ${ }^{+}$problem admits a stable matching which can be computed in $O(m n)$ time 10. A restriction of the LCSM^{+}problem, denoted by Partition Classified Stable Matching $\left(\mathrm{PCSM}^{+}\right)$, is where the classes of every hospital partition the residents in its preference list.

Motivated by the need to output larger cardinality matchings, we consider computing popular matchings in the LCSM^{+}problem. The notion of popularity uses votes to compare two matchings. Before we can define voting in the LCSM ${ }^{+}$setting, it is useful to discuss voting in the context of the SM problem.
Voting in the SM setting: Let $G=(\mathcal{R} \cup \mathcal{H}, E)$ be an instance of the SM problem and let M and M^{\prime} be any two matchings in G. A vertex $u \in \mathcal{R} \cup \mathcal{H}$ (where each hospital h has $q(h)=1$) prefers M over M^{\prime} and therefore votes for M over M^{\prime} if either (i) u is matched in M and unmatched in M^{\prime} or (ii) u is matched in both M and M^{\prime} and prefers $M(u)$ over $M^{\prime}(u)$. A matching M is more popular than M^{\prime} if the number of votes that M gets as compared to M^{\prime} is greater than the number of votes that M^{\prime} gets as compared to M. A matching M is popular if there does not exist any matching that is more popular than M. In the SM setting it is known that a stable matching is popular, however it was shown to be minimum cardinality popular matching [11. Huang and Kavitha [1113] gave efficient algorithms for computing a max-cardinality popular matching and a popular matching amongst max-cardinality matchings in an SM instance.
Voting in the capacitated setting: To extend voting in the capacitated setting, we assign a hospital h as many votes as its upper quota $q(h)$. This models the scenario in which hospitals with larger capacity get a larger share of votes. For the HR^{+}problem, a hospital h compares the most preferred resident in $M(h) \backslash M^{\prime}(h)$ to the most preferred resident in $M^{\prime}(h) \backslash M(h)$ (and votes for M or M^{\prime} as far as those two residents are concerned) and so on. For this voting scheme, we can obtain analogous results for computing popular matchings in the HR^{+}problem via the standard technique of cloning (that is, creating $q(h)$ copies of a hospital h and appropriately modifying preference lists of the residents and hospitals (2). However, our interest is in the LCSM ${ }^{+}$problem, for which we are not aware of any reduction to the SM problem. Furthermore, we show that the straightforward voting scheme as defined in the HR^{+}does not suffice for the LCSM^{+}problem. Therefore, we define a voting scheme for a hospital which takes into consideration the classifications as well as ensures that every stable matching in the LCSM ${ }^{+}$instance is popular. We show the following results:

- We define a notion of popularity for the LCSM ${ }^{+}$problem. Since our definition ensures that stable matchings are popular - this guarantees the existence of popular matchings in the LCSM ${ }^{+}$problem.
- We give a characterization of popular matchings for the LCSM ${ }^{+}$problem, which is a natural extension of the characterization of popular matchings in SM setting [11].

[^0]- We obtain the following algorithmic results. An $O(m+n)($ resp. $O(m n))$ time algorithm for computing a maximum cardinality popular matching in a $\mathrm{PCSM}^{+}\left(\right.$resp. LCSM ${ }^{+}$) instance. An $O(m n)$ (resp. $O\left(m n^{2}\right)$) time algorithm for computing a popular matching amongst maximum cardinality matchings in a PCSM^{+} (resp. LCSM^{+}) instance.

Very recently, independent of our work, two different groups 412 have considered popular matchings in the one-to-many setting. Brandl and Kavitha [4] have considered computing popular matchings in the HR^{+} problem. In their work as well as ours, a hospital h is assigned as many votes as its capacity to compare two matchings M and M^{\prime}. In contrast, by the definition of popularity in 4, a hospital h chooses the most adversarial ordering of residents in $M(h) \backslash M^{\prime}(h)$ and $M^{\prime}(h) \backslash M(h)$ for comparing M and M^{\prime}. However, it is interesting to note that in an HR^{+}instance the same matching is output by both our algorithms. On the other hand, we remark that the model considered in our paper is a more general one than the one considered in [4]. Kamiyama [12] has generalized our work and the results in 4] using a matroid based approach.

We finally remark that one can consider voting schemes where a hospital is given a single vote instead of capacity many votes. In one such scheme, a hospital compares the set of residents in $M(h)$ and $M^{\prime}(h)$ in lexicographic order and votes accordingly. However, when such a voting is used, it is possible to construct instances where a stable matching is not popular. The techniques in this paper use the fact that stable matchings are popular, therefore it is unclear if our techniques will apply for such voting schemes.
Related Work: The notion of popularity was introduced by Gärdenfors [8] in the context of stable matchings. In [1] Abraham et al. studied popularity in the one-sided preference list model. As mentioned earlier, our work is inspired by a series of papers where popularity is considered as an alternative to stability in the stable marriage setting by Huang, Kavitha and Cseh [5|11|13]. Biró et al. [3] give several practical scenarios where stability may be compromised in the favor of size. The PCSM^{+}problem is a special case of the Student Project Allocation (SPA) problem studied by Abraham et al. [2]. They gave a linear time algorithm to compute a stable matching in an instance of the SPA problem. In this paper, we use the algorithms of Abraham et al. [2] and Huang [10] for computing stable matchings in the PCSM^{+}and LCSM ${ }^{+}$problems. Both these algorithms follow the standard deferred acceptance algorithm of Gale and Shapley with problem specific modifications. We refer the reader to [2] and [10] for details.
Organization: In Section 2 we define the notion of popularity, in Section3we present the structural characterization of popular matchings. In Section 4 we describe our algorithms to compute a maximum cardinality popular matching, and a popular matching amongst maximum cardinality matchings. We conclude with a short discussion about popular matchings in the LCSM problem.

2 Stability and popularity in the LCSM^{+}problem

Consider an instance $G=(\mathcal{R} \cup \mathcal{H}, E)$ of the LCSM^{+}problem. As done in [10], assume that for every $h \in \mathcal{H}$ there is a class C_{*}^{h} containing all the residents in the preference list of h and $q\left(C_{*}^{h}\right)=q(h)$. For a hospital h, let $T(h)$ denote the tree of classes corresponding to h where C_{*}^{h} is the root of $T(h)$. The leaf classes in $T(h)$ denote the most refined classifications for a resident whereas as we move up in the tree from a leaf node to the root, the classifications gets coarser.

To define stable matchings in the LCSM problem, Huang introduced the notion of a blocking group w.r.t. a matching. Later, Fleiner and Kamiyama [6] defined a blocking pair which is equivalent to a blocking group of Huang. We use the definition of stability from [6] which we recall below. A set $S=\left\{r_{1}, \ldots, r_{l}\right\}$ is feasible for a hospital h if $|S| \leq q(h)$ and for every class C_{j}^{h} of h (including the root class C_{*}^{h}), we have $\left|C_{j}^{h} \cap S\right| \leq q\left(C_{j}^{h}\right)$. A matching M in G is feasible if every resident is matched to at most one hospital, and $M(h)$ is feasible for every hospital $h \in \mathcal{H}$. A pair $(r, h) \notin M$ blocks M iff both the conditions below hold:

- r is unmatched in M, or r prefers h over $M(r)$, and
- either the set $M(h) \cup\{r\}$ is feasible for h, or there exists a resident $r^{\prime} \in M(h)$, such that h prefers r over r^{\prime}, and $\left(M(h) \backslash\left\{r^{\prime}\right\}\right) \cup\{r\}$ is feasible for h.

A feasible matching M in G is stable if M does not admit any blocking pair.

2.1 Popularity

To define popularity, we need to specify how a hospital compares two sets $M(h)$ and $M^{\prime}(h)$ in an LCSM^{+} setting, where M and M^{\prime} are two feasible matchings in the instance.

Illustrative example Consider the following LCSM ${ }^{+}$instance where $\mathcal{R}=\left\{r_{1}, \ldots, r_{4}\right\}$ and $\mathcal{H}=\left\{h_{1}, \ldots, h_{3}\right\}$ and the preference lists of the residents and hospitals are as given in Figure 1 (a) and (b) respectively. The preferences can be read as follows: resident r_{1} has h_{1} as his top choice hospital. Resident r_{2} has h_{2} as its top choice hospital followed by h_{1} which is his second choice hospital and so on. For $h \in\left\{h_{2}, h_{3}\right\}$ we have $q(h)=1$ and both these hospitals have a single class C_{*}^{h} containing all the residents in the preference list of h and $q\left(C_{*}^{h}\right)=q(h)$. For hospital h_{1} we have $q\left(h_{1}\right)=2$ and the classes provided by h_{1} are $C_{1}^{h_{1}}=\left\{r_{1}, r_{2}\right\}, C_{2}^{h_{1}}=\left\{r_{3}, r_{4}\right\}, C_{*}^{h_{1}}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ with quotas as follows: $q\left(C_{1}^{h_{1}}\right)=q\left(C_{2}^{h_{1}}\right)=1$ and $q\left(C_{*}^{h_{1}}\right)=2$. We remark that the example in Figure 1 is also a PCSM^{+}instance. Figure 1 (c) shows the tree $T\left(h_{1}\right)$.

(a)
(b)

(c)

Fig. 1. (a) Resident preferences, (b) Hospital preferences, (c) $T\left(h_{1}\right)$. The matchings $M=\left\{\left(r_{1}, h_{1}\right),\left(r_{2}, h_{2}\right),\left(r_{3}, h_{1}\right)\right\}$, $M^{\prime}=\left\{\left(r_{2}, h_{1}\right),\left(r_{3}, h_{2}\right),\left(r_{4}, h_{1}\right)\right\}$, and $M^{\prime \prime}=\left\{\left(r_{1}, h_{1}\right),\left(r_{2}, h_{3}\right),\left(r_{3}, h_{2}\right),\left(r_{4}, h_{1}\right)\right\}$ are all feasible in the instance.

Consider the two feasible matchings M and M^{\prime} defined in Fig. 1 . Note that M is stable in the instance whereas the edge $\left(r_{3}, h_{1}\right)$ blocks M^{\prime}. While comparing M and M^{\prime}, the vote for every vertex u in the instance except h_{1} is clear $-u$ compares $M(u)$ with $M^{\prime}(u)$ and votes accordingly. In order for h_{1} to vote between M and M^{\prime}, the hospital compares between $M\left(h_{1}\right)=\left\{r_{1}, r_{3}\right\}$ and $M^{\prime}\left(h_{1}\right)=\left\{r_{2}, r_{4}\right\}$. A straightforward way is to compare r_{3} with r_{2} (the most preferred resident in $M\left(h_{1}\right)$ to the most preferred resident in $\left.M^{\prime}\left(h_{1}\right)\right)$ and then compare r_{1} with r_{4} (second most preferred resident in $M\left(h_{1}\right)$ to second most preferred resident in $M^{\prime}\left(h_{1}\right)$). Thus, both the votes of h_{1} are in favor of M^{\prime} when compared with M. Such a comparison has two issues - (i) it ignores the classifications given by h_{1}, and (ii) the number of votes that M^{\prime} gets when compared with M is more than the number of votes that M gets as compared to M^{\prime}. Therefore M^{\prime} is more popular than M which implies that M (a stable matching) is not popular.

