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Abstract. Preparation of polyaniline (PAni)/clay nanocomposites by reacting aniline with 
ammonium persulphate in presence of clay at 0-5 °C for 12 h. The composites were 
characterized by X-ray diffraction, infrared spectroscopy, UV-vis diffuse reflectance 
spectroscopy and thermogravimetric analysis for their physicochemical properties. 
Morphology was studied by scanning electron microscopy. The electrochemical studies of 
PAni/clay nanocomposites were carried out using cyclic voltammetry in 0.5 M H2SO4 
aqueous electrolyte. The PAni/clay nanocomposites showed specific capacitances of 
415455 Fg1 at a scan rate of 10 mVs1. 

1. Introduction 

Polymer/clay nanocomposites have attracted great interest, because they exhibit remarkable 

improvement in materials properties such as mechanical, thermal, electrical and optical properties 

when compared with virgin polymer or conventional micro- and macro-composites. The physical 

mixture of a polymer and clay may not form a nanocomposite. This situation is analogous to polymer 

blends, and in most cases separation into discrete phases takes place. In immiscible systems, which 

typically correspond to the more conventionally filled polymers, the poor physical interaction between 

the organic and the inorganic components leads to poor mechanical and thermal properties. In contrast, 

strong interactions between the polymer and clay in polymer/clay nanocomposites lead to the organic 

and inorganic phases being dispersed at the nanometer level. As a result, nanocomposites exhibit 

unique properties not shared by their micro counterparts or conventionally filled polymers [1–4]. The 

natural clays are hydrophilic in nature and hence incompatibility between clay and hydrophobic 

polymer matrix to obtain a polymer/clay nanocomposite. However, in this state, clays are miscible 

with hydrophilic polymers, such as poly (ethylene oxide) (PEO) [5], or poly (vinyl alcohol) (PVA) [6]. 

To render clays miscible with other polymer matrices, one must convert the normally hydrophilic 

silicate surface to an organophilic one, making the intercalation of many engineering polymers 

possible. Generally, this can be done by ion-exchange reactions with cationic surfactants including 

primary, secondary, tertiary, and quaternary alkylammonium or alkylphosphonium cations. 

Alkylammonium or alkylphosphonium cations in the organosilicates lower the surface energy of the 

inorganic host and improve the wetting characteristics of the polymer matrix, and result in a larger 

interlayer spacing. Additionally, the alkylammonium or alkylphosphonium cations can provide 

functional groups that can react with the polymer matrix, or in some cases initiate the polymerization 

of monomers to improve the strength of the interface between the inorganic and the polymer matrix [7, 

8]. The polymer/clay nanocomposite is obtained when a polymer intercalates in the interlamellar 

region of clays separates and gets dispersed in polymer matrix [9].                                    
* Corresponding author. Current address: Department of Chemistry, Vel Tech High Tech Dr. Rangarajan Dr. 
Sakunthala Engineering College, Avadi, Chennai-600 062, India. E-mail: badathala@rediffmail.com, 
badathala@yahoo.com 

International Conference on Materials Science and Technology (ICMST 2012) IOP Publishing
IOP Conf. Series: Materials Science and Engineering 73 (2015) 012112 doi:10.1088/1757-899X/73/1/012112

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

Polyaniline is known for more than a century and is potentially one of the most useful 

conducting polymers because of its facile synthesis, environmental stability, and simple acid/base 

doping/dedoping chemistry [10]. The present research work deals with the modification of clays to 

hydrophobic and latter use them in the insitu polymerization to obtain polyaniline/clay 

nanocomposites. The polyaniline/clay nanocomposites are characterized for their physico-chemical 

and electrochemical properties. 

 

2. Experimental 

2.1 Materials and methods 

Smectite rich clay sample from Bhuj area, Gujarat has been used in this study. The composition of the 

smectite rich clay sample was found to be 53.44% SiO2, 16.12% Al2O3, 13.65% Fe2O3, 2.84% MgO, 

2.31% Na2O, 0.27% K2O, 1.28% CaO, 1.24% TiO2, 0.02% Cr2O3, 0.11% MnO, 0.01% NiO, 0.04% 

P2O5, 0.16% S, and 8.03% ignition loss. The cation exchange capacity (CEC) of the clay was found to 

be 0.98 meq per g [11]. The other reagents were purchased from Sd-fine, Loba, AVRA, and SRL, 

India and used as received. X-ray powder diffraction (XRD) data were collected on a Bruker AXS D8 

Discover diffractometer with Cu Kα radiation (λ = 1.5418 Å). The IR spectra were recorded in the 
range of 450-4000 cm

-1
 on a Perkin-Elmer FTIR spectrometer using KBr pellet. UV-Vis diffuse 

reflectance (DR) spectra were recorded on JASCO V-530 UV-Vis spectrophotometer. The 

thermogravimetric analysis (TGA) was conducted on a Perkin-Elmer TGA-7 analyzer in air with a 

heating rate of 20 °C min
-1

 from room temperature to 800 °C. Field emission scanning electron 

microscopic/energy dispersive spectroscopic (FE-SEM/EDS) studies were done in Jeol microscope 

model JSM-6700F. 

