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Abstract

This paper presents a control strategy for a two-link manipulator with revolute joints (2R) with an unactuated second
joint, wherein the motion of the system is confined to a horizontal plane. The model takes into account the frictional forces
present in the system. The control objective is to move the end-effector from a given position to a target point. The meth-
odology involves two stages. In the first stage a finite-time controller is used to move the passive link to its desired position.
In the second stage, the first link is moved to its desired position keeping the second link at rest, using friction as a ‘‘brake’’
and subject to the constraint that the cross-coupling torque acting on the second joint does not exceed the static friction.
� 2005 Published by Elsevier Ltd.
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1. Introduction

Control of underactuated manipulators without potential/elastic forces has generated attention in the
recent past. These systems present control challenges due to the loss of linear controllability and full state-
feedback linearising property. Furthermore, these systems do not satisfy Brocketts�s necessary condition [1]
and thus there does not exist any continuous state-feedback control law that can asymptotically stabilize such
a system at a given equilibrium.

Control of two-link manipulators moving in a horizontal plane has been studied by De Luca et al. [2,3].
They have used nilpotent approximations [4] to control the 2R manipulator moving in a horizontal plane with
a single actuator at the first joint. This system is locally accessible, but the sufficient conditions for STLC are
not satisfied. As pointed out in [5], existing control strategies for steering the system from certain configura-
tions involve spinning maneuvers, thereby indicating the lack of STLC property for this system. Kobayashi
et al. [6] have analyzed controllability of a planar underactuated manipulators with one free joint.
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For system that neglect friction, there exists no straightforward way of synthesizing control laws for the
point-to-point control of the above kind of manipulators. In [7], Reyhanoglu et al. have proposed a discon-
tinuous nonlinear feedback controller for a special class of underactuated systems with only one unactuated
degree-of-freedom. The controller renders the closed-loop equilibrium at the origin globally attractive.

Recently, Bullo and Lynch [8] have introduced a new notion of controllability called kinematic controlla-

bility for underactuated mechanical systems. This property makes it possible to decouple trajectories between
zero-velocity states. The property is established by defining a set of vector fields on the configuration space
that span the entire configuration space. These vector fields, called the decoupling vector fields, can be used
by the path planner to find paths that can be time-scaled without violating the acceleration level constraints.
This approach has been used to design collision-free trajectory planning for the 3R manipulator [9].

In [10], the authors have applied an optimal control strategy, wherein the cost function considered is the
reciprocal of the coupling index, a measure of the dynamic coupling available between the active and the pas-
sive joints of the manipulator. The authors Arai and his co-workers [11,12] have presented a control method-
ology for underactuated mechanical system with holding brakes on the passive joints. They exploit the
dynamic coupling between the joints to achieve the controlled motion of the manipulator.

In practice, joint friction cannot be neglected in underactuated robotic manipulators, especially at the pas-
sive joint. This is because while friction at the active joints can be directly compensated, the same is not true
for the passive joint. The models considered in [2,13] neglect joint friction which is not easy to achieve in prac-
tice as it involves high manufacturing cost. Motivated by this problem, we propose a control strategy for a 2R
underactuated system with friction at the joints.

1.1. 2R model with friction

The configuration space of a 2R manipulator is Q ¼ S
1 � S1 and is parametrized by the coordinates

q = (q1,q2). The coordinates qi, i = 1,2 are the joint angles as shown in Fig. 1. The Euler–Lagrange equations
of motion are

MðqÞ€qþ hðq; _qÞ ¼ s; ð1Þ

where _q and €q are the generalized velocities and generalized accelerations respectively. MðqÞ 2 R2�2 is the
inertia matrix which is symmetric and positive definite. The centripetal and Coriolis terms are collected in

Fig. 1. Schematic of a 2R manipulator.
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the vector hðq; _qÞ 2 R2. The vector h contains terms purely quadratic in the velocities; gravity terms are absent
since we assume that the manipulator moves in a horizontal plane. Define the following constants

c1 ¼ m1r
2
1 þ m2l

2
1 þ I1; c2 ¼ m2r

2
2 þ I2; c3 ¼ m2l1r2.

The equations of motion accounting for the Coulomb plus viscous friction at the joints becomes

m11€q1 þ m12€q2 þ h1 ¼ s� SGNð _q1ÞF 1 � b1 _q1; ð2Þ

m21€q1 þ m22€q2 þ h2 ¼ �SGNð _q2ÞF 2 � b2 _q2; ð3Þ

where

m11 ¼ c1 þ c2 þ 2c3 cos q2; m12 ¼ c2 þ c3 cos q2;

m21 ¼ m12; m22 ¼ c2;

h1 ¼ �c3ð2 _q1 _q2 þ _q22Þ sin q2; h2 ¼ c3 _q
2
1 sin q2

and Fi, bi _qi; i ¼ 1; 2 represent the Coulomb and viscous friction forces respectively. The set-valued signum
function is defined as

SGNðxÞ

f1g if x > 0;

f�1g if x < 0;

�1; 1½ � if x ¼ 0.