We propose a comparison scheme for hospitals which addresses both the issues. In the above example, we note that $r_{1} \in M(h)$ has a corresponding resident $r_{2} \in M^{\prime}(h)$ to be compared to in one of the most refined classes $C_{1}^{h_{1}}$ (see Figure (c)). Thus, we compare r_{1} with r_{2}. The resident $r_{3} \in M(h)$ is compared to $r_{4} \in M(h)$ another leaf class $C_{2}^{h_{1}}$. According to this comparison, h_{1} is indifferent between M and M^{\prime} and M^{\prime} is no longer more popular than M. Note that, although in the example, both the comparisons happen in a leaf class, this may not be the case in a general instance. Finally, we note that the matching $M^{\prime \prime}$ is a popular matching in the instance and is strictly larger in size than the stable matching M.

We formalize the above observations in the rest of the section. To take into account the classifications, for a hospital h and the matchings M and M^{\prime}, we set up a correspondence between residents in $M(h) \backslash M^{\prime}(h)$ and the residents in $M^{\prime}(h) \backslash M(h)$. That is, we define:

$$
\text { corr }: M(h) \oplus M^{\prime}(h) \rightarrow M(h) \oplus M^{\prime}(h) \cup\{\perp\}
$$

For a resident $r \in M(h) \oplus M^{\prime}(h)$ we denote by $\operatorname{corr}(r)$ the corresponding resident to which r gets compared when the hospital h casts its votes. We let $\operatorname{corr}(r)=\perp$ if r does not have a corresponding resident to be compared to from the other matching. The pseudo-code for the algorithm to compute the corr function is given below.

```
Algorithm 1 Correspondence between residents of \(M(h)\) and \(M^{\prime}(h)\)
    procedure Find-Correspondence ( \(h, M, M^{\prime}\) )
        let \(T(h)\) be the classification tree associated with \(h\)
        set \(\operatorname{corr}(r)=\perp\) for each \(r \in M(h) \oplus M^{\prime}(h)\)
        \(Y=M(h) \backslash M^{\prime}(h) ; Y^{\prime}=M^{\prime}(h) \backslash M(h)\)
        while \(Y \neq \emptyset\) and \(Y^{\prime} \neq \emptyset\) do
            for each class \(C_{j}^{h}\) in \(T(h)\) do
                    \(X_{j}=C_{j}^{h} \cap Y\)
\(X_{j}^{\prime}=C_{j}^{h} \cap Y^{\prime}\)
            Let \(C_{f}^{h}\) be one of the most refined classes for which \(X_{f} \neq \emptyset\) and \(X_{f}^{\prime} \neq \emptyset\).
            for \(k=1, \ldots, \min \left(\left|X_{f}\right|,\left|X_{f}^{\prime}\right|\right)\) do
                let \(r\) be the \(k\)-th most preferred resident in \(X_{f}\)
                    let \(r^{\prime}\) be the \(k\)-th most preferred resident in \(X_{f}^{\prime}\)
                    set \(\operatorname{corr}(r)=r^{\prime}\), and \(\operatorname{corr}\left(r^{\prime}\right)=r\)
                    \(Y=Y \backslash\{r\} ; Y^{\prime}=Y^{\prime} \backslash\left\{r^{\prime}\right\}\)
```

The algorithm begins by setting corr for every $r \in M(h) \oplus M^{\prime}(h)$ to \perp. The algorithm maintains two sets of residents $Y=M(h) \backslash M^{\prime}(h)$ and $Y^{\prime}=M^{\prime}(h) \backslash M(h)$ for whom corr needs to be set. As long as the sets Y and Y^{\prime} are both non-empty, the algorithm repeatedly computes for every class C_{j}^{h} (including the root class C_{*}^{h}) the sets $X_{j}=C_{j}^{h} \cap Y$ and $X_{j}^{\prime}=C_{j}^{h} \cap Y^{\prime}$. The algorithm then chooses one of the most refined classes, say C_{f}^{h} in $T(h)$, for whom X_{f} and X_{f}^{\prime} are both non-empty. Finally, residents in X_{f} and X_{f}^{\prime} are sorted according to the preference ordering of h and the corr of the k-th most preferred resident in X_{f} is set to the k-th most preferred resident in X_{f}^{\prime}, where $k=1, \ldots, \min \left\{\left|X_{f}\right|,\left|X_{f}^{\prime}\right|\right\}$.

For $r \in \mathcal{R}$, and any feasible matching M in G, if r is unmatched in M then, $M(r)=\perp$. A vertex prefers any of its neighbours over \perp. For a vertex $u \in \mathcal{R} \cup \mathcal{H}$, let $x, y \in N(u) \cup\{\perp\}$, where $N(u)$ denotes the neighbours of u in G.

$$
\begin{aligned}
\text { vote }_{u}(x, y) & =+1 & & \text { if } u \text { prefers } x \text { over } y \\
& =-1 & & \text { if } u \text { prefers } y \text { over } x \\
& =0 & & \text { if } x=y
\end{aligned}
$$

Using the above notation, the vote of a resident is easy to define - a resident r prefers M^{\prime} over M iff the term $\mathcal{V}_{r}>0$, where $\mathcal{V}_{r}=\operatorname{vote}_{r}\left(M^{\prime}(r), M(r)\right)$.

Recall that a hospital h uses $q(h)$ votes to compare M and M^{\prime}. Let $q_{1}(h)=\left|M(h) \cap M^{\prime}(h)\right|$ (number of common residents assigned to h in M and M^{\prime}) and $q_{2}(h)=q(h)-\max \left\{|M(h)|,\left|M^{\prime}(h)\right|\right\}$ (number of unfilled positions of h in both M and M^{\prime}. Our voting scheme ensures that $q_{1}(h)+q_{2}(h)$ votes of h remain unused when comparing M and M^{\prime}. A hospital h prefers M^{\prime} over M iff the term $\mathcal{V}_{h}>0$, where \mathcal{V}_{h} is defined as follows:

$$
\mathcal{V}_{h}=\left(\left|M^{\prime}(h)\right|-|M(h)|\right)+\sum_{\substack{r \in M^{\prime}(h) \backslash M(h) \\ \text { \&\& } \\ \operatorname{corr}(r) \neq \perp}} \operatorname{vote}_{h}(r, \operatorname{corr}(r))
$$

The first term in the definition of \mathcal{V}_{h} counts the votes of h w.r.t. the residents from either M or M^{\prime} that did not find correspondence. The second term counts the votes of h w.r.t. the residents each of which has a corresponding resident from the other matching. We note that in the SM setting, corr (r) will simply be $M(h)$. Thus, our definition of votes in the presence of capacities is a natural generalization of the voting scheme in the SM problem.

Let us define the term $\Delta\left(M^{\prime}, M\right)$ as the difference between the votes that M^{\prime} gets over M and the votes that M gets over M^{\prime}.

$$
\Delta\left(M^{\prime}, M\right)=\sum_{r \in \mathcal{R}} \mathcal{V}_{r}+\sum_{h \in \mathcal{H}} \mathcal{V}_{h}
$$

Definition 1．A matching M is popular in G iff for every feasible matching M^{\prime} ，we have $\Delta\left(M^{\prime}, M\right) \leq 0$ ．

2．2 Decomposing $M \oplus M^{\prime}$

Here，we present a simple algorithm which allows us to decompose edges of components of $M \oplus M^{\prime}$ in an instance into alternating paths and cycles．Consider the graph $\tilde{G}=\left(\mathcal{R} \cup \mathcal{H}, M \oplus M^{\prime}\right)$ ，for any two feasible matchings M and M^{\prime} in G ．We note that the degree of every resident in \tilde{G} is at most 2 and the degree of every hospital in \tilde{G} is at most $2 \cdot q(h)$ ．Consider any connected component \mathcal{C} of \tilde{G} and let e be any edge in \mathcal{C} ．We observe that it is possible to construct a unique maximal M alternating path or cycle ρ containing e using the following simple procedure．Initially ρ contains only the edge e ．

1．Let $r \in \mathcal{R}$ be one of the end points of the path ρ ，and assume that $(r, M(r)) \in \rho$ ．We grow ρ by adding the edge $\left(r, M^{\prime}(r)\right)$ ．Similarly if an edge from M^{\prime} is incident on r in ρ ，we grow the path by adding the edge $(r, M(r))$ if it exists．
2．Let $h \in \mathcal{H}$ be one of the end points of the path ρ ，and assume that $(r, h) \in M \backslash M^{\prime}$ belongs to ρ ．We extend ρ by adding $(\boldsymbol{\operatorname { c o r r }}(r), h)$ if $\boldsymbol{\operatorname { c o r r }}(r)$ is not equal to \perp ．A similar step is performed if the last edge on ρ is $(r, h) \in M^{\prime} \backslash M$ ．
3．We stop the procedure when we complete a cycle（ensuring that the two adjacent residents of a hospital are corr for each other according to the hospital），or the path can no longer be extended．Otherwise we go to Step 1 or Step 2 as applicable and repeat．

The above procedure gives us a unique decomposition of a connected component in \tilde{G} into alternating paths and cycles．Note that a hospital may appear multiple times in a single path or a cycle and also can belong to more than one alternating paths and cycles．Figure 2 gives an example of the decomposition of the two feasible matchings in the instance in Figure 1

Fig．2．M and M^{\prime} are feasible matchings in the example as defined in Fig．$⿴ 囗 十$（a）$\tilde{G}=\left(\mathcal{R} \cup \mathcal{H}, M \oplus M^{\prime}\right)$ ；bold edges belong to M ，dashed edges belong to M^{\prime} ．（b）shows the decomposition of the edges of the component of \tilde{G} into a single path．

Let $\mathcal{Y}_{M \oplus M^{\prime}}$ denote the collection of alternating paths and alternating cycles obtained by decomposing every component of \tilde{G} ．

We now state a useful property about any alternating path or cycle in $\mathcal{Y}_{M \oplus M^{\prime}}$ ．
Lemma 1．If ρ is an alternating path or an alternating cycle in $\mathcal{Y}_{M \oplus M^{\prime}}$ ，then $M \oplus \rho$ is a feasible matching in G ．

Proof．Let $\left\langle r^{\prime}, h, r\right\rangle$ be any sub－path of ρ ，where $r^{\prime}=\operatorname{corr}(r)$ ，and $(r, h) \in M$ ．We prove that $(M(h) \backslash\{r\}) \cup$ $\left\{r^{\prime}\right\}$ is feasible for h ．Let C_{i}^{h}（resp．C_{j}^{h} ）be the unique leaf class of $T(h)$ containing r（resp．r^{\prime} ）．See Figure 3， We consider the following two cases：