For electrochemical characterization, electrodes were fabricated on a high purity nickel as a 
current collector. The nickel was polished with successive grades of emery paper, sonicated and 
washed thoroughly with detergent and distilled water. 80 wt % of polyaniline/clay nanocomposite, 15 
wt % of acetylene black, and 5 wt % of polyvinylidene fluoride (PVDF) were ground in a mortar. Few 
drops of n-methyl pyrrolidinone (NMP) were added to make syrup. This was then coated on to the 
pretreated nickel foil and dried at 60 °C under reduced pressure for 12 h. The electrochemical studies 
were performed on a CHI 7081C electrochemical workstation using a three electrode-configuration-
cell consisting of polyaniline/clay nanocomposite as the working electrode, platinum foil (1 × 2 cm2) 
as a counter electrode and SCE as reference electrode, all dipped in 0.5 M H2SO4 aqueous electrolyte.  

3. Results and discussion 
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Fig. 1 PXRD patterns of (a) IB, (b) OMIB, (c) PAni, (d) PAni/IB and (e) 

PAni/OMIB. 
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3.1 XRD  

Fig. 1 shows powder XRD patterns of Indian bentonite (IB), organically modified Indian bentonite 
(OMIB), PAni, PAni/IB, and PAni/OMIB. The peak at 6.75° in Fig. 1a corresponds to the periodicity 
in the direction of (0 0 1) of the IB sample. The XRD pattern of OMIB showed peak at 18.64 Å which 
is due to the grafting of CTAB to silanol groups within the interlayer where the silica framework is in 
contact with the clay layers [12]. The peak is shifted due to the interaction between PAni and the 
modified clay in PAni/OMIB (Fig.1e). The d-spacing in the direction of (0 0 1) of the IB sample is 
13.07 Å, OMIB is 18.64 Å and that of PAni/OMIB is 14.60 Å respectively. The PAni/IB (Fig. 1d) 
showed very small peaks corresponding to clay due to its lower weight percent in the sample. These 
results demonstrate that the conducting PAni/clay nanocomposites are of the order of nanoscale size. 

 

 

 

 

 

 

 

 

 

3.2 FTIR 

Fig. 2 shows FTIR spectra of IB, OMIB, PAni, PAni/IB, and PAni/OMIB. The infrared spectrum of 

PAni (Fig. 2c) shows broad band centred at 3451 cm
−1 

corresponds to N-H stretching with hydrogen 

bonded amino groups and free O-H stretching vibration and is attributed to the N-H stretching 

vibrations of the leucoemeraldine component. The characteristic absorption band observed for PAni/IB 

and PAni/OMIB (Fig. 2d & e) at 3451 cm
−1

 and 1597 cm
−1

 are assigned to the N-H stretching 

vibration mode, and NH2 deformation in aniline unit respectively. The absorption bands at 2915 cm
−1

 

and 2829 cm
−1

 are assigned to the aromatic sp
2
 hybridized C-H stretching vibration mode and aliphatic 

hydrocarbon C-H stretching due to -CH2- group in OMIB, PAni, PAni/IB and PAni/OMIB. The 

absorption bands observed at 1597 & 1479 cm
−1

 in PAni are assigned to the non-symmetric vibration 

mode of C=C in quinoid and benzenoid ring system in PAni. The C-N stretching vibration mode in 

aromatic amine nitrogen (quinoid system) in doped PAni is found at 1297 cm
−1

, corresponding to the 

oxidation or protonation state. The IR peak at 1236 cm
−1

 is attributed to C-N stretching vibration mode 

in benzenoid ring system of PAni due to the conducting protonated form. In plane vibration of C-H 

bending mode in N=Q=N, Q-N+H-B or B-N+H-B (where Q = quinoid and B = benzenoid) is observed 

at 1113 cm
−1

. The presence of this absorption band is expected due to the polymerization of PAni, i.e., 

polar structure of the conducting protonated form. The absorption band at 799 cm
−1

 is attributed to the 

aromatic ring and out of plane C-H deformation vibrations for 1, 4-disubstituted aromatic ring system 

[13]. 
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Fig. 2 FTIR spectra of (a) IB, (b) OMIB, (c) PAni, (d) 

PAni/IB and (e) PAni/OMIB.   
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The characteristic bands corresponding to clay are 1038 (Si-O), 911 (Al-OH) and 525cm
-1

 (Si-

O-Al). The Si–O–Si stretching vibration of the clay matrix (1038 cm
−1

) present in the montmorillonite 

[14] is merged with the peak at 1113 cm
−1

 in the composites and this peak appeared as a broad one. 

