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Terrestrial experiments on active particles, such as Volvox, involve gravitational forces, torques
and accompanying monopolar fluid flows. Taking these into account, we analyse the dynamics
of a pair of self-propelling, self-spinning active particles between widely separated parallel planes.
Neglecting flow reflected by the planes, the dynamics of orientation and horizontal separation is
symplectic, with a Hamiltonian exactly determining limit cycle oscillations. Near the bottom plane,
gravitational torque damps and reflected flow excites this oscillator, sustaining a second limit cycle
that can be perturbatively related to the first. Our work provides a theory for dancing Volvox and
highlights the importance of monopolar flow in active matter.

Since Lighthill’s seminal work on the squirming mo-
tion of a sphere [1, 2], it has been understood that freely
moving active particles produce hydrodynamic flows that
disallow monopoles and antisymmetric dipoles [3]. The
minimal representation of active flows by the symmet-
ric dipole, the leading term consistent with force-free,
torque free-motion, has been the basis of much theoretical
work in both particle [4–6] and field representations of ac-
tive matter [7, 8]. The importance of multipoles beyond
leading order in representing experimentally measured
flows around active particles has now been recognized
and their effects have been included in recent theoretical
work [9, 10]. Less recognised, however, is the fact that
active particles in typical experiments [5, 11–16] are nei-
ther force- nor torque-free: mismatches between particle
and solvent densities lead to net gravitational forces while
mismatches between the gravitational and geometric cen-
ters lead to net gravitational torques. In this case, both
monopolar and antisymmetric dipolar flows are allowed
and become dominant, at long distances, over active con-
tributions. It is of great interest, therefore, to understand
how these components influence the dynamics of active
particles and, more generally, of active matter.

Theoretical work on this aspect of active matter has
been limited, even though the effect of monopolar flow
in passive, driven matter is well-understood [17–21]. At-
traction induced by monopolar flow near boundaries has
been shown to cause crystallisation of active particles
[22]. Reorientation induced by monopolar vorticity has
been identified as the key mechanism in the emergence of
the pumping state of harmonically confined active parti-
cles [23, 24]. However, none of these studies have focused
on the dynamics of pairs, which forms the foundation for
understanding collective motion, or attempted an ana-
lytical description of motion.

In this Letter, we provide a theory for the dynam-
ics of density-mismatched, bottom-heavy, self-propelling
and self-spinning active particles between widely sepa-
rated parallel planes. Starting from the ten-dimensional
equations for hydrodynamically interacting active motion
in the presence of external forces and torques, we derive,
by exploiting symmetries, a lower-dimensional dynamical

system for the pair. For positive buoyant mass, negative
gravitaxis, and negligible reflected flow, we obtain a sed-
imenting state with limit cycle oscillations in the relative
orientation and horizontal separation. The dynamics is
symplectic and a Hamiltonian completely determines the
properties of periodic orbits. On approach to the bot-
tom wall, reflected flow arrests sedimentation and yields
a levitating state with limit cycle oscillations that now
includes the mean height. This second limit cycle can be
understood as a damped (by gravitational torque) and
driven (by reflected flow) perturbation of the first. These
rationalise the Volvox dance [11, 12] and highlight the
importance of monopolar hydrodynamic flow in active
matter. We now explain how our results are obtained.

Full and reduced equations: We consider a pair of
spherical active particles of radius b, density ρ, self-
propulsion speed vA, and self-rotation speed ωA, in an
incompressible Newtonian fluid of density ρf and viscos-
ity η between parallel planes whose separation is L ≫ b
[25]. Their geometric centres, propulsive orientations, ve-
locities, and angular velocities are, respectively, Ri, pi,
V i and Ωi, where i = 1, 2 is the particle index. Over-
damped, hydrodynamically interacting, active motion in
the presence of body forces FB

j and body torques TB
j is

given by [26]