Fig. 3. The classification tree $\mathrm{T}(\mathrm{h})$ for a hospital h.
$-r$ and r^{\prime} belong to the same leaf class in $T(h)$, i.e. $C_{i}^{h}=C_{j}^{h}$. In this case, it is easy to note that $(M(h) \backslash\{r\}) \cup\left\{r^{\prime}\right\}$ is feasible for h.
$-r$ and r^{\prime} belong to different leaf classes of $T(h)$, i.e. $C_{i}^{h} \neq C_{j}^{h}$. Observe that $\left|(M(h) \backslash\{r\}) \cup\left\{r^{\prime}\right\}\right|$ can violate the upper quota only for those classes of $T(h)$ which contain r^{\prime} but do not contain r. Let C_{k}^{h} be the least common ancestor of C_{i}^{h} and C_{j}^{h} in $T(h)$. It suffices to look at any class C_{t}^{h} which lies in the path from C_{k}^{h} to C_{j}^{h} excluding the class C_{k}^{h} and show that $\left|\left(M(h) \cap C_{t}^{h}\right) \cup\left\{r^{\prime}\right\}\right| \leq q\left(C_{t}^{h}\right)$. As $r^{\prime}=\operatorname{corr}(r)$ and $r \notin C_{t}^{h}$, we claim that $\left|M(h) \cap C_{t}^{h}\right|<\left|M^{\prime}(h) \cap C_{t}^{h}\right| \leq q\left(C_{t}^{h}\right)$. The first inequality is due to the fact that r^{\prime} did not find a corresponding resident in the set $\left(M(h) \backslash M^{\prime}(h)\right) \cap C_{t}^{h}$. The second inequality is because M^{\prime} is feasible. Thus, $\left(M(h) \cap C_{t}^{h}\right) \cup\left\{r^{\prime}\right\}$ does not violate the upper quota for C_{t}^{h}. Therefore $(M(h) \backslash\{r\}) \cup\left\{r^{\prime}\right\}$ is feasible for h.

We note that the hospital h may occur multiple times on ρ. Let $M(h)_{\rho}$ denote the set of residents matched to h restricted to ρ. To complete the proof of the Lemma, we need to prove that $\left(M(h) \backslash M(h)_{\rho}\right) \cup M^{\prime}(h)_{\rho}$ is feasible for h. The arguments for this follow from the arguments given above.

As was done in [13], it is convenient to label the edges of $M^{\prime} \backslash M$ and use these labels to compute $\Delta\left(M^{\prime}, M\right)$. Let $(r, h) \in M^{\prime} \backslash M$; the label on (r, h) is a tuple:

$$
\left(\operatorname{vote}_{r}(h, M(r)), \quad \operatorname{vote}_{h}(r, \operatorname{corr}(r))\right)
$$

Note that since we are labeling edges of $M^{\prime} \backslash M$, both entries of the tuple come from the set $\{-1,1\}$. With these definitions in place, we are ready to give the structural characterization of popular matchings in an LCSM^{+}instance.

3 Structural characterization of popular matchings

Let $G=(\mathcal{R} \cup \mathcal{H}, E)$ be an LCSM^{+}instance and let M and M^{\prime} be two feasible matchings in G. Using the corr function, we obtain a correspondence of residents in $M(h) \oplus M^{\prime}(h)$ for every hospital h in G. Let $\tilde{G}=\left(\mathcal{R} \cup \mathcal{H}, M \oplus M^{\prime}\right)$ and let $\mathcal{Y}_{M \oplus M^{\prime}}$ denote the collection of alternating paths and cycles obtained by decomposing every component of \tilde{G}. Finally, we label the edges of $M^{\prime} \backslash M$ using appropriate votes. The goal of these steps is to is to rewrite the term $\Delta\left(M^{\prime}, M\right)$ as a sum of labels on edges.

We note that the only vertices for whom their vote does not get captured on the edges of $M^{\prime} \backslash M$ are vertices that are matched in M but not matched in M^{\prime}. Let \mathcal{U} denote the multi-set of vertices that are end points of paths in $\mathcal{Y}_{M \oplus M^{\prime}}$ such that there is no M^{\prime} edge incident on them. Note that the same hospital can belong to multiple alternating paths and cycles in $\mathcal{Y}_{M \oplus M^{\prime}}$, therefore we need a multi-set. All vertices in \mathcal{U}
prefer M over M^{\prime} and hence we add a -1 while capturing their vote in $\Delta\left(M^{\prime}, M\right)$. We can write $\Delta\left(M^{\prime}, M\right)$ as:

$$
\Delta\left(M^{\prime}, M\right)=\sum_{x \in \mathcal{U}}-1+\sum_{\rho \in \mathcal{Y}_{M \oplus M^{\prime}}}\left(\sum_{(r, h) \in\left(M^{\prime} \cap \rho\right)}\left\{\operatorname{vote}_{r}(h, M(r))+\operatorname{vote}_{h}(r, \operatorname{corr}(r))\right\}\right)
$$

We now delete the edges labeled $(-1,-1)$ from all paths and cycles ρ in $\mathcal{Y}_{M \oplus M^{\prime}}$. This simply breaks paths and cycles into one or more paths. Let this new collection of paths and cycles be denoted by $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$. Let $\tilde{\mathcal{U}}$ denote the multi-set of vertices that are end points of paths in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ such that there is no M^{\prime} edge incident on them. We rewrite $\Delta\left(M^{\prime}, M\right)$ as:

$$
\Delta\left(M^{\prime}, M\right)=\sum_{x \in \tilde{\mathcal{U}}}-1+\sum_{\rho \in \tilde{\mathcal{Y}}_{M \oplus M^{\prime}}}\left(\sum_{(r, h) \in\left(M^{\prime} \cap \rho\right)}\left\{\operatorname{vote}_{r}(h, M(r))+\operatorname{vote}_{h}(r, \operatorname{corr}(r))\right\}\right)
$$

Theorem below characterizes a popular matching.
Theorem 1. A feasible matching M in G is popular iff for any feasible matching M^{\prime} in G, the set $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ does not contain any of the following:

1. An alternating cycle with $a(1,1)$ edge,
2. An alternating path which has a $(1,1)$ edge and starts with an unmatched resident in M or a hospital which is under-subscribed in M.
3. An alternating path which has both its ends matched in M and has two or more $(1,1)$ edges.

Proof. We show that if M is a feasible matching such that for any M^{\prime} the set $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ does not contain (1), (2), (3) as in Theorem 11 then M is popular in G.

Assume for the sake of contradiction that M satisfies the conditions of Theorem 1 and yet M is not popular. Therefore there exists a feasible matching M^{*} such that $\Delta\left(M^{*}, M\right)>0$. Consider the set $\mathcal{Y}_{M^{*} \oplus M}$. Recall that this set is a collection of paths and cycles and the edges of $M^{*} \backslash M$ are labeled. Let ρ be any path or cycle in $\mathcal{Y}_{M^{*} \oplus M}$ and let $\Delta\left(M^{*}, M\right)_{\rho}$ denote the difference between the votes of M^{*} and M when restricted to the residents and hospitals in ρ. Since $\Delta\left(M^{*}, M\right)>0$, there exists a ρ such that $\Delta\left(M^{*}, M\right)_{\rho}>0$. Note that ρ is present in $\mathcal{Y}_{M^{*} \oplus M}$; using the presence of ρ we establish the existence of a $\rho^{\prime} \in \tilde{\mathcal{Y}}_{M^{*} \oplus M}$ of the form (1), (2) or (3) which contradicts our assumption. We consider three cases depending on the structure of ρ.

1. ρ is an alternating cycle or ρ is an alternating path which starts and ends in an M edge: Since $\rho \in \mathcal{Y}_{M^{*} \oplus M}$, and $\Delta\left(M^{*}, M\right)_{\rho}>0$, it implies that there are more edges in ρ labeled $(1,1)$ than the number of edges labeled $(-1,-1)$. We now delete the edges labeled $(-1,-1)$ from ρ; this breaks ρ in to multiple alternating paths. Note that each of these paths (say ρ^{\prime}) start and end with an M edge and are also present in $\tilde{\mathcal{Y}}_{M^{*} \oplus M}$. Furthermore, since ρ contained more number of edges labeled $(1,1)$ than the number of edges labeled $(-1,-1)$, it is clear that there exists at least one ρ^{\prime} which has two edges labeled $(1,1)$. This is a path of type (3) from the theorem statement and therefore contradicts our assumption that M satisfied the conditions of the theorem.
2. ρ is an alternating path which starts or ends in an M^{*} edge:

The proof is similar to the previous case except that when we delete from ρ the edges labeled $(-1,-1)$ we get paths $\rho^{\prime} \in \tilde{\mathcal{Y}}_{M^{*} \oplus M}$ which are paths of type (2) or type (3) from the theorem statement. This contradicts the assumption that M satisfied the conditions of the theorem.

This completes the proof of one direction of the Theorem. To prove the other direction, we prove the contrapositive of the statement. That is, if for any feasible matching $M^{\prime}, \tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ contains (1), (2) or (3), then M is not popular in G. We first assume that $\rho \in \tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ satisfying (1), (2), or (3) is also present in $\mathcal{Y}_{M \oplus M^{\prime}}$. Under this condition, it is possible to get a more popular matching than M by the following three cases.

- Let $M_{2}=M \oplus \rho$ be a matching in G; by Lemma we know that M_{2} is feasible in G. Comparing M_{2} to M yields two more votes for M_{2}. Hence, M_{2} is more popular than M.
- If ρ is an alternating path in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$, which has both its endpoints matched in M, and contains more than one edge labeled $(1,1)$. Then similar to the case above $M_{2}=M \oplus \rho$ is more popular than M.
- If ρ is an alternating path in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$, which has exactly one of its endpoints matched in M, and contains an edge labeled $(1,1)$, then again $M_{2}=M \oplus \rho$ is more popular than M.

Now let us assume that $\rho \in \tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ is not present in $\mathcal{Y}_{M \oplus M^{\prime}}$. In such a case, ρ is contained in a larger path or a cycle $\rho^{\prime} \in \mathcal{Y}_{M \oplus M^{\prime}}$ obtained by combining ρ with other paths in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ and adding the deleted $(-1,-1)$ edges. Using the larger path or cycle ρ^{\prime} we can construct a matching that is more popular than M. Note that we need to use paths or cycles in $\mathcal{Y}_{M \oplus M^{\prime}}$ to obtain another matching, since we have to ensure that the matching obtained is indeed feasible in the instance and the correspondences are maintained.

We now prove that every stable matching in an LCSM^{+}instance is popular.
Theorem 2. Every stable matching in an $L C S M^{+}$instance G is popular.
Proof. Let M be a stable matching in G. For any feasible matching M^{\prime} in G consider the set $\mathcal{Y}_{M \oplus M^{\prime}}$. To prove that M is stable, it suffices to show that there does not exist a path or cycle $\rho \in \mathcal{Y}_{M \oplus M^{\prime}}$ such that an edge of ρ is labeled $(1,1)$. For the sake of contradiction, assume that ρ is such a path or cycle, which has an edge $\left(r^{\prime}, h\right) \in M^{\prime} \backslash M$ labeled $(1,1)$. Let $r=\operatorname{corr}\left(r^{\prime}\right)$, where $(r, h) \in M \cap \rho$. From the proof of Lemma 1 we observe that $(M(h) \backslash\{r\}) \cup\left\{r^{\prime}\right\}$ is feasible for h, therefore the edge $\left(r^{\prime}, h\right)$ blocks M contradicting the stability of M.

