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Abstract

The generation of multimodal virtual environments for surgical training is compli-

cated by the necessity to develop heterogeneous simulation scenarios such as surgi-

cal incision, cauterization, bleeding, and smoke generation involving the interaction

of surgical tools with soft biological tissues in real time. While several techniques

ranging from rapid but nonphysical geometry-based procedures to complex but

computationally inefficient finite element analysis schemes have been proposed,

none is uniquely suited to solve the digital surgery problem. In this paper we discuss

the challenges facing the field of realistic surgery simulation and present a novel

point-associated finite field (PAFF) approach, developed specifically to cope with

these challenges. Based upon the equations of motion dictated by physics, this tech-

nique is independent of the state of matter, geometry and material properties and

permits different levels of detail. We propose several specializations of this scheme

for various operational complexities. The accuracy and efficiency of this technique is

compared with solutions using traditional finite element methods and simulation

results are reported on segmented models obtained from the Visible Human

Project.

1 Background

Surgical teaching has been based traditionally on the preceptor or ap-

prenticeship model, in which the novice surgeon learns with small groups of

peers and superiors, over time, in the course of patient care. The operating

room and the patient, however, comprise the most common, the most readily

available, and often the only setting where hands-on training takes place. The

novice surgeon acquires skills by first observing experienced surgeons in action

and then by progressively performing, under varying degrees of supervision,

more of the surgical procedures, as his/her training advances and his/her skill

level increases.

The drawbacks of this traditional training approach have been underscored

in the report by the Institute of Medicine, entitled “To Err Is Human: Build-

ing a Safer Health System,” which points out that about 100,000 deaths per
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year in the United States occur as a result of medical

errors, making it the eighth leading cause of death.

While the importance of training has been estab-

lished, the best or most effective method has not. Ani-

mal models are not considered good substitutes for hu-

man patients due to fundamental differences in anatomy

and tissue consistency. Moreover, the use of animals for

training purposes is expensive and controversial and re-

quires dedicated facilities, special care, and housing.

Moreover, only a limited number of trainees can prac-

tice on a single animal.

Therefore, relatively inexpensive inanimate training

methodologies such as video tool box trainer are be-

coming more popular. The Society of American Gastro-

intestinal Endoscopic Surgery (SAGES) is the first orga-

nization that has officially adopted an inanimate training

methodology and established the Fundamentals of

Laparoscopic Surgery (FLS) course (Peters et al., 2003).

The FLS has a basic instructional guide (CD ROM-

based educational module) and a manual skill station.

However, both animate and inanimate training tech-

niques suffer from the same drawbacks, the most impor-

tant being the need for an instructor/supervisor, non-

standardized methods of feedback, inadequate provision

to practice for rare medical conditions, and lack of well-

defined subjective methods of performance evaluation.

These training methods and trainers have access to a

limited number of parameters and often time is the only

performance measure.

These drawbacks have prompted the development of

virtual environment (VE) based surgery simulators

where the human user is able to interact with three-

dimensional virtual models of organs using his/her

sense of vision as well as actively manipulate them using

his/her sense of touch through a haptic interface device

such as a PHANToM. It is well recognized that VE-

based simulation systems offer a unique way of objec-

tively assessing performance while imparting training,

providing real-time feedback, tracking the trainee’s

learning curve over extended periods of time, and pro-

viding quantitative scores while, at the same time, offer-

ing summative evaluation during examinations (Satava

et al., 2001).

Several groups have been or are currently involved in

research and development of multi-modal surgical simu-

lation including the Stanford University Medical Media

and Information Technologies Center (SUMMIT) and

Biocomputation Research Center at Stanford Univer-

sity, the Center for Integration of Medicine and Innova-

tive Technology (CIMIT) at Harvard Medical School,

the Human Interface Technology Laboratory and

Biorobotics Laboratory at University of Washington,

the Center for Surgical Simulation at the University of

Colorado, and the National Capital Area Medical Simu-

lation Center at Uniformed Services University.

Commercial forays into the realm of surgery simula-

tion include the Anastomosis Simulator (Boston Dy-

namics, Inc.), the Surgical Workbench (Hand Immer-

sive, Inc.), the CathSim & PreOp Simulators

(Immersion Medical, Inc.), the Patient Anesthesia Man-

nequins (Laerda, Inc., and MedSim, Inc.), the Melerit

Medical Simulator (Melerit AB), the MIST & VIST

(Mentice, Inc.), the Limb Trauma Simulator (Musculo-

Graphics, Inc.), the Reachin Laparoscopic Trainer

(RLT) and Core (Reachin Technologies AB), the Sim-

bionix Mentor Simulators (Simbionix Ltd.), the Tele-

presence Surgery System (SRI, International), and the

LapSim (Surgical Science, Inc.).

