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Abstract: Optimal experiment or input design is the scientific exercise of designing informative
excitation signals for the identification of a real-life dynamic system. In the least costly input
design framework, the input is designed such that the identification cost is minimized while
meeting desired specifications on the quality of the identified model. Identification of real-life
processes require that the identification be “plant-friendly”. These are typically imposed as
constraints on experiment time, input and output amplitudes or input move sizes. This work
focusses on an LMI based plant friendly input design in the least costly framework.
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1. INTRODUCTION

Optimal experiment or input design is the scientific ex-
ercise of designing informative excitation signals for the
identification of a real-life dynamic system. The typical
approach to this problem has been to design the power
spectrum of the excitation signal in order to maximize the
accuracy of the identified model (possibly with a given,
say, control-oriented objective in mind) for a given exper-
iment time and under prespecified constraints on input
power (Ljung, 1999)[Chapters 12 and 13] and e.g. (Zarrop,
1979; Lindqvist and Hjalmarsson, 2000; Hildebrand and
Gevers, 2003; Jansson and Hjalmarsson, 2005) and output
power (Narasimhan et al., 2011).

In Bombois et al. (2004a) a new paradigm for optimal
experiment design called least costly identification experi-
ment for control was introduced and was further developed
in Bombois et al. (2004b, 2006); Barenthin et al. (2008);
Hjalmarsson (2009). In this new paradigm which is the
dual of the classical approach, the goal is to design the
power spectrum of the excitation signal so that the cor-
responding identification experiment is the least intrusive
while guaranteeing that the identified model is sufficiently
accurate for the intended application (e.g. control).

The new paradigm is quite appropriate in relation with
robust control. In the least costly paradigm, the constraint
on model accuracy is equivalent to imposing bounds on
the size of the uncertainty region around the identified
model Ĝ(z). It is clear that a large uncertainty around the
model reduces the level of performance that a controller
Ĉ(Ĝ) designed with this uncertain model can achieve on
the unknown true system G0(z). In order words, for the

controller Ĉ(Ĝ) to achieve a certain level of performance
on G0(z), the modeling error must remain below a certain
threshold radm(ω):

|Ĝ(ejω)−G0(e
jω)| ≤ radm(ω) ∀ω (1)

The threshold radm(ω) in (1) can be computed using
robust analysis techniques such as ν-analysis (Ferreres and
Fromion, 1997a). See also Bombois et al. (2004a,b) for
specific examples in the least costly setup. Note that the
bound on the uncertainty of the model can be expressed in
another domain than in the frequency domain. The bound
can also be expressed as a bound on the covariance matrix
of the identified parameter vector (see Bombois et al.
(2006); Hjalmarsson (2009)). However, we here choose the
frequency domain representation for its simplicity.

The definition of the cost of the identification experiment
is also crucial in the least costly paradigm. In closed-loop
identification, a quite realistic definition of the cost was
introduced in Bombois et al. (2006). We will use the same
definition in the present paper, i.e. the cost Jr is defined
as a function of the power of the perturbations yr(t) and
ur(t) induced by the excitation signal r(t) on the normal
operation of the closed-loop system. This cost mirrors the
real cost incurred during the identification experiment.

If we suppose that the duration N of the identification
experiment is fixed, the least costly input design problem
can then be formulated as:

Least costly input design (fixed N). Determine the
power spectrum Φr(ω) of the excitation signal r(t) corre-
sponding to the smallest cost Jr while guaranteeing that

the model Ĝ(z) identified with this excitation signal sat-
isfies the accuracy constraint (1) for a given threshold
radm(ω).

As shown in our previous works, this problem can be recast
as a LMI optimization problem.

By its choice for the cost Jr of the identification experi-
ment, the least costly framework aims at designing plant-
friendly identification experiments. Indeed, Rivera et al.



(2009) define such experiments as experiments that are
carried out under conditions causing minimal disruption to
normal operations (see also Narasimhan and Rengaswamy
(2011)). However, while limiting output excursions and
input usage are directly taken into account in the least
costly framework, another very important plant-friendly
characteristic, i.e. constraints on the the move size of the
input signal |u(t)−u(t−1)| are not accounted. It is indeed
a constraint expressed on the time-domain realization of
the input signal while the least costly input design problem
is expressed in the frequency domain (i.e. as a function of
the power spectrum of the involved signals).