4 Popular matchings in LCSM^{+}problem

In this section we present efficient algorithms for computing (i) a maximum cardinality popular matching, and (ii) a matching that is popular amongst all the maximum cardinality matchings in a given LCSM ${ }^{+}$instance. Our algorithms are inspired by the reductions of Kavitha and Cseh [5] where they work with a stable marriage instance. We describe a general reduction from an LCSM ${ }^{+}$instance G to another LCSM^{+}instance G_{s}. Here $s=2, \ldots,|\mathcal{R}|$. The algorithms for the two problems are obtained by choosing an appropriate value of s.
The graph G_{s} : Let $G=(\mathcal{R} \cup \mathcal{H}, E)$ be the input LCSM ${ }^{+}$instance. The graph $G_{s}=\left(\mathcal{R}_{s} \cup \mathcal{H}_{s}, E_{s}\right)$ is constructed as follows: Corresponding to every resident $r \in \mathcal{R}$, we have s copies of r, call them r^{0}, \ldots, r^{s-1} in \mathcal{R}_{s}. The hospitals in \mathcal{H} and their capacities remain unchanged; however we have additional dummy hospitals each of capacity 1 . Corresponding to every resident $r \in \mathcal{R}$, we have $(s-1)$ dummy hospitals $d_{r}^{0}, \ldots, d_{r}^{s-2}$ in \mathcal{H}_{s}. Thus,

$$
\mathcal{R}_{s}=\left\{r^{0}, \ldots, r^{s-1} \mid \forall r \in \mathcal{R}\right\} ; \quad \mathcal{H}_{s}=\mathcal{H} \cup\left\{d_{r}^{0}, \ldots, d_{r}^{s-2} \mid \forall r \in \mathcal{R}\right\}
$$

We use the term level- i resident for a resident $r^{i} \in \mathcal{R}_{s}$ for $0 \leq i \leq s-1$. The preference lists corresponding to s different residents of r in G_{s} are:

- For a level- 0 resident r^{0}, its preference list in G_{s} is the preference list of r in G, followed by the dummy hospital d_{r}^{0}.
- For a level- i resident r^{i}, where $1 \leq i \leq s-2$, its preference list in G_{s} is d_{r}^{i-1} followed by preference list of r in G, followed by d_{r}^{i}.
- For a level- $(s-1)$ resident r^{s-1}, its preference list in G_{s} is the dummy hospital d_{r}^{s-2} followed by the preference list of r in G.

The preference lists of hospitals in G_{s} are as follows.

- The preference list for a dummy hospital d_{r}^{i} is r^{i} followed by r^{i+1}.
- For $h \in \mathcal{H}$, its preference list in G_{s}, has level- $(s-1)$ residents followed by level- $(s-2)$ residents, so on upto the level-0 residents in the same order as in h 's preference list in G.

Finally, we need to specify the classifications of the hospitals in G_{s}. For every class C_{i}^{h} in the instance G, we have a corresponding class $\bar{C}_{i}^{h}=\bigcup_{r \in C_{i}^{h}}\left\{r^{0}, \ldots, r^{s-1}\right\}$ in G_{s}, such that $q\left(\bar{C}_{i}^{h}\right)=q\left(C_{i}^{h}\right)$. We note that $\left|\bar{C}_{i}^{h}\right|=s \cdot\left|C_{i}^{h}\right|$. Let M_{s} be a stable matching in G_{s}. Then M_{s} satisfies the following properties:
$\left(\mathcal{I}_{1}\right)$ Each $d_{r}^{i} \in \mathcal{H}_{s}$ for $0 \leq i \leq s-2$, is matched to one of $\left\{r^{i}, r^{i+1}\right\}$ in M_{s}.
$\left(\mathcal{I}_{2}\right)$ The above invariant implies that for every $r \in \mathcal{R}$ at most one of $\left\{r^{0}, \ldots, r^{s-1}\right\}$ is assigned to a non-dummy hospital in M_{s}.
$\left(\mathcal{I}_{3}\right)$ For a resident $r \in \mathcal{R}$, if r^{i} is matched to a non-dummy hospital in M_{s}, then for all $0 \leq j \leq i-1$, $M_{s}\left(r^{j}\right)=d_{r}^{j}$. Furthermore, for all $i+1 \leq p \leq s-1, M_{s}\left(r^{p}\right)=d_{r}^{p-1}$. This also implies that in M_{s} all residents r^{0}, \ldots, r^{s-2} are matched and only r^{s-1} can be left unmatched in M_{s}.

These invariants allow us to naturally map the stable matching M_{s} to a feasible matching M in G. We define a function $\operatorname{map}\left(M_{s}\right)$ as follows.

$$
M=\operatorname{map}\left(M_{s}\right)=\left\{(r, h): h \in \mathcal{H} \text { and }\left(r^{i}, h\right) \in M_{s} \text { for exactly one of } 0 \leq i \leq s-1\right\}
$$

We outline an algorithm that computes a feasible matching in an LCSM^{+}instance G. Given G and s, construct the graph G_{s} from G. Compute a stable matching M_{s} in G_{s}. If G is an LCSM ${ }^{+}$instance we use the algorithm of Huang [10] to compute a stable matching in G. If G is a PCSM^{+}instance, it is easy to observe that G_{s} is also a PCSM^{+}instance. In that case, we use the algorithm of Abraham et al. 2] to compute a stable matching. (The SPA instance is different from a PCSM ${ }^{+}$instance, however, there is a easy reduction from the PCSM^{+}instance to SPA, we give the reduction (refer Appendix A.1) for the sake of completeness.). We output $M=\operatorname{map}\left(M_{s}\right)$ whose feasibility is guaranteed by the invariants mentioned earlier. The complexity of our algorithm depends on s and the time required to compute a stable matching in the problem instance.

In the rest of the paper, we denote by M the matching obtained as $\operatorname{map}\left(M_{s}\right)$ where M_{s} is a stable matching in G_{s}. For any resident $r_{i} \in \mathcal{R}$, we define

$$
\begin{aligned}
\operatorname{map}^{-1}\left(r_{i}, M_{s}\right) & =r_{i}^{j_{i}} & & \text { where } 0 \leq j_{i} \leq s-1 \text { and } M_{s}\left(r_{i}^{j_{i}}\right) \text { is a non-dummy hospital } \\
& =r_{i}^{s-1} & & \text { otherwise. }
\end{aligned}
$$

Recall by Invariant $\left(\mathcal{I}_{3}\right)$, exactly one of the level copy of r_{i} in G_{s} is matched to a non-dummy hospital in M_{s}. For any feasible matching M^{\prime} in G consider the set $\mathcal{Y}_{M \oplus M^{\prime}}$ - recall that this is a collection of M alternating paths and cycles in G. For any path or cycle ρ in $\mathcal{Y}_{M \oplus M^{\prime}}$, let us denote by $\rho_{s}=\operatorname{map}^{-1}\left(\rho, M_{s}\right)$ the path or cycle in G_{s} obtained by replacing every resident r in ρ by $\operatorname{map}^{-1}\left(r, M_{s}\right)$. Recall that if a resident r is present in the class C_{j}^{h} defined by a hospital h in G, then in the graph $G_{s}, r^{i} \in \bar{C}_{j}^{h}$ for $i=0, \ldots, s-1$. The map ${ }^{-1}$ function maps a resident r in G to a unique level- i copy in G_{s}. Using Lemma 1 and these observations we get the following corollary.

Corollary 1. Let ρ be an alternating path or an alternating cycle in $\mathcal{Y}_{M \oplus M^{\prime}}$, then $M_{s} \oplus \rho_{s}$ is a feasible matching in G_{s}, where $\rho_{s}=$ map $^{-1}\left(\rho, M_{s}\right)$.
The following technical lemma is useful in proving the properties of the matchings produced by our algorithms.

Lemma 2. Let ρ be an alternating path or an alternating cycle in $\mathcal{Y}_{M \oplus M^{\prime}}$, and $\rho_{s}=\operatorname{map}^{-1}\left(\rho, M_{s}\right)$.

1. There cannot be any edge labeled $(1,1)$ in ρ_{s}.
2. Let $\left\langle r_{a}^{j_{a}}, h, r_{b}^{j_{b}}\right\rangle$ be a sub-path of ρ_{s}, where $h=M_{s}\left(r_{b}^{j_{b}}\right)$. Then, the edge $\left(r_{a}^{j_{a}^{\prime}}, h\right) \notin \rho_{s}$ cannot be labeled $(1,1)$, where $j_{a}^{\prime}<j_{a}$.
Proof. Let $\left\langle r_{a}^{j_{a}}, h, r_{b}^{j_{b}}\right\rangle$ be a sub-path of ρ_{s}, where $h=M_{s}\left(r_{b}^{j_{b}}\right)$ (Figure 4). As $M_{s} \oplus \rho_{s}$ is feasible in G_{s} (Corollary (1), the set $\left(M_{s}(h) \backslash\left\{r_{b}^{j_{b}}\right\}\right) \cup\left\{r_{a}^{j_{a}}\right\}$ is feasible for h in G_{s}. Now since $\left(r_{a}^{j_{a}}, h\right)$ is labeled $(1,1)$, the edge $\left(r_{a}^{j_{a}}, h\right)$ blocks M_{s} contradicting its stability. This proves (1). To prove (2), assume that the edge $\left(r_{a}^{j_{a}^{\prime}}, h\right) \notin \rho_{s}$ is labeled $(1,1)$. The residents $r_{a}^{j_{a}}$ and $r_{a}^{j_{a}^{\prime}}$ belong to the same class (say \bar{C}_{k}^{h}) in G_{s}, hence $\left(M_{s}(h) \backslash\left\{r_{b}^{j_{b}}\right\}\right) \cup\left\{r_{a}^{j_{a}^{\prime}}\right\}$ is feasible for h. Thus the edge $\left(r_{a}^{j_{a}^{\prime}}, h\right)$ blocks M_{s} contradicting its stability.

Fig. 4. The edges $\left(r_{a}^{j_{a}}, h\right)$ and $\left(r_{b}^{j_{b}}, h\right)$ belong to ρ, while the edge $\left(r_{a}^{j_{a}^{\prime}}, h\right)$ does not belong to ρ.

4.1 Maximum cardinality popular matching

Let $G=(\mathcal{R} \cup \mathcal{H}, E)$ be an instance of the LCSM^{+}problem where we are interested in computing a maximum cardinality popular matching. We use our generic reduction with the value of the parameter $s=2$. Since G_{2} is linear in the size of G, and a stable matching in an LCSM ${ }^{+}$instance can be computed in $O(m n)$ time [10], we obtain an $O(m n)$ time algorithm to compute a maximum cardinality popular matching in G. In case G is a PCSM^{+}instance, we use the linear time algorithm in [2] for computing a stable matching to get a linear time algorithm for our problem. The proof of correctness involves two things - we first show that M is popular in G. We then argue that it is the largest size popular matching in G. We state the main theorem of this section below.