However, in spite of significant advances in this area,

VR-based surgery simulators are still not quite popular

with the medical community. In fact, in a study (Tork-

ington, Smith, Rees, & Darzi, 2001) comparing VR-

based (using MIST from Mentice, Inc.) with conven-

tional training, current computer-based simulators did

not exhibit significant advantages in terms of perfor-

mance of standardized assessment exercises. This failure

is largely attributable to a lack of complete understand-

ing of the complexity of the tasks involved.

To achieve a high degree of realism, the virtual envi-

ronments need to support the following: (1) heteroge-

neous scenes composed of different states of matter

(solids, liquids, and gases); (2) complex geometry and

material properties of objects within the scene; (3) dy-

namic and real-time interaction (palpation, cutting, etc.)

between virtual objects and tools physically manipulated

by the user; and (4) multimodal (visual, auditory, and

haptic) rendering of the results to the user. The com-

plexity resulting from the four requirements above ne-

cessitate the dedicated techniques of modeling, simula-

tion, and rendering.
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In this paper we discuss the development of such

techniques. In Section 2 we present some of the related

literature and point out the drawbacks of current simu-

lation strategies. In Section 3 we present the point-asso-

ciated finite field (PAFF) approach as a technique

uniquely adapted to modeling surgical procedures and

outcomes. Various specializations are provided for mod-

els of varying degrees of complexity and states of matter

(solids and fluids). In Section 4 the software architec-

ture is presented. Finally, in Section 5, we provide real-

istic simulation examples, some of which are based on

segmented image data from the Visible Human Project.

2 Related Work

The two most important issues in developing a

multimodal surgery simulator are collision detection and

collision response (Figure 1). In collision detection, one

needs to ensure that there has indeed been a contact

between the surgical tool and the objects in the scene.

Collision detection problems have been extensively

studied in many different research communities includ-

ing robotics, computer graphics, computer-aided de-

sign, and computational geometry. Most collision de-

tection algorithms approximate the objects in the scene

using bounding volumes such as spheres (Quinlan,

1994; Hubbard, 1995; Palmer & Grimsdale, 1995),

oriented bounding boxes (OBBs) (Gottschalk, Lin, &

Manocha, 1996) and axis aligned bounding boxes

(AABBs) (Zachmann & Felger, 1995; Zachmann,

1997).

Generally, the collision model in haptic rendering

defines the graphical description of the surgical tools

and the nature of tool–tissue interactions. The virtual

tool may be modeled as a point (Ho, Basdogan, &

Srinivasan, 1999), a ray (Basdogan, Ho, & Srinivasan,

1997), or as a 3D object (Ho, Sarma, & Adachi, 2001).

Once collision has been detected, the interaction of

the surgical tool with the virtual organ model is com-

puted during collision response. The deformed organ

model is displayed on the computer screen. The reac-

tion forces are fed back to the user through the haptic

interface device(s).

One way to categorize the literature on the compu-

tation of deformation and the display of deformable

objects is according to whether the technique is phys-

ics-based or is based on purely geometric consider-

ations. In geometry-based techniques, the object or sur-

rounding space is deformed by manipulating vertices or

control points. These techniques are relatively faster and

easier to implement. However, they do not capture the

physics of the problem. The concept of free form defor-

mation was originally suggested by Sederberg and Parry

(1986) and extended by Hsu, Hughes, and Kaufman

(1992) to direct free-form manipulation. The extension

of this technique to haptic display of deformable objects

with application to medical simulation (Basdogan, Ho,

& Srinivasan, 1998), computer-aided design (CAD;

Gupta, Sheridan, & Whitney, 1997; Gregory, Ehmann,

& Lin, 2000; Jayaram, Vance, Gadh, Jayaram, & Srini-

vasan, 2001), and haptic sculpting (Dachille, Qin, Kauf-

man, & El-Sana, 1999; Edwards & Luecke, 1996) can

be found in literature.

The physics-based techniques, on the other hand, aim

to model the physics involved in the motion and dy-

namics of interactions. The current trend in the com-

puter graphics literature is to use a surface/volume rep-

resentation of the object and couple it with a mass-

spring model or mesh-based computational scheme.