The absence of constraints on the move size of the input
is an important drawback since a large move size increases
wear and tear of actuators and valves. One solution to
introduce this move size constraint is to first shape the
optimal spectrum Φr(ω) in either the traditional or least
costly framework. This is followed by a time-domain re-
alization which will lead to an input signal with small
move size (see Godfrey (1993)). However, since Φr(ω)
was optimized without any consideration for the input
move size, this approach is not always guaranteed to be
successful.

In recent works (Narasimhan and Rengaswamy, 2011;
Narasimhan et al., 2011), for the open-loop identification
case, the move size constraint is relaxed by constraining
the variance Ē(u(t)− u(t− 1))2 of the move size, instead
of the move size itself. This results in a convex constraint
in the frequency domain and is equivalent to a weighted
constraint on the input spectrum. The weighting function
is theoretically equivalent to a low pass filter and hence
penalizes high frequency content; leading to smoother
signals.

This relaxed constraint directly accounts for the move size
in the optimization problem, the solution of which results
in the optimal spectrum. As mentioned above, until now,
this relaxed move size constraint had only been applied
for open-loop identification and had not been connected
to the least costly framework. In this paper, we extend
the results of Narasimhan and Rengaswamy (2011) to
show that the move size constraint can be added as an
extra constraint in the closed-loop least costly input design
problem defined above. The resulting input design problem
remains an LMI optimization problem. Moreover, using
a numerical example, we illustrate the trade-offs between
the conflicting requirements (minimum cost, accuracy and
small move sizes).
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Fig. 1. Closed loop [Cid G0] during an identification
experiment with r(t) as excitation signal.

2. PREDICTION ERROR IDENTIFICATION

We consider the identification of a stable, linear, time-
invariant, single input single output system with a model
structure M = {G(z, θ), H(z, θ)}, θ ∈ Rk, that is

able to represent the true system. Thus, the true finite-
dimensional system is given by:

S : y(t) =

G0(z)
︷ ︸︸ ︷

G(z, θ0)u(t) +

v(t)
︷ ︸︸ ︷

H(z, θ0)e(t) (2)

for some unknown parameter vector θ0 ∈ Rk. In (2), e(t)
is a white noise with variance σ2

e and G(z, θ0), H(z, θ0)
are stable discrete-time transfer functions. Furthermore,
H(z, θ0) is assumed to be monic and minimum-phase.

This true system is operated in closed loop with an initial
controller Cid : u(t) = r(t)−Cid(z)y(t). The signal r(t) is
zero in normal operation but is used to excite the system
for a closed-loop identification experiment (see Figure 1).
With Sid = 1/(1 + CidG0), the closed-loop system can be
written as:

y(t) = Sidv(t) +

yr(t)
︷ ︸︸ ︷

G0Sidr(t) (3)

u(t) =−CidSidv(t) + Sidr(t)
︸ ︷︷ ︸

ur(t)

(4)

A suitable signal r(t) whose spectrum Φr(ω) is the de-
sign variable of our optimal experiment design problem is
used to excite the system. The input-output data ZN =
{y(t) u(t)|t = 1...N} are collected and a consistent esti-

mate θ̂N of the true parameter vector θ0 is obtained in the
prediction error identification framework as follows:

θ̂N
∆
= arg min

θ

1

N

N∑

t=1

ǫ2(t, θ) (5)

with ǫ(t, θ)
∆
= H(z, θ)−1 (y(t)−G(z, θ)u(t)).