Theorem 3. Let $M=\operatorname{map}\left(M_{2}\right)$ where M_{2} is a stable matching in G_{2}. Then M is a maximum cardinality popular matching in G.

We break down the proof of Theorem 3 in two parts. Lemma 3 shows that the assignment M satisfies all the conditions of Theorem [1 Lemma 5 shows that the matching output is indeed the largest size popular matching in the instance. Let M^{\prime} be any assignment in G. Recall the definition of $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ - this set contains M alternating paths and M alternating cycles in G and the edge labels on the M^{\prime} edges belong to $\{(-1,1),(1,-1),(1,1)\}$.

Lemma 3. Let $M=\operatorname{map}\left(M_{2}\right)$ where M_{2} is a stable matching in ${\underset{\sim}{2}}_{2}$ and let M^{\prime} be any feasible assignment in G. Consider the set of alternating paths and alternating cycles $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$. Then, the following hold:

1. An alternating cycle C in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$, does not contain any edge labeled $(1,1)$.
2. An alternating path P in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ that starts or ends with an edge in M^{\prime}, does not contain any edge labeled $(1,1)$.
3. An alternating path P in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ which starts and ends with an edge in M, contains at most one edge labeled $(1,1)$.

Proof. We first prove the parts (1) and (2). Recall that $M=\operatorname{map}\left(M_{2}\right)$ where M_{2} is a stable matching in G_{2}. Assume that $\rho=\left\langle u_{0}, v_{1}, u_{1}, \ldots, v_{k}, u_{k}\right\rangle$ where for each $i=0, \ldots, k, v_{i}=M\left(u_{i}\right)$ (in case u_{i} is a hospital, $\left.v_{i} \in M\left(u_{i}\right)\right)$. In case ρ is a cycle, all subscripts follow $\bmod k$ arithmetic. The existence of ρ in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ implies that there is an associated M_{2} alternating path or an M_{2} alternating cycle $\rho_{2}=\operatorname{map}^{-1}\left(\rho, M_{2}\right)$ in G_{2}.

Now assume for the sake of contradiction that ρ contains an edge $e=\left(r_{a}, h_{b}\right) \notin M$ labeled (1,1) for some $a=0, \ldots, k$, and $b=0, \ldots, k$. We observe the following about preferences of r_{a} and h_{b} in G.
$\left(\mathcal{O}_{1}\right) r_{a}$ prefers h_{b} over $h_{a}=M\left(r_{a}\right)$.
$\left(\mathcal{O}_{2}\right) h_{b}$ prefers r_{a} over $r_{b} \in M\left(h_{b}\right)$, where $r_{b}=\boldsymbol{\operatorname { c o r r }}\left(r_{a}\right)$.

Using the presence of an edge labeled $(1,1)$ in ρ, we will contradict the stability of M_{2} in G_{2}. Consider the edge $e^{\prime}=\left(r_{a}^{j_{a}}, h_{b}\right)$ in G_{2}. Since $h_{b}=M_{2}\left(r_{b}^{j_{b}}\right)$, we observe that $e^{\prime} \notin M_{2}$. We consider the four cases that can arise depending on the values of j_{a} and j_{b}.

1. $j_{a}=j_{b}=0$
2. $j_{a}=j_{b}=1$
3. $j_{a}=1$ and $j_{b}=0$
4. $j_{a}=0$ and $j_{b}=1$

Recall observation $\left(\mathcal{O}_{1}\right)$, and the fact that the residents do not change their preferences in G_{2} w.r.t. the hospitals originally in G. This implies in all the four cases above, the resident $r_{a}^{j_{a}}$ prefers h_{b} over $h_{a}=M_{2}\left(r_{a}^{j_{a}}\right)$. Using $\left(\mathcal{O}_{2}\right)$ and the fact that a hospital h in G_{2} prefers level- 1 residents over level- 0 residents, we can conclude the following. For the cases (1), (2) and (3), hospital h_{b} prefers $r_{a}^{j_{a}}$ over $r_{b}^{j_{b}}$, which implies that the pair $\left(r_{a}^{j_{a}}, h_{b}\right)$ is labeled (1, 1), and thus forms a blocking pair w.r.t. M_{2} (using Lemma 2(1)).

We now consider the three different cases for ρ depending on whether ρ is a path or a cycle. When ρ is a path, we break down its proof in two cases - (i) ρ starts or ends with a resident unmatched in M. (ii) ρ starts or ends with an under-subscribed hospital. In each of the different possibilities for ρ, we show that the stability of M_{2} can be contradicted even in case (4), i.e. when $j_{a}=0$ and $j_{b}=1$.

- $\rho=\left\langle r_{0}, h_{1}, r_{1}, \ldots, h_{k-1}, r_{k-1}\right\rangle$ is an alternating path that starts or ends with a resident which is unmatched in M. Here $\rho_{2}=\operatorname{map}^{-1}\left(\rho, M_{2}\right)=\left\langle r_{0}^{j_{0}}, h_{1}, r_{1}^{j_{1}}, \ldots, h_{k-1}, r_{k-1}^{j_{k-1}}\right\rangle$ and for $t=0, \ldots, k-1$, $j_{t} \in\{0,1\}$.
Using invariants $\left(\mathcal{I}_{1}\right),\left(\mathcal{I}_{2}\right)$, and $\left(\mathcal{I}_{3}\right)$, we conclude that a resident r remains unmatched in M_{2} when its level- 0 copy is matched to the dummy hospital d_{r}, and the level- 1 copy is unmatched in M_{2}. Therefore, the first resident on the path ρ_{2} is a level- 1 resident. Furthermore, the second resident on the path r_{1} has to be a level- 1 resident. Otherwise, as r_{0}^{1} is unmatched in M_{2} and h_{1} prefers a level- 1 resident over a level- 0 resident, the edge (r_{0}^{1}, h_{1}) will be labeled (1,1), and thus forms a blocking pair w.r.t. M_{2} (using Lemma [2(1)).
We consider an edge $e \in \rho$ such that $b=a+1$. In case (4), we observe that as $j_{0}=j_{1}=1, j_{a}=0$, and $a<b$, there exists an index x in ρ_{2} such that there is a transition from a level- 1 resident to a level- 0 resident. That is, $\left(r_{x}^{0}, h_{x}\right) \in M_{2}$ and $\left(r_{x-1}^{1}, h_{x}\right) \notin M_{2}$ both belong to ρ_{2}.
We enumerate the possible labels for the edge $e_{x}=\left(r_{x-1}, h_{x}\right)$ in G.
- If e_{x} is labeled $(1,1)$ or $(1,-1)$, then the edge $\left(r_{x-1}^{1}, h_{x}\right)$ is labeled $(1,1)$, and thus blocks M_{2} (using Lemma [2(1)).
- If e_{x} is labeled $(-1,1)$, then the edge $\left(r_{x-1}^{0}, h_{x}\right)$ is labeled (1,1), and thus blocks M_{2} (using Lemma[2(2)).
- $\rho=\left\langle h_{0}, r_{1}, h_{1}, \ldots, r_{k-1}, h_{k-1}\right\rangle$ is an alternating path that starts or ends with an under-subscribed hospital. Here $\rho_{2}=\operatorname{map}^{-1}\left(\rho, M_{2}\right)=\left\langle h_{0}, r_{1}^{j_{1}}, h_{1}, \ldots, r_{k-1}^{j_{k-1}}, h_{k-1}\right\rangle$ and for $t=1, \ldots, k-1, j_{t} \in\{0,1\}$.
Observe that if $j_{1}=1$, then $\left(r_{1}^{0}, h_{0}\right)$ is labeled (1,1), as h_{0} is unmatched in M, and r_{1}^{0} prefers h_{0} to $d_{r_{1}}\left(d_{r_{1}}=M_{2}\left(r_{1}^{0}\right)\right.$ using invariants $\left(\mathcal{I}_{1}\right),\left(\mathcal{I}_{2}\right)$, and $\left(\mathcal{I}_{3}\right)$), contradicting the stability of M_{s} (using Lemma 2(1)). Thus, it must be the case that $j_{0}=0$. Note that the edge (r_{1}, h_{0}) can not be labeled (1,1) in G, as h_{0} being under-subscribed prefers being matched to r_{1}, and residents do not change their votes, and thus the edge $\left(r_{1}^{0}, h_{0}\right)$ is labeled (1,1), contradicting the stability of M_{2} (using Lemma 2(1)). We consider an edge $e \in \rho$ such that $a=b+1$. In case (4), we observe that as $j_{1}=0, j_{b}=1$, and $a>b$, there exists an index x in ρ_{2} such that there is a transition from a level- 0 resident to a level- 1 resident. That is, $\left(r_{x}^{0}, h_{x}\right) \in M_{2}$ and $\left(r_{x+1}^{1}, h_{x}\right) \notin M_{2}$ both belong to ρ_{2}. Using an argument similar to in the case above, we can show that either the edge (r_{x+1}^{1}, h_{x}) or the edge (r_{x+1}^{0}, h_{x}) is labeled (1,1), and therefore forms a blocking pair w.r.t. M_{2}.
$-\rho=\left\langle r_{0}, h_{0}, r_{1}, h_{1}, \ldots, r_{k}, h_{k}, r_{0}\right\rangle$ is an alternating cycle. Here $\rho_{2}=\operatorname{map}^{-1}\left(\rho, M_{s}\right)=\left\langle r_{0}^{j_{0}}, h_{0}, r_{1}^{j_{1}}, h_{1}, \ldots, r_{k}^{j_{k}}, h_{k}, r_{0}^{j_{0}}\right\rangle$ and for $t=1, \ldots, k-1, j_{t} \in\{0,1\}$.
We consider an edge $e \in \rho$ such that $a=b+1$. As $j_{a}=0$ and $j_{b}=1$, and $b<a$, this is a transition from a level- 1 resident to a level- 0 resident in the cycle ρ_{2}. To complete the cycle ρ_{2} there must exist an index x such that there is a transition from a level-0 resident to a level- 1 resident. That is, $\left(r_{x}^{0}, h_{x}\right) \in M_{2}$ and $\left(r_{x+1}^{1}, h_{x}\right) \notin M_{2}$ both belong to ρ_{2}. Using an argument similar to as in the first case, we can show that either the edge $\left(r_{x+1}^{1}, h_{x}\right)$ or the edge $\left(r_{x+1}^{0}, h_{x}\right)$ is labeled $(1,1)$, and therefore forms a blocking pair w.r.t. M_{2}.

We now prove part (3) of the lemma. Consider $P=\left\langle r_{0}, h_{0}, \ldots, r_{k-1}, h_{k-1}\right\rangle$ where for each $i=0, \ldots, k-1$, $M\left(r_{i}\right)=h_{i}$. The existence of P in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ implies that there exists an M_{2} alternating path P_{2} in G_{2}. Here $P_{2}=\left\langle r_{0}^{j_{0}}, h_{0}, \ldots, r_{k-1}^{j_{k-1}}, h_{k-1}\right\rangle$, and for $t=0, \ldots, k-1, j_{t} \in\{0,1\}$.