One of the simplest physics-based models, and thus the

most likely to achieve real-time interactivity, is the mass-

spring elastic network. Mass-spring systems consist of a

set of point masses, connected to each other through a

network of springs and dampers, moving under the in-

fluence of internal and external forces (see Witkin, Bar-

aff & Kass, 1996 for implementation details). This tech-

Figure 1. A schematic of the surgery simulation process.

296 PRESENCE: VOLUME 15, NUMBER 3



nique has been used extensively by computer graphics

researchers in simulating soft tissue and cloth behavior

(Cover et al., 1993; Terzopoulos & Waters, 1990; Ng

& Grimsdale, 1996). Swarup (1995) demonstrated the

application of this technique to haptic simulation of de-

formable objects. Recent work (Desbrun, Shroder, &

Barr, 1999; Kang, Choi, & Cho, 2000) has focused on

reducing computational cost per time step while pre-

serving the stability of this system.

However, for the purpose of deformation modeling,

these models suffer from many disadvantages. It is diffi-

cult, and sometimes impossible, to determine the pa-

rameters of hundreds of thousands of springs, dampers,

and masses to represent the global behavior of the tissue

especially if nonlinear and/or viscoelastic behavior is to

be captured. It is difficult to enforce global properties

like incompressibility when using such models and the

problem is exacerbated when one tries to use a relatively

few particles to reduce computational time. Relatively

stiff springs are necessary to model hard tissues, jeopar-

dizing the stability of the solution scheme, and requir-

ing the numerical temporal integrator to take minute

time steps. Finally, anisotropic distribution of mass

points necessitates fine-tuning for individual organ ge-

ometry, difficulty in controlling the variation of forces

and deformations across the geometry as well as inte-

grating tissue properties into the model.

A few researchers have proposed the use of more ro-

bust but expensive finite element analysis procedures

(Bathe, 1996) as an alternative to mass-spring models.

Drastic modeling simplifications have to be made to

implement real-time finite element models with haptic

feedback (see Bro-Nielsen & Cotin, 1996; Cotin,

Delingette, & Ayache, 1999; Girod, Keeve, & Girod,

1996; Ayache, Cotin, & Delingette, 1998; Berkley et

al., 2000; Berkley, Turkiyyah, Berg, Ganter, & Weg-

horst, 2004; De & Srinivasan, 1998, 1999; Basdogan,

Ho, & Srinivasan, 2001; Wu, Downes, Goktekin, &

Tendick, 2001; Picinbono, Delingette, & Ayache,

2003; Masutani et al., 2004; Choi, Sun, & Heng,

2004).

In spite of accuracy and robustness, finite element

techniques suffer from certain drawbacks in real time

simulation. First, the need for numerical integration and

volumetric meshing results in a slower-than-real-time

performance unless extensive precomputations are per-

formed. Furthermore, the contact between tool and

tissues must occur only at nodal points. Hence, for a

smooth visual and haptic display, a fine mesh needs to

be utilized, resulting in extensive memory usage and

high computational overhead. Large deformations and

nonlinear response of tissues cause the finite elements to

behave badly or totally fail unless remeshing is per-

formed. Finally, change of topology, for example, dur-

ing the simulation of surgical cutting, necessitates

remeshing, which destroys any precomputed data, in-

creases the number of computations on the fly, and seri-

ously degrades real time performance.

There are, however, positive features of both mass-

spring and finite element analysis schemes. Mass-spring

models offer simplicity and speed and do not suffer

from the deleterious effects of mesh distortion. Finite

element schemes are used to solve the partial differential

equations that govern the deformation and motion of

soft tissues and only a limited number of empirically

determined parameters are necessary. For example, to

simulate the response of linear elastic (isotropic) tissue

behavior, only two independent parameters (Young’s

modulus and Poisson’s ratio) need to be determined

from experiments.

Hence, an ideal combination of mass-spring and finite

element-based techniques is desirable. Such an “ideal”

scheme should solve the governing partial differential

equations (as a finite element scheme), but not suffer

from any of the problems associated with a mesh (e.g.,

mesh distortion and remeshing when large deformations

or surgical cutting have to be modeled). It should be

very flexible, in the sense that it should allow arbitrary

local refinement and multiresolution capability to zoom

into regions of “action” without having to unduly refine

the discretization over the entire computational domain.