8

<

:

We assume that the system has a strong inertial coupling ðm2r
2
2 þ I2 > m2l1r2Þ. The equilibrium solutions of (4)

with the external inputs equal to zero constitute an important class of solutions. If ðq; _qÞ ¼ ðqe; 0Þ is an equilib-
rium solution, qe is referred to as an equilibrium configuration. For the manipulator dynamics, the equilibrium
configuration is given by {q 2 Q :M(q)�1h(q, 0) = 0}. It is clear that all points q 2 Q are equilibrium configu-
rations. The control objective is to move the links from rest to a target-configuration with zero-velocity.

2. Controller design

The control task involves the following two stages:

(i) Regulate q2 to q2d, where q2d is the desired position of the passive joint.
(ii) Regulate q1 to q1d, where q1d is the desired position of the active joint without affecting the position of

the passive joint.

2.1. Stage 1

In this stage we further split-up the control task as follows:

(a) Move the second link to the desired position q2d using the partially linearised model about the passive
joint

€q1 ¼ �m�1
12 m22v2 � m�1

12 ðh2 þ SGNð _q2ÞF 2 þ b2 _q2Þ;

€q2 ¼ v2;
ð4Þ

where the torque s is related to the new input v2 by

s ¼ ðm12 � m11m
�1
12 m22Þv2 þ ðh1 þ SGNð _q1ÞF 1 þ b1 _q1Þ ð5Þ

� m11m
�1
12 ðh2 þ SGNð _q2ÞF 2 þ b2 _q2Þ.

We steer q2 to its desired position q2d using a finite-time controller. Finite-time controllers are differen-
tial equations with the property that the origin is asymptotically stable, and all solutions which converge
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to zero do so in finite-time. We use the following continuous finite-time controller proposed by Bhat and
Bernstein in [14]

v2 ¼ �signð _q2Þj _q2j
1=3 � signðSðq2; _q2ÞÞjSðq2; _q2Þj

1=3; ð6Þ

where

Sðq2; _q2Þ ¼ ðq2 � qd2Þ þ
3

5
_q
5=3
2

� �

and the function sign (Æ) is defined as

signðxÞ ¼

1 if x > 0;

�1 if x < 0;

0 if x ¼ 0;

8

>

<

>

:

to achieve the desired objective. As q2 ! q2d ; _q2 ! 0, the limiting behaviour of the system is given by

jm12€q1 þ ðc3 sin q2dÞ _q
2
1j ¼ F 2. ð7Þ

(b) Once ðq2 ¼ q2d ; _q2 ¼ 0Þ, the control task is to bring the first link to rest without disturbing the second link
position. The following proposition brings out the condition under which this can be achieved.

Proposition 2.1. If the initial condition of the system is ðq2 ¼ q2d ; _q2 ¼ 0; €q2 ¼ 0Þ, then the second link continues

to be at rest relative to the first link if and only if

jm12€q1 þ ðc3 sin q2dÞ _q
2
1j 6 F 2. ð8Þ

Proof. With the second link at rest, the governing equation (3) reduces to

m12€q1 þ ðc3 sin q2dÞ _q
2
1 ¼ f2; ð9Þ

where f2 is the static friction acting at the second joint and jf2j 6 F2. The second link will continue to remain at
rest if the absolute value of the static friction acting at the second joint is less than or equal to F2 or jf2j 6 F2

from which (8) follows. h

The first link is brought to rest without disturbing the second link using the following control law, which
obeys (8).

s ¼

�m11

m12
ðF 2 � cþ h2Þ þ F 1 þ b1 _q1; _q1 > �;

m11

m12
ðF 2 � c� h2Þ � F 1 þ b1 _q1; _q1 < �;

0; _q1 2 ½��; ��;

8

>

<

>

:

ð10Þ

where 0 < c < F2 and � > 0 is small and is chosen such that chattering phenomenon is avoided. At the end of
the first stage, the system is at rest with q1 = q10, q2 = q2d.