V i = µTT
ij · FB

j + µTR
ij · TB

j + vApi,

Ωi = µRT
ij · FB

j + µRR
ij · TB

j + ωApi

(1)

where µ
αβ
ij are mobility matrices and repeated particle

indices are summed. Positions and orientations obey the
kinematic equations Ṙi = Vi, and ṗi = Ωi × pi. The
above follow directly from Newton’s laws for active parti-
cles when inertia and active flows are neglected [27]. The
expression for the exterior fluid flow v(r) around the col-

loids is then: v(r) = (1+ b2

6 ∇2)G ·FB
i + 1

2 (∇×G) ·TB
i ,

where G is a Green’s function of Stokes equation [28]
which satisfies the appropriate boundary conditions at
the boundaries in the flow. The flow due to self-
propulsion and self-spin involve, respectively, two and
three gradients of the Green’s function and are thus sub-
dominant [9, 26]. For a sphere in a gravitational field g,
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Figure 1. Fixed point and limit cycles of the five-dimensional dynamics system of Eq.(2-3). First column: coordinate system
used to describe a pair of particles between two parallel plane surfaces. Second column: streamlines of the monopolar flow (red
curved arrows show flow-induced rotations of the particles) superimposed on a pseudo colormap of the flow speed. The plots
correspond to the following three cases: top row : near the top surface, middle row : away from the surfaces, and bottom row :
near the bottom surface. Third column: stroboscopic images of the two-particle dynamics in the three configurations. The
dynamical system admits a fixed point at the top surface, while limit cycles are formed away from the surfaces and near the
bottom surface. The last two columns contain the plot of relative orientation θ and average height h as a function of x for the
three cases. The colorbar indicates time in the final 3 columns and L is the separation of the planes. See movie 1 of SI.

the force is FB
i =mg, where m= 4πb3

3 (ρ−ρf ) is the buoy-

ant mass and the torque is TB
i =di × ( 4πb

3

3 ρg), where
di is the position of the centre of gravity relative to
Ri [29]. The torque aligns di parallel to g and posi-
tive/negative gravitaxis results when pi is parallel/anti-
parallel to di. Typical estimates of these parameters for
a V olvox are b ∼ 300µm, vA ∼ 300µm/s, mg ∼ 1nN,
ωA ∼ 1 rad/s [11]. Thus, the typical active forces
FA ∼ 6πηbvA ∼ 10−9N and torques TA ∼ 8πηb3ωA ∼
10−12Nm. Thus, Brownian forces kBT/b ∼ 10−14N and
torques kBT ∼ 10−20Nm can be neglected for such sys-
tems of active particles. We now present a reduced de-
scription of our deterministic equations of motion.

Our dimensional reduction is motivated by a symmetry
of Stokes flow that constrains motion initially in a plane
perpendicular to the torque to remain in that plane. We
choose y = 0 to be the plane of motion, set FB

i = −mgẑ,

TB
i = TRpi× ẑ, where TR = 4πb3

3 ρgd is the magnitude of
the gravitational torque, and parametrise Ri = xix̂+ziẑ
and pi = sin θix̂ + cos θiẑ, so that V i = ẋix̂ + żiẑ,
and Ωi = θ̇iŷ. Using these and translational and time-
reversal symmetries in Eq.(1), retaining terms in the mo-
bility matrices to leading order in x1−x2, z1 and z2, dis-
carding the decoupled equation for the horizontal com-

ponent of the center of mass, and expressing the result in
terms of the reduced variables 2ψ̇ = θ̇1+ θ̇2, 2θ̇ = θ̇1− θ̇2,
x = x1 − x2, z = z1 − z2, 2h = z1 + z2, we obtain a five-
dimensional dynamical system [27], partitioned into two
orientational equations

ψ̇ =− TR
8πηb3

sinψ cos θ, (2a)

θ̇ =− TR
8πηb3

cosψ sin θ − mg

8πη

[

x

r3
− x

(4h2+r2)3/2

]

(2b)

and three positional equations,

ẋ = 2vA cosψ sin θ +
mghx

2πη(4h2 + r2)3/2
, (3a)

ż = −2vA sinψ cos θ − mgz

2πη(4h2 − z2)
, (3b)

ḣ = vA cosψ cos θ − mg

8πη

(

4

3b
+

1

r
+
z2

r3
− 2

h

)

. (3c)

The geometry of the reduced variables is shown in Fig.
(1). The orientational equations describe the competition
between gravitational torques that restore vertical orien-
tations [30] and hydrodynamic torques, from monopo-
lar vorticity, that promotes relative re-orientation. The
first and second positional equations describe the change
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in relative separation due to gravitaxis and reflected
monopolar flow, the latter of which increases horizontal
separation and decreases vertical separation [21]. The
third positional equation describes the competition be-
tween the tendency of the mean height to increase, due to
gravitaxis and reflected monopolar flow, and its tendency
to decrease, due to gravitational forces and monopo-
lar flow. Eqs.(2-3) describe the sedimentation of a pair
of passive particles when vA, ωA = 0 [17]; the hori-
zontal dynamics of a pair of phoretic particles when
vA 6= 0, ωA = 0 and both the height and orientation
are fixed [21]; and the coupled dynamics of horizontal
separation and relative orientation when vA 6= 0, ωA 6= 0
and the height is fixed [11].