Finally, the ideal scheme should allow the simulation

of matter, irrespective of its state of solid, liquid, or gas,

within a single computational framework. This is essen-

tial since one needs to simulate dissection, bleeding,

and, possibly, smoke generation within the same sce-

nario without having to switch between various model-

ing schemes stitched together through tenuous non-

physical links. Neither finite element nor mass-spring
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models have the ability to provide such a general frame-

work for the modeling of heterogeneous media.

3 The Point-Associated Finite Field

(PAFF) Approach

With the specifications of the “ideal” computa-

tional scheme laid out in the previous section, we have

developed the point-associated finite field (PAFF) ap-

proach. In this method, matter, irrespective of its state,

is represented as a collection of particles or nodes that

serve as the computational primitives (Figure 2), much

like mass-spring models. But unlike mass-spring models,

the governing partial differential equations are solved.

However, the method is “meshless” since no direct link

exists between the computational particles.

The particles possess a finite “region of influence”

which smears out their effects and coordinates their mo-

tions during simulation. Since no mesh is used, none of

the problems associated with a mesh are encountered.

We will show shortly that it is straightforward to de-

velop a multiresolution strategy whereby one can zoom

into regions of interest without jeopardizing the com-

putations. Finally, since the particles are not constrained

as in a mesh, they can slide past each other, much like

clouds, and this allows the modeling of very large defor-

mations as well as surgical cutting without difficulty;

they can flow like a liquid or escape like a gas. In the

following paragraphs we will provide some technical

details regarding the method.

In PAFF, the approximation uh of the vector of vari-

ables u (i.e., the x, y, and z components of the displace-

ment field), using N particles, may be written as:

uh(x)��
J�1

N

HJ�x)�J � H(x)U (1)

where �J � [uJ vJ wJ] is the vector of nodal unknowns at

node J, uJ, vJ and wJ are the nodal variables corresponding

to the x, y, and z directions at node J and U � [�1 �2

�3. . .]T is the vector of all the nodal unknowns. The nodal

shape function matrix corresponding to the Jth node is

HJ(x)��hJ�x) 0 0
0 hJ�x) 0
0 0 hJ�x)

� (2)

where

hJ�x)�WJ �x)PT(x)A�1(x)P(xJ � J � 1 . . . N (3)

with

A(x)��
I�1

N

WI �x)P(xI�P
T(xI) (4)

is the “shape function” at node J.

The purpose of the vector P(x) � [1 x y z]T is to en-

sure a first order accurate scheme in 3D, similar to bilin-

ear finite elements. The choice of a radial weighting

function WI(x) at node I determines the degree of con-

tinuity and differentiability of the approximation as well

as the computational cost. It is clear from Eq. (3) that

the continuity of the shape functions is determined by

the smoothness of the weight functions. The point col-

location method (Bathe, 1996), which we use to dis-

cretize the governing differential equations, requires

that the first derivatives of the weight functions be con-

tinuous. To ensure this property, we choose a quartic

spline weighting function having the following form:

WI�s� � �1–6s2 � 8s3–3s4 0 � s � 1
0 s � 1 (5)

with minimum overlap between the neighboring nodes,

where s � �� x–xI��0/rI with �� � ��0 and rI denoting the

Figure 2. The point-associated finite field (PAFF) technique. (a) A

general three-dimensional body (e.g., stomach) discretized using a set

of nodes. Each node has an associated spherical influence zone. (b)

The approximation function hJ(x) at node J is “bell shaped” and is

nonzero only on the spherical influence zone of radius rJ centered at

node J.
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usual Euclidean distance and radius of sphere at node I,

respectively.

Let us assume that we are interested in solving the

elasticity equation, for example, on a domain � with

boundary � (Figure 2):

��
T
�(u)�f B(x)�0 in � (6)

subject to the boundary conditions

N�(u)–f s(x)�0 on �f

u(x)–us�0 on �u
(7)

In equations (6) and (7), u � {u(x) v(x) w(x)}T and

� � {�xx �yy �zz �xy �yz �zx}
T are the displacement at any

point x in the domain and the vector of stress, respec-

tively; fS is the prescribed force vector on the boundary

�f, uS is the vector of prescribed displacements on the

boundary �u (note that the domain boundary � � �f��u

and �f��u � 0), fB is the body force vector, �� is a lin-

ear gradient operator, N is the matrix of direction co-

sine components of a unit normal to the domain

boundary (positive outwards) and x � {x, y, z}. The

stress vector is related to the strain vector, �, through

the constitutive relation (linear, elastic):