The identified parameter vector θ̂N is asymptotically nor-

mally distributed, θ̂N ∼ N (θ0, Pθ) and, given the full-
order model structure assumption, the covariance ma-
trix Pθ has the following expression (Ljung, 1999): Pθ =
σ2

e

N

(
Ē
(
ψ(t, θ0)ψ(t, θ0)

T
))

−1
with ψ(t, θ) = −∂ǫ(t,θ)

∂θ
. The

asymptotic expression has been shown to be accurate for
sufficiently large N , e.g., N ≥ 300 (Ljung, 1999). The
dependence of the covariance matrix Pθ on the power
spectrum of the selected excitation signal r(t) is evidenced
by the following expression of the inverse of Pθ (Ljung,
1999):

P−1
θ =

(
N

σ2
e

1

2π

∫ π

−π

Fr(e
jω , θ0)Fr(e

jω , θ0)
∗Φr(ω)dω

)

+

(

N
1

2π

∫ π

−π

Fv(e
jω , θ0)Fv(e

jω , θ0)
∗dω

)

(6)

with Fr(z, θ0) = Sid

H0

ΛG(z, θ0), Fv(z, θ0) = ΛH (z,θ0)
H0

−

CidSidΛG(z, θ0), ΛG(z, θ) = ∂G(z,θ)
∂θ

and ΛH(z, θ) =
∂H(z,θ)

∂θ
. Using the asymptotic Gaussian distribution of the

estimated parameter vector θ̂N , it is possible to define an

(additive) uncertainty region Dru(θ̂N ) around the identi-
fied model and containing the unknown true system G0(z)
at any chosen probability level:

Dru(θ̂N ) =
{
G(z) ∈ H∞ |

∣
∣G(ejω)−G(ejω , θ̂N )

∣
∣ ≤ ru(ω) ∀ω

}



Using the following first order approximation of G(z, θ0):

G(z, θ0) ≈ G(z, θ̂N ) + ΛT
G(z, θ0)(θ0 − θ̂N ) with ΛG(z, θ) as

defined above, ru(ω) can be approximated as follows:

ru(ω) = α
√

λ1 (T (ejω, θ0)PθT (ejω, θ0)T ) (7)

where T (ejω, θ0)
∆
=

(
Re(ΛT

G(e
jω , θ0))

Im(ΛT
G(e

jω , θ0))

)

∈ R2×k, λ1(A)

denotes the largest eigenvalue of A and α is a real constant
dependent on the chosen probability level: if we want

Pr(G0 ∈ Dru(θ̂N )) = 0.95, then α is chosen such that
Pr(χ2(kG) < α2) = 0.95 (kG is the number of parameters
in G(z, θ)) (see Bombois et al. (2005)).

Since the true system lies in Dru (upto a probability level),
we have that

|G(ejω , θ̂N )−G0(e
jω)| ≤ ru(ω) ∀ω (8)

In the sequel, we will refer to ru(ω) as the bound on
the modeling error or, for the sake of simplicity, as the
modeling error.

An important observation at this stage is that the mod-
eling error ru(ω) is a function of the covariance matrix
Pθ and thus, by (6), a function of the excitation signal
r(t) used during the identification experiment. Obviously,
given signals r(t) having the same frequency content, the
modelling error can be reduced by increasing the signal
power. Moreover, signals r(t) having the same power,
but differing in frequency content will lead to different
modeling errors ru(ω). Hence, it is possible to tailor the
frequency content and power of the excitation signal to
achieve the desired performance.

3. OPTIMIZATION FORMULATION

In this section, we recall in a nutshell how the least costly
input design problem can be formulated as a convex opti-
mization problem and we show that adding the move size
constraint also leads to a convex optimization problem.

3.1 Definition of cost

The cost of a closed-loop identification experiment can be
quantified by the power Pr of the external signal r(t).
However, we define the cost such that it mirrors the actual
cost incurred in the excitation of an industrial system
or process. Such a process unit can be represented as in
Figure 1. In normal operation the signals u(t) (control
signal) and y(t) (the product) are given by: y(t) = Sidv(t)
and u(t) = −CidSidv(t) (v(t) = H0(z)e(t)). By applying
an external signal r(t) to the loop during the identification,
the normal operation is affected by disturbances yr(t)
and ur(t) as seen from (3) and (4). This results in an
economic cost, e.g., loss in quality, production, higher
energy consumption etc. This cost can be quantified in
terms of yr(t) and ur(t):

Jr = βyPyr
+βuPur

=
1

2π

∫
−π

π

(βyΦyr
+ βuΦur

) dω (9)

where the weights βu and βy reflect the relative importance
of the input and output perturbations. In this work, they
are both chosen to be equal to one, i.e., βu = βy = 1. The
cost function is clearly a linear function of the decision
variable Φr(ω).