The FTIR peak at 1038 cm
−1

 for the clay corresponds to the internal SiO4 tetrahedra, especially the Si-

O-Si chain structure. The decrease in broadening of FTIR bands in the range 3062 - 3451 cm
−1

 may be 

due to covalent and hydrogen bonding between –NH2 and –OH group of PAni and clay respectively.  

3.3 UV-Vis DR study  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 shows the UV-vis absorption spectra of IB, OMIB, PAni, PAni/IB, and PAni/OMIB. Two 

absorption bands are observed in the wavelength region from 315 to 350 nm and a small band at 578 

to 712 nm for the PAni (Fig. 3c). PAni always exhibits a π-π* transition, usually closer to 315 nm [54]. 
Partially oxidized PAni and its oligomers display an additional absorption at around 712 nm associated 

with the quinoid (oxidized) units [15]. These peaks are characteristic of the PAni emeraldine base [14, 

16] and indicate that nanostructured PAni composites are stabilized in the emeraldine base redox state. 

The peak at 315 nm is attributed to π – π* transition of benzenoid rings and the peak at 712 nm is 
attributed to the charge transfer excitation of the quinoid structure. In the spectra of IB and OMIB, 

peaks are observed in the regions at 248-262 nm related to Fe
3+

 ions in octahedral coordination (Fig. 

3a & b). PAni/IB and PAni/OMIB nanocomposites show clear similarity in their UV-vis spectra 

particularly with the presence of the absorption maxima at 315 and 610 nm which is associated with 

the stabilization of the composite in the emeraldine form. Comparison of the PAni and PAni/clay 

nanocomposites spectra shows that clay stabilizes the polyanilines in its emeraldine form. 
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Fig. 3 UV-Vis spectra of (a) IB, (b) OMIB, (c) PAni, (d) 

PAni/IB and (e) PAni/OMIB. 
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3.4 TGA  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 shows TG plots of IB, OMIB, PAni, PAni/IB and PAni/OMIB. The thermogram of PAni 

indicates three major stages of weight loss (Fig. 4c). In the first stage, 3-4% weight loss at temperature 

up to 100 °C is associated with the loss of water molecules from the polymer matrix [17]. The weight 

loss at second stage that commences after 100 °C until 400 °C (about 19%) is due to the removal of the 

acid dopant bound to the polyaniline chain and low molecular weight oligomers. A slow and gradual 

weight loss profile observed starting at 400 °C onwards, represents degradation of the skeletal 

polyaniline chain structure after the dopant has been removed [18]. Above 700 °C, the results obtained 

are associated with the residues. The thermogram of IB shows an initial sharp decrease in weight ~ 5-

6% within the temperature range of 80–150 °C is attributed to the loss of adsorbed water and interlayer 

water. A steady weight loss of about 6-7% in the temperature range of 150–800 °C which is attributed 

to the loss of dehydroxylation caused by breaking of structural hydroxyl groups of the montmorillonite 

(Fig. 4a). The thermogram of OMIB shows an initial sharp decrease in weight ~ 7% within the 

temperature range of 80–150 °C is attributed to the loss of adsorbed water and interlayer water. A 

steady weight loss of about 9% in the temperature range of 150–800 °C which is attributed to the loss 

of dehydroxylation caused by breaking of structural hydroxyl groups of the montmorillonite and 

decomposition of the organic moiety present in the interlayers of the clay (Fig. 4b). PAni/IB and 

PAni/OMIB exhibit similar pattern, with a small variation in degradation temperature. In the first 

stage, 3-4% weight loss at temperature up to 120 °C is associated with the loss of water molecules 

[19]. In the second stage corresponding to temperature zone 120-350 °C, the weight loss (about 12-

19%) is due to the evolution of thermally labile compounds and the breaking of aliphatic structures 

with low dissociation bonds in the clay matrix. In the third stage that commences after 350 °C until 

700 °C, maximum weight loss occurs (33-38%) due to release of soot particles and the loss of 

dehydroxylation caused by breaking of structural hydroxyl groups of the clay [20,21]. Above, 700°C 

gradual decreases were observed due to thermal degradation of mineral matter of clay. 
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Fig. 4 TG plots of (a) IB, (b) OMIB, (c) PAni, (d) 

PAni/IB and (e) PAni/OMIB.     
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3.5 SEM  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 shows SEM images of IB, PAni, PAni/IB and PANI/OMIB. SEM image of IB (Fig. 5a) shows 

morphology of clay particles having different irregular shapes, where as PAni/IB (Fig. 5c) has flake 

like morphology and PAni and PAni/OMIB have particles of both smaller and bigger sizes with 

irregular shapes (Fig. 5b&d).                                                                                                                                                    