�(u)�D�(u) (8)

where D is the constitutive matrix. In the simplest case

of linear isotropic elasticity, there are two independent

parameters in D (Young’s modulus, E, and Poisson’s

ratio, 	) of the form:

D�
E(1–	)

(1�	)(1–2	)

1
	

1–	

	

1–	

	

1–	
1

	

1–	

	

1–	

	

1–	
1

1–2	

2�1–	�

Elements not
shown are zeros

1–2	

2�1–	�

1–2	

2�1–	�

(9)

In PAFF, the approximation in Eq. (1) is used to

solve the governing partial differential equations of mo-

tion from Eq. (6) using a method known as point collo-

cation. In this technique, the partial differential equa-

tions, as well as the boundary conditions, are satisfied at

the nodal points. This method is vastly simplified com-

pared to the finite element method since no computa-

tionally intensive numerical integration is used.

The resulting set of discretized equations can be writ-

ten in compact form:

KU�f (10)

where K is the stiffness matrix and f is the vector con-

taining nodal loads. Solving this set of equations, one

computes the numerical solution from Eq. (6). In this

paper we are interested in linear elastic tissue response.

However, extension to nonlinear tissue models is

straightforward and is discussed in Lim and De (2005).

However, a naive solution of Eq. (10) does not, of

course, lead to real time performance. We present two

techniques of obtaining real time interactivity for linear

elastic material models. In Section 3.1 we present a fast

global analysis technique (GPAFF) that depends on pre-

computed data but scales linearly as the number of un-

knowns. However, for models with over a few thousand

nodes, this technique hits the limit of allowable opera-

tional complexity on a serial computer. In Section 3.2

we present a localized version of the PAFF algorithm

(LPAFF) for larger models.

The key assumption in both accelerating techniques is

that the surgical tool–soft tissue interaction is local (see

Figure 3) and the deformation field dies off rapidly with

increase in distance from the surgical tool tip. We will,

henceforth, refer to this as the localization assumption.

The localization assumption follows naturally from

the physics that governs the deformation of elastic bod-

ies as well as the psychophysics of human perception.

The well-known Boussinesq solution (Johnson, 1996)

for the displacement field produced by a concentrated

point force, acting normally on an elastic half-space, dies

off inversely as the distance from the point of applica-

tion of the load. One needs to couple this with the well-

known observation (Weber’s law) that the human sen-

sory system requires a finite change in stimulus intensity
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over the background intensity (known as the just no-

ticeable difference or JND) to recognize the change (for

example, we will possibly not visually perceive the differ-

ence between a 1 mm deformation and 1.1 mm defor-

mation; Surdick, Davis, King, & Hodges, 1997).

3.1 Real Time Global PAFF (GPAFF)

Mathematically, the localization assumption (in

the previous section) translates to the condition that the

prescribed boundary condition changes on only a very

small portion of the boundary (�u2) where the surgical

tool interacts with the virtual organ (Figure 4). Hence

we do not need to solve the entire problem over and

over again. Instead it is possible to make incremental

corrections to a previously computed solution, which

results in a vastly accelerated solution procedure.

We therefore define a specialized problem (Figure 4)

where we assume that zero displacements are prescribed

on a portion of the boundary (�u1) and the virtual tool

interacts with only a very small portion of the boundary

(�u2), that is, u(x) � Utool on �u2, where Utool is the

displacement applied to the virtual organ through the

surgical tool (assumed known). During the process of

interaction of the surgical tool with the soft tissue only

the boundary conditions on �u2 change.

Let K̃ be the stiffness matrix obtained from K in Eq.

(10) after incorporating the zero displacement bound-

ary conditions on �u1. Then the matrix C̃ � K̃�1 can be

partitioned as:

C̃��C̃nn C̃nu

C̃un C̃uu
� (11)

corresponding to a partitioning of the vector of nodal

parameters as U � [UtoolUu]T where Uu is the vector of

unknown nodal displacements, and Utool is the vector of

known nodal displacements. The reaction force vector

at the tool ftool is obtained from ftool � C̃nn
�1Utool.

The unknown nodal displacement may be obtained as

uu � C̃unftool.

If the matrix C̃ is precomputed and stored, then the

cost of computation of the tool reaction forces is only of

the order of m2 (written as O(m2)) where m nodes are

in contact with the tool. The cost of computation of the

displacement field is O(m(N–m)). Therefore, the over-

all computational complexity of such a procedure is

O(mN) which is essentially O(N) when m 		N.