3.2 Constraints

We will now formulate the accuracy constraint (1) as a
function of the decision variable Φr(ω). This can be done
by using the relation (8) which gives a bound ru(ω) on the

modeling error between the identified model G(z, θ̂N ) and
the true system G(z, θ0):

α
√

λ1 (T (ejω, θ0)PθT (ejω, θ0)T ) ≤ radm(ω) ∀ω (10)

where the covariance matrix Pθ as shown in (6), is a
function of the decision variable Φr(ω). The nonlinear,
but convex constraint (10) can easily be recast in an affine
form using Schur complements (Boyd et al., 1994). Expres-
sion (10) is indeed equivalent to: α2T (ejω)PθT (e

jω)T ≤
r2adm(ejω)I2 which in turn can be written using Schur
complements as:





r2adm(ejω)

α2
I2 T (e

jω)

T (ejω)T P−1
θ



 > 0 ∀ω

The latter is also equivalent to:




P−1
θ T T (ejω)

T (ejω)
r2adm(ejω)

α2
I2



 > 0 ∀ω

Another application of the Schur complement now results
in the following LMI (11):

P−1
θ ≥ Radm(ω) ∀ω (11)

with Radm(ω) = α2

r2
adm

(ω)
T T (ejω , θ0)T (e

jω, θ0). The con-

straint (11) is now affine in the decision variable Φr(ω)
since P−1

θ has this property (see (6)). The least costly
input design defined in the introduction is thus the solution
of the following convex optimization problem.

min
Φr(ω)

Jr s.t.

{
Φr(ω) ≥ 0 ∀ω
P−1
θ ≥ Radm(ω) ∀ω

(12)

In order to address plant friendly concerns, we constrain
the variance of the move size (Narasimhan and Ren-
gaswamy, 2011):

Ē(u(t)− u(t− 1))2 =
1

2π

∫ π

−π

|W (ejω)|2 Φu(ω)dω ≤ ξ

(13)
with W (z) = 1 − z−1 and ξ a given constant. With (4),
the constraint can be rewritten as the following affine
constraint in Φr(ω):

1

2π

∫ π

−π

(
|W Sid|

2 Φr(ω) + σ2
e |W Cid Sid H0|

2
)
dω ≤ ξ

(14)

The plant friendly optimal design problem is thus the
following convex optimization problem:

min
Φr(ω)

Jr

s.t.







P−1
θ ≥ Radm(ω) ∀ω
1

2π

∫ π

−π

|W Sid|
2
(
Φr(ω) + σ2

e | CidH0|
2
)
dω ≤ ξ

Φr(ω) ≥ 0 ∀ω
(15)

The first issue with the optimization problems in (12) and
(15) is that the number of constraints is infinite, since (11)



must hold at each frequency. Even though more elaborate
solutions exist (see e.g. Bombois et al. (2004b)), a simple
approach to circumvent this issue is to grid the frequency
range in order to obtain a finite number of constraints.
A second issue is the fact that the cost function and
constraints in (12) depend on the true parameter vector
θ0 and the true noise variance σ2

e (via Pθ). Hence, the
optimal excitation spectrum for the identification depends
on the true system whose parameters have to be estimated.
This is well recognized in general experiment design prob-
lems (Ljung, 1999; Antoulas and Anderson, 1999). To
circumvent this issue, a short sub-optimal experiment,
e.g., with white noise is performed to obtain estimates
θinit and σ2

e,init of the true parameter vector and noise

variance respectively. The true values of θ0 and σ2
e , are

replaced by estimates θinit and σ
2
e,init of respectively. For

more elaborate techniques to circumvent the chicken-and-
egg problem and discussion on the impact of using an
estimated model in the optimization problem, we refer the
reader to Bombois et al. (2006) and Gerencsér et al. (2009).