Hamiltonian limit cycle: We now analyse Eqs.(2-3),
initially neglecting the reflected flow. We assume initial
heights that are remote from both planes, 0 ≪ z1, z2 ≪ L
and parameter values, to be identified below, that en-
sure sedimentation in the mean. The attractor ψ = 0 of
the first orientational equation, reached on the time scale
ωR = TR/8πηb

3, defines the slow manifold θ1 + θ2 = 0.
On this slow manifold and neglecting reflected flow, re-
orientation is principally due to the monopolar vorticity,
θ̇ = −mgx/8πηr3, relative horizontal motion is princi-
pally due to gravitaxis, ẋ = 2vA sin θ, and relative verti-
cal motion is absent, ż = 0. Remarkably, the dynamics,
which are governed by the reduced equations (2b,3a,3c),
has the symplectic form ẋ = −∂θH, θ̇ = ∂xH with Hamil-
tonian

H(x, θ) =
mg

8πη

1√
x2 + z2

+ 2vA cos θ (4)

which has the dimension of velocity and is a constant of
motion [31]. Position and angle are canonically conju-
gate variables and the dynamics preserves the two- form
dx ∧ dθ [32]. Level sets H(x, θ) = E of the Hamiltonian,
shown in Fig.(2a), define orbits in the x − θ plane la-
belled by the “energy” E. For closed orbits, θ vanishes at
the turning points and x reaches its maximum xm, giv-
ing E = mg/8πη

√

x2m + z2 + 2vA ≥ 2vA as a bound for
such orbits. Trajectories on the orbit are obtained by in-
tegrating dt = −dx/∂θH = dθ/∂xH at constant energy,
from which the period follows directly. For small oscil-
lations, a quadratic approximation to the Hamiltonian
shows that x and θ vary harmonically with frequency
ω0 = 2π/T0 =

√

mgvA/ηz3. For large oscillations, the
trajectory integrals can be obtained exactly in terms of
elliptic functions [33]. The result for the period TE ,
scaled by the frequency of small oscillations, is shown in
Fig.(2b). The mean height is driven by the Hamiltonian
limit cycle and its change per period is

∆h

TE
= − (v0 + E) + 〈3vA cos θ − v0

3bz2

4r3
〉 (5)

where angled brackets denote orbital averages at energy
E and v0 = mg

6πηb . The right hand side averages can be

Figure 2. Exact solution of the Hamiltonian limit cycle. (a)
level sets of the Hamiltonian in which the reflection symme-
tries x → −x and θ → −θ are clearly visible, (b) variation
of the period of large oscillations TE as a function of their
amplitude scaled by the period of small oscillations. Using
experimental values [11], we obtain T0 ∼ 8s giving TE ∼ 12s
for xm = z = 3. This agrees well with the experimentally
measured time period of the “minuet” bound state [11], (c)
sedimentation speed as a function of the oscillation ampli-
tude, and (d) orbit on a constant “energy” manifold in x, θ
and h with the level sets of H shown on a cross-section. Exact
analytical results are compared with numerical simulations of
the full (Eq.(1)) and reduced (Eqs.(2b,3a,3c))

equations in (b) and (c) with TR, 1/h = 0.

obtained exactly in terms of elliptic functions [33]. The
mean sedimentation speed ∆h/TE thus obtained is shown
in Fig.(2c). The root of the above equation determines
the critical value E0 of the energy above (below) which
the net vertical motion is upward (downward). A typical
sedimenting trajectory, E > E0, is shown in x − θ − h
space in Fig.(2d).

The symplectic structure is destroyed when the re-
orienting effect of the gravitational torque is included.
The Hamiltonian increases monotonically at the rate
Ḣ = TRvA sin2 θ/4πηb3 to its maximum value of
mg/8πηz + 2vA at x = θ = 0, and this corresponds to
the pair sedimenting with a vertical separation z and
oriented vertically. We next examine how reflected flow
alters these exact results.