To compare the performance of GPAFF with finite

elements we consider a test problem of a hemisphere

(25 mm radius) indented at its pole (Figure 5a). A

PAFF discretization using 1026 particles and a FEM

Figure 3. A schematic of the PAFF technique. Utool and ftool are the

prescribed displacement and reaction force at the tool tip,

respectively.

Figure 4. The global PAFF (GPAFF) scheme. When the surgical tool

moves from location A to location B, only a very small portion of the

boundary (�u2) is affected.
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discretization using 1715 nodal points provided solu-

tions with comparable accuracy (see Figure 5b). How-

ever, the use of precomputations in the GPAFF method

results in a solution time which is four orders of magni-

tude smaller than that required by FEM (see Table 1).

The finite element method using precomputations will

provide speedups comparable to GPAFF. However,

other advantages of meshfree analysis will be unavail-

able.

Figure 5c shows that the computational cost of the

GPAFF scheme increases linearly with increase in the

degrees of freedom (DOF) of the global model. The

maximum size of the model (in terms of the number of

nodes that can be simulated) is constrained by the hard-

ware of the system. For GPAFF we calculate this “hard

limit” to be in the range of 11,600 nodes.

Since a finer discretization may be necessary for com-

plex organ models, we have developed a localized ver-

sion of the PAFF algorithm (LPAFF), which we de-

scribe in the next section.

3.2 Real Time Local PAFF (LPAFF)

The localized PAFF (LPAFF) idea essentially im-

plies that only local discretization is performed as a

“hive” of nodal points travels with the tool tip (Figure

6). This technique results in a dramatic reduction in the

solution time for massively complex organ geometries.

The localization results in zero displacements being

automatically assumed on the periphery of the “region

of influence” (ROI) of the surgical tool-tip, which is

chosen after careful observation of videos of actual sur-

gical procedures.

Figure 7 shows the placements of nodes around the

collision point. We use a bounding box hierarchy with

local neighborhood search algorithm (Ho et al., 1999)

for real time collision detection. Hierarchical databases

for geometrical connectivity information of the objects

permit localized search when the surgical tool moves.

The neighboring polygons and vertices of a collision

point within the ROI can be rapidly computed using

this local-search approach and the normal vectors of

neighborhood vertices are obtained from the normals of

their neighboring polygons. Then PAFF particles are

placed by projecting along these normal vectors.

Figure 5. (a) The test problem of a hemisphere indented at the

pole. (b) The deformation field computed when the GPAFF technique

(Utool � 0.08 R) is used for the simulation of a surgical tool tip

interacting with a hemisphere (of radius R � 25mm). The

undeformed surface as well as the deformed profile obtained when a

finite element software package is used to solve the problem is also

shown. (c) The computational cost for GPAFF scheme is seen to

increase linearly with increase in the degrees of freedom of the model.

Table 1. Comparison of Computational Times for Solving the

Hemisphere Model (Figure 5a) Using Finite Elements (FEM),

GPAFF, and LPAFFa

FEM GPAFF LPAFF

Number of nodal points (n) 1715 1026 28b

Degrees of freedom (3n) 5145 3078 84

Solution times (sec) 4.02 0.0009 0.0137c

aThe solution time refers to the time to solve the system

matrices. A 2.2 GHz P IV machine was used for the

simulations.
bNumber of nodes in influence region.
cComputational time for building stiffness matrix and

nodal solution.
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The stiffness matrix, K, in Eq. (10) may be parti-

tioned as:

K��Knn Knu

Kun Kuu
� (12)

corresponding to a partitioning of the vector of nodal

parameters as U � [Utool Uu]T where Utool is the vec-

tor of known nodal displacements at the surgical tool

tip and Uu is the vector of unknown displacements

which can be obtained from Uu � �Kuu
�1 Kun Utool.

The force vector delivered to the force feedback device

is computed as ftool � Knn Utool � Knu Uu.

Since K is built locally, the size of the matrix is quite

small. The major advantage of LPAFF is that it is not

limited to the computation of linear elastic tissue and

real time performance may be obtained without using

any pre-computations (Lim & De, 2005).

Table 1 presents a comparison of solution times for

the hemisphere problem (Figure 5a). The total time is

assumed to be composed of the time to generate the

stiffness matrix and time to solve the system of equa-

tions. While the FEM solution takes more than 4 sec-

onds, the LPAFF solution takes only 14 milliseconds.