3.6 Electrochemical characterization 

Cyclic voltammetry. Fig. 6-8 display the cyclic voltammograms (CV) of PAni, PAni/IB and 

PAni/OMIB measured in the potential range of –0.2 to 0.6 V employing the scan rates of 10, 20, 50 

and 100 mVs
-1

. The corresponding specific capacitances (on y-axis), obtained from the CV curves are 

also shown. Generally, the charge storage occurs in an electrical double-layer capacitor by electrostatic 

reversible adsorption of ions of the electrolyte. This type of capacitance behavior gives CV curves 

close to ideal rectangular shape. But these samples showed CV curves distinctly different from 

rectangular shape. This pseudocapacitance behavior can be attributed to the charge storage mechanism 

essentially by redox reactions. There is an inverse relation observed between the scan rate and the total 

amount of charge stored. In other words, there are kinetic limitations associated with the diffusion of  

ions through the electrode matrix which limits the full storage of charge at higher scan rates. For 

example, at 10 mVs
-1

 scan rate, PAni electrode reaches maximum specific capacitance of 457 F g
-1 

while at 20 mVs
-1

 it reaches 388 F g
-1

, whereas at 10 mVs
-1

 scan rate, PAni/IB electrode reaches 

maximum specific capacitance of 455 F g
-1 

while at 20 mVs
-1

 it reaches 430 F g
-1

 and at 10 mVs
-1

 scan 

rate, PAni/OMIB electrode reaches maximum specific capacitance of 415 F g
-1 

while at 20 mVs
-1

 it 

reaches 323 F g
-1

. The reduced supercapacitance of PAni/OMIB may be attributed to the presence of 

 

 

Fig. 5 SEM images of (a) IB, (b) PAni, (c) PAni/IB and 

(d) PAni/OMIB. 

(d) (c) 

(b) (a) 
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non-conducting cetyltrimethylammonium moiety. From the results, it is clear that PAni/clay 

nanocomposites show better supercapacitance properties over PAni alone even at higher scan rates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Cyclic voltammograms of PAni at different scan 

rates in 0.5 M H2SO4 electrolyte. 

Fig. 7 Cyclic voltammograms of PAni/IB at different scan 

rates in 0.5 M H2SO4 electrolyte. 

Fig. 8 Cyclic voltammograms of PAni/OMIB at different 

scan rates in 0.5 M H2SO4 electrolyte. 
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4. Conclusions 

 

Modified clays have been prepared with cetyltrimethyl ammonium bromide. Polyaniline/modified clay 

and polyaniline/clay nanocomposites have been prepared and characterized for their physico-chemical 

properties. The polymer/clay nanocomposites are found to be thermally stable compared to pure 

polyaniline. The electrochemical studies revealed that polyaniline upon modification with clays can be 

used as supercapacitors for better storage compared to pure polyaniline.         
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Corrigendum: Polyaniline/clay Nanocomposites: Preparation, 
Characterization and Electrochemical Properties

B Vijayakumar1,*, K O Anjana2 and G Ranga Rao1

1 Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India 
2 Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, 
India

E-mail: badathala@rediffmail.com

CORRIGENDUM TO: 2015 IOP Conf. Ser.: Mater. Sci. Eng. 73 012112

In Experimental, after 2.1 Materials and methods the following text should be inserted:

2.2 Preparation of polyaniline/clay nanocomposites

5 g (13.71 mM) of cetyltrimethylammonium bromide (CTAB) was dissolved in 200 ml of distilled 
water and 10 g of Indian bentonite (IB) was added. The contents were stirred using a mechanical 
stirrer for 1 h, the mixture was centrifuged and the centrifugate was discarded. The solid was washed
several times with distilled water to remove superficially held adsorbate. The resulting modified clay 
(OMIB) was dried at 100 °C and ground to a fine powder.

The oxidant solution (0.11 M ammonium persulphate in deionised water) was added dropwise to a 
mixture of 0.5 g of modified clay, 0.1 M aniline and 0.1 M dopant (p-toluene sulphonic acid) in 75 mL 
deionised water. The reaction was carried out at a temperature of 0-5 °C with ice around the reaction 
vessel for 12 h under stirring. The controlled low temperature is chosen to prevent high increase in 
temperature due to the exothermic reactions. The polymer obtained was in the conducting state 
(emeraldine salt; green colour of doped PAni). The reaction product was separated from the solution 
by filtration and washed with deionised water several times, followed by washing with ethanol to 
remove residual monomers. The powder (PAni/OMIB) was then dried at 40 °C under vacuum. 
Following the same procedure, polyaniline/clay nanocomposite (PAni/IB) and polyaniline (PAni) were 
prepared by adding parent clay and without clay respectively for comparison.