A third issue is that the decision variable, Φr(ω), in the
optimization problems described above (12) and (15) is
infinite dimensional. Hence, in order to solve them using
LMI tools such as semidefinite programming (Boyd et al.,
1994), a finite linear parametrization of Φr(ω) is needed.
A common parametrization is the following one (Lindqvist
and Hjalmarsson, 2000; Lindqvist, 2001):

Φr(ω) =

m∑

i=−m

ci e
jωi ≥ 0 (16)

with ci = c−i and m is a user defined choice. This param-
eterization restricts 1 the set of signals r(t) to those that
can be generated by a white noise of unit variance passing
through an arbitrary FIR filter of length m + 1. The pa-
rameters ci (i = 0, . . . ,m) are indeed, by construction, the
finite auto-correlation sequence of the signal corresponding
to Φr(ω). With this choice of parametrization, the decision
variables are the parameters ci (i = 0, . . . ,m) (Lindqvist
and Hjalmarsson, 2000; Bombois et al., 2006). We observe
that a larger m allows more flexibility in the parametriza-
tion of the spectrum and that choosingm = 0 is equivalent
to a flat spectrum (white noise): Φr(ω) = c0 ∀ω.

An additional advantage of the parametrization (16) is
that it is very easy to generate a time-domain input
sequence r(t) having the spectrum (16) (see (Lindqvist
and Hjalmarsson, 2000; Lindqvist, 2001) for details).

4. NUMERICAL ILLUSTRATIONS

Consider the following ARX system (Landau et al., 1995):

1 The positivity of the spectrum Φr(ω) parametrized by (16) can be
guaranteed by the existence of a symmetric matrix Q satisfying the
following LMI constraint that can be added to (15) (Lindqvist and
Hjalmarsson, 2000; Bombois et al., 2006):

(

Q− ATQA CT −ATQB

C − BTQA D +DT − BTQB

)

≥ 0

with the following definitions of A,B, C,D:

A =

(
0 0

Im−1 0

)

B =
(
1 0 ... 0

)

C =
(
c1 c2 ... cm

)
D =

c0

2

y(t) = G0(z)u(t)+H0(z)e(t) =
z−3B0(z)

A0(z)
u(t)+

1

A0(z)
e(t)

(17)
with B0(z) = 0.10276 + 0.18123z−1, A0(z) = 1 −
1.99185z−1+ 2.20265z−2− 1.84083z−3+ 0.89413z−4, and
e(t) a realization of a white noise process of variance
σ2
e = 0.5. The true system operates in closed loop with

a controller Cid which has been designed using the 4-
block H∞ control design method of Ferreres and Fromion
(1997b) and an initial estimate of the true system. This
initial estimate of the true system originates from an open-
loop experiment and is equal to:

y(t) =
z−3Binit(z)

Ainit(z)
u(t) +

1

Ainit(z)
e(t)

with Binit(z) = 0.0817 + 0.172z−1 and Ainit(z) = 1 −
1.9755z−1 + 2.1965z−2 − 1.8495z−3 + 0.8881z−4. The es-
timate σ2

e,init of σ
2
e is 0.5265.

We wish to improve the performance of the controller by
re-identifying a model using a direct closed-loop experi-
ment of duration N = 500. The desired accuracy radm(ω)
for the to-be-identified model is based on robust control
specifications on the sensitivity function and is represented
by the red curve in Figure 2. We choose α = 3.55 to
compute (7) and hence, we ensure that this bound is valid
at a probability of 95 %.
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Fig. 2. Comparison of radm(ω) (red solid) with the mod-
eling error ru(ω) obtained with Φr,opt,white(ω) (black
dashed) and with Φr,opt(ω) (blue dotted)

In order to optimally shape the spectrum Φr(ω) of the
excitation signal and obtain the spectrum inducing the
lowest cost Jr = Pur

+ Pyr
, we consider the least costly

design problem (12). The parametrization for the power
spectrum Φr(ω) is chosen as in (16) with m = 10. The
optimal spectrum Φr,opt(ω) with m = 10 is depicted in
Figure 3. The cost Jr incurred by the application of an
external signal having the spectrum Φr,opt(ω) is equal to
10. If we would have limited ourselves to white noise, i.e.,
flat spectrum withm = 0 and solved (12), we would obtain
the optimal spectrum Φr,opt,white(ω) which corresponds to
an induced cost Jr = 22 (approximately two times larger
than with the flexible spectrum).