This is, of course, not a very fair comparison since the

entire volume of the sphere is meshed using volumetric

finite elements while only a few LPAFF nodes are sprin-

kled around the tool tip.

However, the solution accuracy of the two techniques

is quite comparable, at least in the vicinity of the tool

tip, emphasizing the fact that the deformation profile is

truly local. As expected, the LPAFF solution drifts from

the FEM solution far from the tool tip.

Figure 8 shows the computational cost versus the de-

grees of freedom in the LPAFF model.

3.3 Smoke Generation During

Cauterization Using PAFF

As we have pointed out, the PAFF technique pro-

vides a very general and powerful framework for simula-

tion. In this section we will demonstrate how it can be

used to generate smoke during cauterization.

A variety of mechanisms have been used to dissect

tissue and enable haemostasis in laparoscopic surgery.

The dissection technique requires a modality that can

accomplish meticulous haemostasis without causing in-

advertent tissue damage. Electrosurgery has become the

most widely used cutting and coagulating technique in

minimally invasive surgery. During laparoscopic electro-

surgery, tissue is burnt or hemorrhaging is stopped with

the help of an electrocautery. This procedure results in

copious generation of smoke.

It is quite straightforward to generate interpolations

with no connectivity information such that the smoke

can drift away and diffuse. In the absence of pressure

gradients, the Lagrangian form of the Navier Stokes

equations which governs the motion of any fluid is

dv

dt
�

1



(�ƒ

2v � f) (13)

In this equation, v represents the smoke velocity (in

3D) at time instant t. 
 and � are the smoke density and

viscosity, respectively, and f is the external force acting

on the smoke per unit volume. This equation is inte-

grated in time (using Euler integration) to obtain the

velocity of any smoke particle at any instant of time t �


t according to the equation:

vt�
t � vt �

t



��ƒ

2v � f �t (14)

Figure 6. A schematic of the localized PAFF (LPAFF) scheme. In

LPAFF, the computations are performed on a local “hive” of nodal

points which moves with the tool tip.
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where 
t is the time step. The second derivative of the

velocity field is obtained as follows

ƒ
2vt � �

J�1

N

�ƒ2HJ�x))t�J (15)

Figures 9a,b show how smoke may be generated using

this algorithm and Figure 9c presents an example of the

simulation of cauterization on a stomach model. In our

simulation, however, the external force f acting on the

smoke particles was assumed to be random, as opposed

to pressure forces due to insufflations in actual surgery

which tends to diffuse the smoke particles to a greater

extent.

Figure 8. Computational cost of the LPAFF scheme.

Figure 9. Smoke generation using PAFF. (a) A texture image used

for smoke particles. We use a single image frame of size 32- by 32-

bit. (b) A sequence of snapshots for smoke generation. (c) Smoke

generation during the simulation cauterization on a model of the

stomach.

Figure 7. Placement of the PAFF particles after a collision point has been determined. (a) A local-search

algorithm is used to find neighboring polygons and vertices. (b) Normal vectors defined. (c) PAFF particles. PAFF

particles are placed by projecting the neighboring vertices along their normal vectors.
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4 Implementation Details

Figures 10 and 11 show the implementation steps

in GPAFF and LPAFF schemes, respectively. Three ma-

jor computational steps need to be performed in real

time:

● Pre-processing: This step involves an initial setup for

graphics and haptics rendering, generation of data-

base of organ geometries, and setting up of the

computational primitives for PAFF.

● Response analysis: This includes collision detection

and collision response computations. In our imple-

mentation, we have used a point-based representa-

tion of the surgical tool and have employed a

bounding box hierarchy with local neighborhood

search algorithm developed by Ho et al. (1999) for

real time collision detection.

● Graphics and haptics rendering: In this step the

force vector is updated and is fed back to the user

through the haptic interface device and the surface

polygon vertices are updated and rendered.

In the GPAFF model, the precomputation of the

global linear stiffness matrix, the application of the fixed

boundary conditions, and the inversion of this matrix

are executed in the pre-processing stage. After starting

the simulator, the stored matrix is retrieved and the de-

formation field and interaction forces are calculated in

real time.

In the LPAFF scheme, the size of the influence re-

gion is defined after a careful observation of real surgical

videos and particles are placed around the collision

point. The computation of the deformation of the or-

gan and the reaction force at the tool-tip are performed

during simulation.