For the sake of contradiction assume that P contains at least two edges, $e_{1}=\left(r_{x}, h_{x-1}\right), e_{2}=\left(r_{y}, h_{y-1}\right)$ for some $x, y=1, \ldots, k-1$, w.l.o.g. $x \neq y, x<y$ and e_{1}, e_{2} are labeled $(1,1)$. We observe the following about preferences of r_{x}, r_{y} and h_{x-1}, h_{y-1} in G.
$\left(\mathcal{O}_{1}\right) r_{x}$ prefers h_{x-1} over $h_{x}=M\left(r_{x}\right)$.
r_{y} prefers h_{y-1} over $h_{y}=M\left(r_{y}\right)$.
$\left(\mathcal{O}_{2}\right) h_{x-1}$ prefers r_{x} over $r_{x-1} \in M\left(h_{x-1}\right)$.
h_{y-1} prefers r_{y} over $r_{y-1} \in M\left(h_{y-1}\right)$.
Using the presence of the edges e_{1} and e_{2} labeled $(1,1)$ in P, we will contradict the stability of M_{2} in G_{2}. Consider the edges $e_{1}^{\prime}=\left(r_{x}^{j_{x}}, h_{x-1}\right)$ and $e_{2}^{\prime}=\left(r_{y}^{j_{y}}, h_{y-1}\right)$ in G_{2}, and since $h_{x-1}=M_{2}\left(r_{x}^{j_{x-1}}\right)$ and $h_{y-1}=M_{2}\left(r_{y}^{j_{y-1}}\right)$, note that $e_{1}^{\prime}, e_{2}^{\prime} \notin M_{2}$.

We first consider the edge e_{1}^{\prime}, and consider the four cases that can arise depending on the values of j_{x} and j_{x-1}.
$\begin{array}{ll}\text { 1. } j_{x-1}=j_{x}=0 & \text { 3. } j_{x-1}=0 \text { and } j_{x}=1 \\ \text { 2. } j_{x-1}=j_{x}=1 & \text { 4. } j_{x-1}=1 \text { and } j_{x}=0\end{array}$
Recall observation $\left(\mathcal{O}_{1}\right)$, and the fact that the residents do not change their preferences in G_{2} w.r.t the hospitals originally in G. This implies that in all the four cases above, the resident $r_{x}^{j_{x}}$ prefers h_{x-1} over $h_{x}=M_{2}\left(r_{x}^{j_{x}}\right)$. Using $\left(\mathcal{O}_{2}\right)$ and the fact that a hospital h in G_{2} prefers level-1 residents over level- 0 residents, we can conclude the following. For the cases (1), (2) and (3), hospital h_{x-1} prefers $r_{x}^{j_{x}}$ over $r_{x-1}^{j_{x-1}}$, which implies that the pair $\left(r_{x}^{j_{x}}, h_{x-1}\right)$ is labeled (1, 1), which contradicts the stability of M_{s} (using Lemma 2(1)).

With a similar analysis for the edge e_{2}^{\prime}, we conclude that the first three cases do not arise. There is only one case left to consider, when $j_{x-1}=1, j_{x}=0$ and $j_{y-1}=1, j_{y}=0$. As $x \neq y, x<y$, and $j_{x}=0, j_{y-1}=1$, there exists an index ℓ in P_{2} such that there is a transition from a level- 0 resident to a level- 1 resident. That is, $\left(r_{\ell}^{0}, h_{\ell}\right) \in M_{2}$ and $\left(r_{\ell+1}^{1}, h_{\ell}\right) \notin M_{2}$ both belong to P_{2}.

We enumerate the possible labels for the edge $e_{\ell}=\left(r_{\ell+1}, h_{\ell}\right)$ in G.

- If e_{ℓ} is labeled $(1,1)$ or $(1,-1)$, then the edge $\left(r_{\ell+1}^{1}, h_{\ell}\right)$ is labeled $(1,1)$, which contradicts the stability of M_{s} (using Lemma 2(1)).
- If e_{ℓ} is labeled $(-1,1)$, then the edge $\left(r_{\ell+1}^{0}, h_{\ell}\right)$ is labeled $(1,1)$, which contradicts the stability of M_{s} (using Lemma 2(2)).

This completes the proof.
Lemma 4. There is no augmenting path with respect to M in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$.
Proof. Let $P=\left\langle r_{0}, h_{1}, r_{1}, h_{2}, \ldots, h_{k-1}, r_{k-1}, h_{k}\right\rangle$ be an augmenting path where for each $i=1, \ldots, k-$ $1, M\left(r_{i}\right)=h_{i}$. The existence of P in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ implies that there exists an M_{2} augmenting path $P_{2}=$ $\left\langle r_{0}^{j_{0}}, h_{1}, r_{1}^{j_{1}}, h_{2}, \ldots, h_{k-1}, r_{k-1}^{j_{k-1}}, h_{k}\right\rangle$ in G_{2}, and for $t=0, \ldots, k-1, j_{t} \in\{0,1\}$.

Using invariants $\left(\mathcal{I}_{1}\right),\left(\mathcal{I}_{2}\right)$, and $\left(\mathcal{I}_{3}\right)$, we conclude that a resident r remains unmatched in M_{2} when its level- 0 copy is matched to the dummy vertex d_{r}, and the level-1 copy is unmatched in M_{2}. Therefore the first resident on the path P_{2} is a level- 1 resident. The second resident on the path r_{1} has to be a level- 1 resident, otherwise the edge $\left(r_{0}^{1}, h_{1}\right)$ will be labeled (1, 1), and thus contradict the stability of M_{2} (using Lemma/2(1)). This is because r_{0}^{1} prefers being matched to h_{1} than being unmatched in M_{2}, and h_{1} prefers level- 1 resident over a level-0 resident. Observe that $j_{k-1}=0$, else the pair $\left(r_{k-1}^{0}, h_{k}\right)$ is labeled $(1,1)$, as r_{k-1}^{0} is matched to d_{r} (by invariants $\left(\mathcal{I}_{1}\right)$ and $\left(\mathcal{I}_{2}\right)$), which is at the end of its preference list, and h_{k} is unmatched in M^{\prime}.

Therefore the path P_{2} is of the form $\left\langle r_{0}^{1}, h_{1}, r_{1}^{1}, h_{2}, \ldots, h_{k-1}, r_{k-1}^{0}, h_{k}\right\rangle$. As $j_{0}=j_{1}=1$ and $j_{k-1}=0$, there exists an index x in P_{2} such that there is a transition from a level- 1 resident to a level- 0 resident. That is, $\left(r_{x}^{0}, h_{x}\right) \in M_{2}$ and $\left(r_{x-1}^{1}, h_{x}\right) \notin M_{2}$ both belong to P_{2}.

We enumerate the possible labels for the edge $e_{x}=\left(r_{x-1}, h_{x}\right)$ in G.

- If e_{x} is labeled $(1,1)$ or $(1,-1)$, then the edge $\left(r_{x-1}^{1}, h_{x}\right)$ is labeled $(1,1)$, which contradicts the stability of M_{s} (using Lemma 2(1)).
- If e_{x} is labeled $(-1,1)$, then the edge $\left(r_{x-1}^{0}, h_{x}\right)$ is labeled $(1,1)$, which contradicts the stability of M_{s} (using Lemma 2(2)).
This contradicts our assumption that P is augmenting with respect to M in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$.
Lemma 5. There exists no popular matching M^{*} in G such that $\left|M^{*}\right|>|M|$.
Proof. For contradiction, assume that such an assignment M^{*} exists in G. Consider the set $\mathcal{Y}_{M \oplus M^{*}}$; recall that this set contains alternating paths and cycles possibly containing edges labeled $(-1,-1)$. Since $\left|M^{*}\right|>$ $|M|$ there must exist an augmenting path P in $\mathcal{Y}_{M \oplus M^{*}}$. We first claim that the path P must contain at least one edge labeled $(-1,-1)$. If not, then the path P is also contained in $\tilde{\mathcal{Y}}_{M \oplus M^{*}}$. However, by Lemma 4 there is no augmenting path with respect to M in $\tilde{\mathcal{Y}}_{M \oplus M^{\prime}}$ for any feasible matching M^{\prime} in G.

We now remove all edges from P which are labeled $(-1,-1)$. This breaks the path into sub-paths say $P_{1}, P_{2}, \ldots, P_{t}$ for some $t \geq 1$, where P_{1} and P_{t} have one endpoint unmatched in M. Consider the path P_{1}; since P_{1} does not contain any $(-1,-1)$ edge this implies that $P_{1} \in \tilde{\mathcal{Y}}_{M \oplus M^{*}}$. Without loss of generality, assume that P_{1} starts with a resident r which is unmatched in M. Thus using Lemma 3(2), P_{1} does not contain any edge labeled $(1,1)$. Let us denote by $\Delta\left(M^{*}, M\right)_{P_{1}}$ the difference between votes of M^{*} and M restricted to vertices of path P_{1}. It is clear that $\Delta\left(M^{*}, M\right)_{P_{1}}<0$. Also, for each $i=2, \ldots, t-1$, the alternating paths P_{i} have both of their endpoints matched in M. Thus we have $\Delta\left(M^{*}, M\right)_{P_{i}} \leq 0$ as there can be at most one (1,1) edge (by Lemma 3(3)) in these paths, but the endpoints prefer M, as they are matched in M but not in M^{\prime}. If P_{t} exists, then a argument similar as given for P_{1}, we have $\Delta\left(M^{*}, M\right)_{P_{t}}<0$. Using these observations, we conclude that M is more popular than M^{*}, a contradiction to the assumption that M^{*} and M are both popular.

Thus, for any given matching M^{*} such that $\left|M^{*}\right|>|M|$, we know that M is more popular than such a matching. This completes the proof of the lemma, and shows that the matching $M=\operatorname{map}\left(M_{2}\right)$ is a maximum cardinality popular matching in G.

4.2 Popular matching amongst maximum cardinality matchings

In this section we give an efficient algorithm for computing a matching which is popular amongst the set of maximum cardinality matchings. The matching M that we output cannot be beaten in terms of votes by any feasible maximum cardinality matching. Our algorithm uses the generic reduction with a value of $s=|\mathcal{R}|$ $=n_{1}$ (say). Thus, $\left|\mathcal{R}_{n_{1}}\right|=n_{1}^{2}$, and $\left|\mathcal{H}_{n_{1}}\right|=|\mathcal{H}|+O\left(n_{1}^{2}\right)$. Furthermore, $\left|E_{n_{1}}\right|=O\left(m n_{1}\right)$ where $m=|E|$. Thus the running time of the generic algorithm presented earlier with $s=n_{1}$ for an LCSM ${ }^{+}$instance is $O\left(m n \cdot n_{1}\right)=O\left(m n^{2}\right)$ and for a PCSM^{+}instance is $O\left(m n_{1}\right)=O(m n)$.

