Header menu link for other important links
X
Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of (methanol + MgCl2) and (ethylene glycol + MgCl 2) aqueous solutions
Nagham Amer Sami, Kousik Das, , N. Balasubramanian
Published in
2013
Volume: 65
   
Pages: 198 - 203
Abstract
In this work, the experimental data for the equilibrium conditions of methane and carbon dioxide clathrate hydrates in the presence of (0.1 mass fraction methanol + 0.03, 0.1 mass fraction MgCl2) and (0.1, 0.2 mass fraction ethylene glycol + 0.1 mass fraction MgCl2) aqueous solutions at different temperature and pressure range 263.74 to 280.54 K and 0.98 to 8.02 MPa, respectively and for various concentrations of inhibitors are reported, which is not available in open literature. The equilibrium pressure-temperature curves were generated using an isochoric pressure-search method. The experimental results of methane and carbon dioxide clathrate hydrates in the presence of pure water and the above mentioned aqueous inhibitor solutions are compared with some selected experimental data from the literature in the presence of pure water, single glycol, alcohol or salt aqueous solutions to validate the experimental result and to show the inhibition effects of the aqueous solutions used in this work. The results show that the phase equilibrium of the quaternary system (H2O + ethylene glycol/methanol + CH 4/CO2 + MgCl2) is shifted to higher pressures/lower temperatures compared to the phase equilibrium of pure CH 4/CO2 due to the inhibition effect. Also, it has been observed that the quaternary system containing methanol has a more inhibition effect than the quaternary system containing ethylene glycol at the same mass fraction of the inhibitor in the aqueous solution. © 2013 Elsevier Ltd. All rights reserved.
About the journal
JournalJournal of Chemical Thermodynamics
Open AccessNo
Concepts (20)
  •  related image
    CLATHRATE HYDRATE
  •  related image
    Equilibrium conditions
  •  related image
    Experimental datum
  •  related image
    INHIBITION EFFECT
  •  related image
    Magnesium chlorides
  •  related image
    QUATERNARY SYSTEMS
  •  related image
    Temperature and pressures
  •  related image
    THERMODYNAMIC INHIBITORS
  •  related image
    Carbon dioxide
  •  related image
    Chlorine compounds
  •  related image
    Ethylene
  •  related image
    Ethylene glycol
  •  related image
    Gas hydrates
  •  related image
    Hydration
  •  related image
    Methane
  •  related image
    Methanol
  •  related image
    Phase equilibria
  •  related image
    Polyols
  •  related image
    Temperature
  •  related image
    Solutions