5 Simulation Examples

We use a WinNT-based personal computer

(Pentium 4 2.2 GHz processor) with a high end

graphics accelerator (NVIDIA Quadro4 XGL) and the

PHANToM (Premium 1.0A) force feedback devices

from SensAble Technologies Inc. The source code is

written in C�� using the OpenGL library for graphics

rendering and GHOST SDK for haptic rendering.

Figure 12 shows the successive deformations of a lin-

ear elastic sphere indented at its pole. In Figure 12a the

GPAFF scheme is used, while in Figure 12b the LPAFF

is used.

The rest of the examples are 3D organ models ob-

tained from segmented image data from the National

Library of Medicine’s (NLM) Visible Human Project

(VHP). A whole-body adult male model, called Visible

Photographic Man, or VIP-Man (Xu, Chao, & Bozkurt,

2000), as shown in Figure 13, has been developed using

the high-resolution transverse color photographic im-

Figure 11. The software architecture for LPAFF.

Figure 10. The software architecture for GPAFF.
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ages from the VHP dataset. At a voxel size of 0.33

mm � 0.33 mm � 1 mm, the resolution of VIP-Man is

at least 10 times finer than the tomographic models de-

veloped previously. The original color photographs for

the male had been identified and segmented mostly by

manual procedures to yield up to 1,400 anatomical

structures by Spitzer, Whitlock, and Whitlock (1998).

Once an organ or tissue has been identified, the associ-

ated voxels are arbitrarily colored for visualization. Then

the marching cubes algorithm (Lorensen & Cline,

1987) is employed to reconstruct 3D volumetric models

from segmented data.

We have used the 3D kidney (Figure 13b) and the

lung (Figure 13c) models of VIP-Man to demonstrate

our techniques. The visualization toolkit (VTK) is used

for the surface rendering of the voxelized images.

In Figure 14a a kidney model having 1080 polygons

is simulated using the GPAFF scheme. For a lung

model having 1364 polygons (Figure 14b), the LPAFF

is used for real-time simulation.

6 Concluding Remarks

Points as rendering primitives have been used in

computer graphics (Levoy & Whitted, 1985; Zwicker,

Pfister, van Baar, & Gross, 2002; Pfister & Gross,

2004). In this paper we present a scheme of using

points as computational primitives in multimodal medi-

cal simulations. These points are not connected to each

other by elastic members, but interact through diffuse

elastic force fields. Their motion is dictated by the phys-

ics of the problem. Several strategies have been devel-

oped to accelerate the solution process. While localiza-

tion of approximation is more suited to models having

many nodes, the global solution strategy is more accu-

rate and is preferable when massively parallel systems

may be utilized for computations. We have, however,

not followed the route to parallelism in this work since

our philosophy has been to allow simulators to be run

on PCs owned by medical personnel.

In this paper, we demonstrate the application of our

Figure 12. Successive deformations of a linear elastic sphere

indented at its pole. (a) In case of moderately sized objects (e.g.,

tennis ball indented by finger), the prescribed boundary condition

changes on only a very small portion of the boundary as the indenter

interacts with the object and the GPAFF scheme is suitable. (b) For

larger objects (e.g., balloon indented by finger), it may be assumed

that the deformation zone is localized within a “region of influence”

in this situation, hence the LPAFF is more favorable.

Figure 13. VIP-Man showing (a) whole body skin, skeletal struc-

tures, and organs; (b) kidney and (c) lung model used in our

simulation.
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method to linear elastic tissue behavior. In reality, soft

biological tissues exhibit nonlinearities, time and rate

dependence, as well as nonhomogeneity and anisotropy.

The nonlinearity of tissue behavior may stem from ei-

ther large deformations or simply from inherently non-

linear material response. A third type of nonlinearity

arises due to change of contact area during deformation,

for example, due to interaction of the surgical tool and

the organ or between several organs as they press

against each other. We have recently demonstrated the

successful extension of the PAFF to the simulation of

nonlinear tissue behavior (Lim & De, 2005).

We have confined our discussion to only tissue defor-

mation and smoke generation. However, surgical proce-

dures frequently involve bleeding. Simulation of bleed-

ing in a physically realistic fashion is difficult since it

requires the solution of the nonlinear Navier Stokes

equations. Basdogan, Ho, and Srinivasan (1999) pre-

sented a method to simulate bleeding by calculating the

depth of the fluid above a virtual surface based on a lin-

earized Stokes model and rendered it through an auxil-

iary surface. While this method provides realistic bleed-

ing simulation, it does not account for arterial bleeding.

The application of PAFF to the simulation of tissue

bleeding is left as future work.
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