2.2. Stage 2

The final task is to move the first link to the desired position q1d without disturbing the second link position.
The strategy involves accelerating and decelerating (if q1d > q10, decelerating and accelerating otherwise) the
first link such that the maximum magnitude (xmax) of the first link velocity and the magnitude (b) of acceler-
ation/deceleration satisfy the following constraints:

jm12bþ ðc3 sin q2dÞx
2
maxj 6 F 2 � c; ð11Þ

jm12b� ðc3 sin q2dÞx
2
maxj 6 F 2 � c. ð12Þ

From Fig. 2, we have

x2
max ¼ as; ð13Þ
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where a is the angular acceleration of the first link and s = q1d � q10. The variables s and a are related to T by
T ¼ 2

ffiffi

s
a

p

. We now have four possible cases and we propose a control law for each of the case as follows:

Case 1. q1d > q10 and sin q2d > 0. Choose a such that the following is satisfied

m12aþ ðc3 sin q2dÞx
2
max ¼ ðF 2 � cÞ. ð14Þ

Eq. (14) ensures that the constraint (12) is not violated for t 2 [T/2,T]. From (13) and (14), we have

a ¼
ðF 2 � cÞ

m12 þ sðc3 sin q2dÞ
. ð15Þ

The control law takes the form

s ¼

m11aþ F 1 þ b1at; t 2 0; T
2

� �

;

�m11aþ F 1 þ b1aðT � tÞ; t 2 T
2
; T

� �

;

0; t > T .

8

>

<

>

:

ð16Þ

Case 2. q1d < q10 and sinq2d > 0.

Choose a such that the following is satisfied

�m12aþ ðc3 sin q2dÞx
2
max ¼ ðF 2 � cÞ. ð17Þ

Eq. (17) ensures that the constraint (11) is not violated for t 2 [T/2,T]. From (13) and (17), we have

a ¼
�ðF 2 � cÞ

m12 � sðc3 sin q2dÞ
ð18Þ

Here, the control law has the form

s ¼

m11a� F 1 þ b1at; t 2 0; T
2

� �

;

�m11a� F 1 þ b1aðT � tÞ; t 2 T
2
; T

� �

;

0; t > T .

8

>

>

<

>

>

:

ð19Þ

Case 3. q1d > q10 and sinq2d < 0.

Choose a such that the following is satisfied

�m12aþ ðc3 sin q2dÞx
2
max ¼ �ðF 2 � cÞ. ð20Þ

Eq. (20) ensures that the constraint (11) is not violated. From (13) and (20), we have

a ¼
ðF 2 � cÞ

m12 � sðc3 sin q2dÞ
ð21Þ

Fig. 2. Velocity profile.
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and the control law has the form

s ¼

m11aþ F 1 þ b1at; t 2 0; T
2

� �

;

�m11aþ F 1 þ b1aðT � tÞ; t 2 T
2
; T

� �

;

0; t > T .

8

>

<

>

:

ð22Þ

Case 4. q1d < q10 and sin q2d < 0.

Choose a such that the following is satisfied

m12aþ ðc3 sin q2dÞx
2
max ¼ �ðF 2 � cÞ. ð23Þ

Eq. (23) ensures that the constraint (12) is not violated. From (13) and (23), we have

a ¼
�ðF 2 � cÞ

m12 þ sðc3 sin q2dÞ
. ð24Þ

We note that the constraint (12) is not violated for t 2 [T/2,T]. Finally, the control law has the form

s ¼

m11a� F 1 þ b1at; t 2 0; T
2

� �

;

�m11a� F 1 þ b1aðT � tÞ; t 2 T
2
; T

� �

;

0; t > T .

8

>

<

>

:

ð25Þ

Fig. 3. Time response for the case: q1d < q10 and sinq2d > 0.
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3. Simulations

The simulations were performed on SIMULINK. The manipulator parameters used are c1 = 0.725,
c2 = 0.3179, c3 = 0.3147, F1 = 0.26, F2 = 0.116, b1 = 0.6236, b2 = 0.1223. The initial values are chosen as
ðq1ð0Þ ¼ p=5; q2ð0Þ ¼ p=4; _q1ð0Þ ¼ 0; _q2ð0Þ ¼ 0Þ while the desired values are ðq1d ¼ p; q2d ¼ p=6; _q1d ¼
0; q2d ¼ 0Þ. The values of c and � are fixed at 0.01. Fig. 3 shows the simulation results for the first and the
second stages.

4. Conclusions

We have presented a control strategy to control an underactuated 2R manipulator with friction at both the
joints. The strategy consists of two stages. In the first stage the second joint angle is brought to its desired
position by imparting appropriate motion to the first link. In the second stage, static friction at the second
joint is made use of in bringing the first link to its desired position without disturbing the second link.
Simulation results demonstrate the effectiveness of the control strategy.
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