Realizations r(t) of length N = 500 of the two spectra
Φr,opt(ω) and Φr,opt,white(ω) are generated. These signals
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Fig. 3. Flexible spectrum Φr,opt(ω) without move size
constraint (blue dashed) and flexible spectrum
Φr,opt,move(ω) with move size constraints (red solid)

50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

50 100 150 200 250 300 350 400 450 500
−10

−5

0

5

10

Fig. 4. Induced yr with with Φr,opt,move(ω) (red, top),
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Fig. 5. Induced ur with Φr,opt,move(ω) (red, top), with
Φr,opt(ω) (blue, middle ), and with Φr,opt,white(ω)
(green, bottom)

r(t) have been applied to the closed-loop [Cid G0] and
the induced disturbances yr(t) and ur(t) corresponding to
these two signals r(t) are depicted in Figures 4 and 5,
respectively. We observe that the induced perturbation
yr(t) is much smaller when Φr,opt(ω) is used, i.e. when
the spectrum is shaped appropriately (the perturbation
ur are similar in both cases). Thus, this corroborates the
substantially higher cost incurred in using white noise as
the excitation signal as compared to the optimal input.
The extra flexibility that is available is used to reduce the
cost while meeting the desired constraints.

We have also used the two realizations of r(t) to iden-
tify a model using direct closed-loop identification and
we observe that, as expected, the bound ru(ω) on the
modeling error of these two models satisfy the accuracy
threshold radm(ω) (see Figure 2). However, recall that the
signal corresponding to Φr,opt(ω) induced a performance
degradation Jr which is two times smaller than the per-
formance degradation induced by one corresponding to
Φr,opt,white(ω).

Now, consider the plant friendly design problem. When
Φr,opt(ω) is used, the move size variance Ē(u(t)−u(t−1))2

is 2.7. The smallest value for ξ such that (15) is feasible is
0.45. Hence, to uncover the trade-off between cost and the
move size, it is sufficient to consider ξ ∈ [0.45, 2.76]. The
optimal spectrum obtained by solving (15) with ξ = 0.45
and m = 10 is shown in Figure 3. The move size constraint
(essentially a filter) penalizes high frequency contents of
the signal as seen in Figure 3. The cost function Jr is for
Φr,opt,move(ω) equal to 20.

Hence, with the constraint on the move size, in order
to obtain an identified model of reasonable accuracy, the
system has to be excited in a way which results in a
higher cost, and specifically in an higher value of Pyr

. The
increase in output perturbation yr is evident in Figure 4
where the output perturbation yr with Φr,opt,move(ω) is in
red. However, the extra constraint results in a signal ur
which is much smoother (as expected) as seen in Figure 5
where the resulting ur with Φr,opt,move(ω) is in red. Thus,
while the input is friendlier (i.e., the input is smoother)
as compared to the one corresponding to the optimal
spectrum Φr,opt(ω), the cost is higher. As compared to
white noise, it is friendlier and also results in a lower cost.

In order to find the optimal trade-off between Jr and the
move size of u(t), let ξ vary in [0.45, 2.76]. An acceptable
trade-off between the cost and input friendliness can be
found with ξ = 1 which leads to an optimal spectrum
Φr,opt,move,ξ=1(ω) corresponding to Jr = 14. The induced
perturbations yr and ur for this Φr,opt,move,ξ=1(ω) are de-
picted in red in Figures 6 and 7, respectively and compared
with the ones induced by Φr,opt(ω) and Φr,opt,white(ω).

5. CONCLUSIONS

We presented an optimal input design problem for identi-
fication in closed loop in the least costly framework with
constraints on the input move size and desired model
accuracy. The trade-off between the identification cost and
input move size variance was quantified. The move size
constraint restricts the spectrum of the excitation signal
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Fig. 6. Induced yr with Φr,opt,move,ξ=1(ω) (red, top),
with Φr,opt(ω) (blue, middle) and with Φr,opt,white(ω)
(green, bottom)
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and hence the system is excited to a larger extent in order
to obtain a model of sufficient accuracy.
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