To prove correctness, we show that the matching output by our algorithm is (i) maximum cardinality and (ii) popular amongst all maximum cardinality feasible matchings. Let $M=\operatorname{map}\left(M_{n_{1}}\right)$ and M^{*} be any maximum cardinality feasible matching in G. Consider the set $\mathcal{Y}_{M \oplus M^{*}}$, and let ρ be an alternating path or an alternating cycle in $\mathcal{Y}_{M \oplus M^{*}}$. Let $\rho_{n_{1}}=\operatorname{map}^{-1}\left(\rho, M_{n_{1}}\right)$ denote the associated alternating path or cycle in $G_{n_{1}}$. We observe that every hospital on the path $\rho_{n_{1}}$ is a non-dummy hospital since $\rho_{n_{1}}$ was obtained using the inverse-map of ρ. We observe two useful properties about such a path or cycle $\rho_{n_{1}}$ in $G_{n_{1}}$. We show that if for a hospital $h \in \rho_{n_{1}}$, the level of the unmatched resident incident on h is greater than the level of the matched resident incident on h, then such a level change is gradual, and the associated edge in ρ has the label $(-1,-1)$. Lemma 6, gives a proof of these.

Lemma 6. Let $\rho_{n_{1}}$ be an alternating path or an alternating cycle in $G_{n_{1}}$ and let h be a hospital which has degree two in $\rho_{n_{1}}$. Let $\left\langle r_{a}^{j_{a}}, h, r_{b}^{j_{b}}\right\rangle$ be the sub-path containing h where $M\left(r_{b}^{j_{b}}\right)=h$. If $j_{a}>j_{b}$, we claim the following:

1. $j_{a}=j_{b}+1$.
2. The associated edge $\left(r_{a}, h\right) \in \rho$ is labeled $(-1,-1)$.

Proof. We first prove that $j_{a}=j_{b}+1$. For contradiction, assume that $j_{a}>j_{b}+1$. Observe that h prefers all the level- j_{a} residents over any level- j_{b} resident. We consider the edge $e=\left(r_{a}, h\right)$ in the graph G. We claim that the label for the edge e cannot be $(1,1)$ or $(1,-1)$, otherwise the edge $\left(r_{a}^{j_{a}}, h\right)$ is labeled $(1,1)$ in $G_{n_{1}}$ as the residents do not change their votes. Similarly, we claim that the label for the edge e cannot be $(-1,1)$ or $(-1,-1)$, as $r_{a}^{j_{a}-1}$ is matched in $M_{n_{1}}$ to the last dummy on its preference list, $d_{r_{a}}^{j_{a}-1}=M_{n_{1}}\left(r_{a}^{j_{a}-1}\right)$ (by invariant $\left.\left(\mathcal{I}_{3}\right)\right)$, and prefers h to $d_{r_{a}}^{j_{a}-1}$, and h prefers all the level- $\left(j_{a}-1\right)$ residents over any level- j_{b} resident. In this case the edge $\left(r_{a}^{j_{a}-1}, h\right)$ is labeled (1,1) in $G_{n_{1}}$, and thus blocks $M_{n_{1}}$ (by Lemma 2(2)).

To prove part (b), we assume $j_{a}=j_{b}+1$. We enumerate the possible labels for the edge $e=\left(r_{a}, h\right)$ in G.

- If e is labeled $(1,1)$ or $(1,-1)$, then the edge $\left(r_{a}^{j_{a}}, h\right)$ is labeled $(1,1)$, as $r_{a}^{j_{a}}$ prefers h over $M_{n_{1}}\left(r_{a}^{j_{a}}\right)$, and h prefers any level- j_{a} resident over a level- j_{b} resident. Thus, the edge ($r_{a}^{j_{a}}, h$) blocks $M_{n_{1}}$ (by Lemma $2(1)$).
- If e is labeled $(-1,1)$, then the edge $\left(r_{a}^{j_{b}}, h\right)$ is labeled $(1,1)$, as $r_{a}^{j_{b}}$ prefers h over $d_{r_{a}}^{j_{b}}=M_{n_{1}}\left(r_{a}^{j_{b}}\right)$, and h prefers $r_{a}^{j_{b}}$ over $r_{b}^{j_{b}}$ according to its preference list. Thus, the edge $\left(r_{a}^{j_{b}}, h\right)$ blocks $M_{n_{1}}$ (by Lemma 2(2)).

Thus, the only possible label for the edge $\left(r_{a}, h\right)$ is $(-1,-1)$.
We use Lemma 7 to prove that M is a maximum cardinality matching in G.
Lemma 7. Let M^{*} be any feasible maximum cardinality matching in G. Then there is no augmenting path with respect to M in $\mathcal{Y}_{M \oplus M^{*}}$.

Proof. For the sake of contradiction assume that the path $P=\left\langle r_{0}, h_{1}, r_{1}, \ldots, h_{k-1}, r_{k-1}, h_{k}\right\rangle$ is an augmenting path where for each $i=1, \ldots,(k-1), M\left(r_{i}\right)=h_{i}$. Here r_{0} is unmatched in M, and h_{k} is under-subscribed in M. The existence of P in $\mathcal{Y}_{M \oplus M^{*}}$ implies that there exists an $M_{n_{1}}$ augmenting path $P_{n_{1}}=\operatorname{map}^{-1}\left(P, M_{n_{1}}\right)=\left\langle r_{0}^{j_{0}}, h_{1}, r_{1}^{j_{1}}, \ldots, h_{k-1}, r_{k-1}^{j_{k-1}}, h_{k}\right\rangle$ in $G_{n_{1}}$, and for $t=0, \ldots, k-1, j_{t} \in\left\{0, \ldots, n_{1}-1\right\}$, where $h_{i}=M_{n_{1}}\left(r_{i}^{j_{i}}\right)$.

Since r_{0} is unmatched in M, by invariant $\left(\mathcal{I}_{3}\right)$, it implies that for $0 \leq i \leq n_{1}-2, M_{n_{1}}\left(r_{0}^{i}\right)=d_{r_{0}}^{i}$, and $r_{0}^{n_{1}-1}$ is unmatched in $M_{n_{1}}$. This implies that the first resident in the path $P_{n_{1}}$ is a level- $\left(n_{1}-1\right)$ resident $r_{0}^{n_{1}-1}$. The second resident on the path $P_{n_{1}}$ also has to be a level- $\left(n_{1}-1\right)$ resident. If not, then the edge $\left(r_{0}^{n_{1}-1}, h_{1}\right)$ is labeled $(1,1)$ since h_{1} prefers $r_{0}^{n_{1}-1}$ to any resident at a level lower than $n_{1}-1$ and $r_{0}^{n_{1}-1}$ is unmatched in $M_{n_{1}}$. The last resident in the path $P_{n_{1}}$ is a level-0 resident i.e. $r_{k-1}^{j_{k-1}}=r_{k-1}^{0}$. If not, then the edge $\left(r_{k-1}^{0}, h_{k}\right)$ is labeled $(1,1)$, as r_{k-1}^{0} is matched to the last dummy hospital ($d_{r_{k-1}}^{0}$) on its preference list (by invariant $\left(\mathcal{I}_{3}\right)$), and h_{k} is under-subscribed in $M_{n_{1}}$.

Thus, in the path $P_{n_{1}}$, the first two residents are level- $\left(n_{1}-1\right)$, while the last resident is level- 0 . Recall that the path $P_{n_{1}}$ was obtained as an inverse-map of the path P in G. Since the path P contains at most n_{1} residents (possibly all of the residents in G), the path $P_{n_{1}}$ also contains at most n_{1} residents. From Lemma 6 we observe that the difference in the levels of two residents in a sub-path of $P_{n_{1}}$ can be at most one. Thus, it must be the case that residents at all the levels $n_{1}-1$ to 0 are present in $P_{n_{1}}$. However, since there are two residents at level- $\left(n_{1}-1\right)$ (first two residents) and one resident at level- 0 (last resident), it is clear that residents at all levels from $n_{1}-1$ to 0 cannot be accommodated in a path containing at most n_{1} residents.

This contradicts the existence of such a path $P_{n_{1}}$ in $G_{n_{1}}$ which implies that the assumed augmenting path P with respect to M cannot exist. This proves that $M=\operatorname{map}\left(M_{n_{1}}\right)$ is a max-cardinality matching in G.

We can now conclude that the set $\mathcal{Y}_{M \oplus M^{*}}$ is a set of alternating (and not augmenting) paths and alternating cycles. It remains to show that M is popular amongst all maximum cardinality feasible matchings in G. Let M^{*} be any feasible maximum cardinality matching in G. In Lemma 8 we show that if there is an edge $(r, h) \in M^{*} \backslash M$ labeled $(1,1)$ in ρ, then in $\rho_{n_{1}}$, for the hospital h, the level of its unmatched neighbour (resident) is lower than the level of its matched neighbour (resident).

Lemma 8. If an edge $\left(r_{a}, h\right) \in \rho$ is labeled $(1,1)$, then in $\rho_{n_{1}}$ for the sub-path $\left\langle r_{a}^{j_{a}}, h, r_{b}^{j_{b}}\right\rangle$ where $M_{n_{1}}\left(r_{b}^{j_{b}}\right)=$ h, we have $j_{a}<j_{b}$.

Proof. Let an edge $e=\left(r_{a}, h\right)$ be labeled (1,1) in ρ. We observe the following about preferences of r_{a} and h in G.
$\left(\mathcal{O}_{1}\right) r_{a}$ prefers h over $M\left(r_{a}\right)$.
$\left(\mathcal{O}_{2}\right) h$ prefers r_{a} over $r_{b} \in M(h)$, where $r_{b}=\operatorname{corr}\left(r_{a}\right)$.
Consider the edge $e^{\prime}=\left(r_{a}^{j_{a}}, h\right)$ in $G_{n_{1}}$, as $h=M_{n_{1}}\left(r_{b}^{j_{b}}\right)$ it implies $e^{\prime} \notin M_{n_{1}}$. Consider the three cases that can arise depending on the values of j_{a} and j_{b}.

1. $j_{a}=j_{b}$
2. $j_{a}>j_{b}$
3. $j_{a}<j_{b}$

Recall observation $\left(\mathcal{O}_{1}\right)$, and the fact that the residents do not change their preferences in $G_{n_{1}}$ w.r.t. the hospitals originally in G. This implies in all the three cases above, the resident $r_{a}^{j_{a}}$ prefers h over $M_{n_{1}}\left(r_{a}^{j_{a}}\right)$. Using $\left(\mathcal{O}_{2}\right)$ and the fact that a hospital h in $G_{n_{1}}$ prefers level- p residents over level- q residents, when $p>q$, we can conclude the following. For the cases (1) and (2), hospital h prefers $r_{a}^{j_{a}}$ over $r_{b}^{j_{b}}$, which implies that the pair $\left(r_{a}^{j_{a}}, h\right)$ is labeled (1, 1), which is a blocking pair for $M_{n_{1}}$ (using Lemma2(1)). This contradicts the stability of $M_{n_{1}}$. We therefore conclude that $j_{a}<j_{b}$.

Lemma 9 shows that in an alternating path in $\mathcal{Y}_{M \oplus M^{*}}$ with exactly one endpoint unmatched in M or an alternating cycle, the number of edges labeled $(1,1)$ cannot exceed the number of edges labeled $(-1,-1)$.

Lemma 9. Let ρ be an alternating path or an alternating cycle in $\mathcal{Y}_{M \oplus M^{*}}$. Then the number of edges labeled $(1,1)$ in ρ is at most the number of edges labeled $(-1,-1)$.

Proof. Depending on the nature of ρ we have three different cases.

- ρ is an alternating path which starts with an unmatched resident in M.
$-\rho$ is an alternating path which starts with a hospital which is under-subscribed in M.
$-\rho$ is an alternating cycle.
The proof idea is similar in all the three cases. In each of the above, we consider $\rho_{n_{1}}=\operatorname{map}^{-1}\left(\rho, M_{n_{1}}\right)$. For every edge labeled $(1,1)$ in ρ we show a change (increase / decrease) in the level of the residents which are neighbours of a particular hospital. We show that each such change must be complemented with another change (decrease / increase resp.) in the level of the residents which are neighbours to some other hospital. Finally, we show that the second type of change translates to a $(-1,-1)$ edge in ρ.

Let ρ be an alternating cycle. Consider a hospital $h_{i} \in \rho$ for which there is an edge (r, h) labeled $(1,1)$ incident on it in ρ. Consider the associated hospital $h_{i} \in \rho_{n_{1}}$. W.l.o.g. let $\left\langle r_{i-1}^{j_{i-1}}, h_{i}, r_{i}^{j_{i}}\right\rangle$ be a sub-path of ρ when traversing $\rho_{n_{1}}$ in counter-clock-wise direction. By Lemma 8, we know that the level of the unmatched resident incident on h_{i} is lower than the level of the matched resident incident on h_{i}. Thus there is an increase in level of residents when at h_{i} (while traversing $\rho_{n_{1}}$ in counter-clockwise direction). This is true for any $h_{k} \in \rho_{n_{1}}$ where the associated hospital in ρ has a $(1,1)$ edge incident on it. We now recall from Lemma 6(2) that whenever a hospital $h_{k} \in \rho_{n_{1}}$ has a level decrease, the associated edge in ρ is labeled $(-1,-1)$. Furthermore the decrease in levels at a hospital is gradual. Thus, it must be the case that the number of $(1,1)$ edges in ρ is at most the number of $(-1,-1)$ edges in ρ.

In case ρ is an alternating path starting at an unmatched resident, we show that in the path $\rho_{n_{1}}$ the first two residents are level- $\left(n_{1}-1\right)$ residents (see Claim 1 below for a proof). Furthermore, consider the first edge $(r, h) \in \rho$ that is labeled $(1,1)$. The associated hospital h_{i} has a increase in the level of its two neighbouring residents. However, since $\rho_{n_{1}}$ started with two level- $\left(n_{1}-1\right)$ residents (which is the highest level possible). Therefore, there must have been some hospital h_{k} preceding h_{i} in $\rho_{n_{1}}$ which has a decrease in the levels of the two neighbours. Using these facts it is easy to prove the following:
Number of $(1,1)$ edges in $\rho \leq$ Number of increases in $\rho_{n_{1}} \leq$ Number of decreases in $\rho_{n_{1}} \leq$ Number of $(-1,-1)$ edges in ρ.
This completes the proof in case ρ is a path starting at an unmatched resident.
Finally, we are left with the case when ρ is an alternating path which starts with a hospital h_{i} which is under-subscribed in M. We show that in the associated path $\rho_{n_{1}}$, the first resident is a level-0 resident (see

Claim 2 below for a proof). Note that in this case since the path starts at a hospital, whenever we have an edge labeled $(1,1)$ in ρ, the associated hospital h_{i} in $\rho_{n_{1}}$ has an increase in the levels of the two neighbouring residents. Now first resident in the path is at the lowest possible level, it must be the case that there is a hospital h_{k} preceding h_{i} in ρ for which there is a decrease in the level of the neighbouring residents. Now using arguments similar to those in the case of path starting at an unmatched resident, we conclude that the number of $(1,1)$ edges in ρ is at most the number of $(-1,1)$ edges in ρ.
Claim 1: $\rho=\left\langle r_{0}, h_{1}, r_{1}, \ldots\right\rangle$ starts with an unmatched resident. As r_{0} is unmatched in M, by invariant $\left(\mathcal{I}_{3}\right)$, it implies that for $0 \leq i \leq n_{1}-2, M_{n_{1}}\left(r_{0}^{i}\right)=d_{r}^{i}$, and $r_{0}^{n_{1}-1}$ is unmatched in $M_{n_{1}}$. Therefore the first resident $r_{0}^{j_{0}}$ on the path $\rho_{n_{1}}$ is a level- $\left(n_{1}-1\right)$ resident, that is $j_{0}=n_{1}-1$. Furthermore, the second resident on the path r_{1} has to be a level- $\left(n_{1}-1\right)$ resident. If not, then as $r_{0}^{n_{1}-1}$ is unmatched in $M_{n_{1}}$ and h_{1} prefers a level- $\left(n_{1}-1\right)$ resident to a level- v resident $\left(v<n_{1}-1\right)$, the edge $\left(r_{0}^{n_{1}-1}, h_{1}\right)$ will be labeled $(1,1)$, and thus blocks $M_{n_{1}}$ contradicting its stability (using Lemma 2(1)).
Claim 2: $\rho=\left\langle h_{0}, r_{1}, h_{1}, \ldots\right\rangle$ starts with an under-subscribed hospital. The first resident $r_{1}^{j_{1}}$ on the path $\rho_{n_{1}}$ has to be a level- 0 resident, that is $j_{1}=0$. If not, i.e. if $j_{1}=1$, then $d_{r_{0}}^{0}=M_{n_{1}}\left(r_{1}^{0}\right)$ (by invariant $\left.\left(\mathcal{I}_{3}\right)\right) d_{r_{0}}^{0}$ in $M_{n_{1}}$, and prefers h_{1} to $d_{r_{0}}^{0}$. The hospital h_{1} on the other hand is under-subscribed in $M_{n_{1}}$ and prefers being matched to r_{1}^{0} in $M_{n_{1}}$. Thus, the edge $\left(r_{1}^{0}, h_{1}\right)$ is labeled (1,1), and blocks $M_{n_{1}}$ contradicting its stability (using Lemma 2(2)).

Thus, we get the following theorem:
Theorem 4. Let $M=\operatorname{map}\left(M_{n_{1}}\right)$ where $M_{n_{1}}$ is a stable matching in $G_{n_{1}}$. Then M is a popular matching amongst all maximum cardinality matchings in G.

Discussion: A natural question is to consider popular matchings in LCSM instances. An LCSM instance need not admit a stable matching. However we claim that restricted to LCSM instances which admit a stable matching, our results hold without any modification. To obtain the result, we claim that Lemma 1 holds in the presence of lower quotas on classes. Additionally, if the given LCSM instance G admits a stable matching, the graph G_{s} for $s=1, \ldots, n_{1}$ also admits a stable matching. We thank Prajakta Nimbhorkar for pointing this to us.
Acknowledgement: We thank the anonymous reviewers whose comments have improved the presentation.

References

1. D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular Matchings. SIAM Journal on Computing, 37(4):1030-1045, 2007.
2. D. J. Abraham, R. W. Irving, and D. F. Manlove. Two Algorithms for the Student-Project Allocation Problem. J. of Discrete Algorithms, 5(1):73-90, 2007.
3. P. Biró, D. Manlove, and S. Mittal. Size Versus Stability in the Marriage Problem. Theoretical Computer Science, 411(16-18):1828-1841, 2010.
4. F. Brandl and T. Kavitha. Popular Matchings with Multiple Partners. CoRR, abs/1609.07531, 2016.
5. Á. Cseh and T. Kavitha. Popular Edges and Dominant Matchings. In Proceedings of the Eighteenth Conference on Integer Programming and Combinatorial Optimization, pages 138-151, 2016.
6. T. Fleiner and N. Kamiyama. A Matroid Approach to Stable Matchings with Lower Quotas. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 135-142, 2012.
7. D. Gale and L. Shapley. College Admissions and the Stability of Marriage. American Mathematical Monthly, 69:9-14, 1962.
8. P. Gärdenfors. Match Making: assignments based on bilateral preferences. Behavioural Sciences, 20:166-173, 1975.
9. D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989.
10. C.-C. Huang. Classified Stable Matching. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1235-1253, 2010.
11. C.-C. Huang and T. Kavitha. Popular Matchings in the Stable Marriage Problem. In Proceedings of 38th International Colloquium on Automata, Languages and Programming, pages 666-677, 2011.
12. N. Kamiyama. Popular Matchings with Two-Sided Preference Lists and Matroid Constraints. Technical Report MI 2016-13, 2016.
13. T. Kavitha. A Size-Popularity Tradeoff in the Stable Marriage Problem. SIAM Journal on Computing, 43(1):5271, 2014.
14. Z. Király. Better and Simpler Approximation Algorithms for the Stable Marriage Problem. Algorithmica, 60(1):3-20, 2011.

A Appendix

A. 1 Reduction from a PCSM ${ }^{+}$instance to an SPA instance

An instance of SPA [2] consists of students, projects and lecturers. Each lecturer has an upper bound on the maximum number of students that he/she is willing to advise. Each project has an upper bound on the number of students it can accommodate. Each project is owned by exactly one lecturer. Each student has a preference ordering over a subset of the projects, and each lecturer has a preference over the students.

We detail on the reduction from PCSM^{+}instance to an SPA instance here. For a resident r in the PCSM^{+} instance, a corresponding student s_{r} is introduced in the SPA instance. For each hospital h, a lecturer l_{h} with capacity $q(h)$ is added in the SPA instance. For each class C_{j}^{h} in the classification provided by a hospital h, a project p_{j} is associated with the lecturer l_{h}, and the upper-bound of p_{j} is equal to $q\left(C_{j}^{h}\right)$. The preference list of l_{h} is obtained from its corresponding hospital h. If the resident r is the k-th most preferred resident in the preference list of h, then the student s_{r} is the k-th most preferred student in the preference list of l_{h}. Similarly, the preference list of a student s_{r} is created from its corresponding resident r. Let C_{j}^{h} be the class that the resident r appears in the classification provided by the k-th most preferred hospital in its preference list, then p_{j} is the k-th most preferred project in the preference list for s_{r}. As the classifications associated with every hospital in the PCSM^{+}instance are a partition over its preference list, there is no ambiguity in describing the preference of the students.

[^0]: ${ }^{1}$ We use HR^{+}instead of HR for consistency with other problems discussed in the paper.
 2 For every hospital in the cloned graph, its preference list is the same as in the original instance. For every hospital h, fix an ordering of its clones. The preference list of a resident r in the cloned instance is obtained by replacing the occurrence of h by the fixed ordering of its clones. We refer the reader to 414 for details.