Limit cycle near bottom plane: The effect of reflected
flow appears at different orders of h in the dynamical
system. In decreasing order of importance, h dynamics
receive an O(b/h) reduction in the effective mobility, z
dynamics receive an O(b2/h2) hydrodynamic attraction,
x dynamics receive an O(b2/h2) hydrodynamic repulsion,
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and θ dynamics receive an O(b3/h3) contribution to re-
orientation. A levitating state at a mean height h⋆ can
exist if the change in mean height per period is zero,
giving

− (v0 + E) + 〈3vA cos θ − v0

(

3bz2

4r3
− 3b

2h

)

〉 = 0. (6)

The rate of change of the Hamiltonian on the true limit

cycle is Ḣ = TRvA sin2 θ/4πηb3 −
(

mg
8πη

)2
x2

2(x2+z2)3/2h2

and, if this is to vanish over an orbit, we must have

〈Ḣ〉 = 〈2ωRvA sin2 θ − 9b2v20x
2

32 (x2 + z2)
3/2

h2
〉 = 0. (7)

To O(z3/h3) the average over the true limit cycle can be
replaced by an average over the Hamiltonian limit cycle
at some energy E⋆ [34]. The above pair of equations, in
which averages are taken over Hamiltonian orbits, implic-
itly determines unique values of h⋆ and E⋆ which define
the levitating, periodic, stable limit cycle in the presence
of reflected flow (see Fig.(3)). Unlike [11], we do not find
a Hopf bifurcation but rather a transient decay of the
Hamiltonian limit cycle into a stable one [35].

Fixed point at top plane: For energy values E < E0

the net vertical motion is upwards. In this case, the
dynamical system must be modified to account for the
proximity of the top plane. This is obtained by replacing
h by ±(L − h) in Eqs.(2-3). The effect of reflected flow
from the top surface is now the reverse and instead of
being destabilising is stabilising. The limit cycle is de-
stroyed and, instead, a dimerised state is obtained due to
the attractive flow of the monopoles pointing away from
the plane [20]. This is identical in mechanism but dis-
tinct in detail to flow-induced phase separation of active
particles which swim into the plane surface [22].

Conclusion: We have presented overdamped equa-
tions for the hydrodynamically interacting dynamics of
a pair of self-propelling, self-spinning particles in the
presence of external forces and torques confined between
planes. We have identified a regime away from both
planes where the dynamics is symplectic, with a Hamil-
tonian determing periodic orbits. A second regime near
the bottom plane has a limit cycle which can be related
perturbatively to the Hamiltonian oscillator. A third
regime at the top plane is non-periodic with a fixed point.
Qualitatively, the reflection of the monopolar flow at
the top/bottom plane approximates extensile/contractile
dipolar flow [20] and destablises/stabilises the Hamilto-
nian limit cycle. A simple criterion has been found for bi-
furcations between these states, determined by the value
of Hamiltonian E. Notably, this mechanism is opera-
tive at both no-slip and no-shear planes as it appears
at leading order in the reflection; next-to-leading order
terms only alter the time-scales of motion (sec IV of SI
[27]). Our theory can be extended to many-particle lev-
itating states of active matter, such as active emulsion

Figure 3. Perturbative solution of the two-body system near
the bottom plane, (a) a stable limit cycle is formed in the pres-
ence of the bottom plane at height h⋆ and “energy” E⋆, (b) an
overlay of the numeric and analytic contours with E = 2.2.
The colormap shows instantaneous “power” input into the nu-
merical limit cycle from perturbative effects which produce
small deformations to the shape of the orbit, (c) the period
averaged levitation height from the bottom plane h⋆/b against
the maximum amplitude xm for the limit cycle as ωR is var-
ied. Excellent quantitative agreement between the analytic
solution in Eqs.(6-7) and the reduced numerics justifies, a

posteriori, averaging over the Hamiltonian orbit. Qualitative
agreement between analytics and the full equations of motion
shows the monotonic increase of h⋆ with E⋆ survives when the
complete dynamics is considered. A fixed value of z/b = 2 was
used for analytic and reduced numerical computations while a
more realistic short-ranged repulsive harmonic potential was
implemented in the full numerics, resulting in a non-zero ż.
(d) the spikes in ż/b are caused by steric repulsion induced
by the short-ranged potential. Thus, over an oscillation, the
value of z changes, leading to quantitative disagreement as
seen in (c).

droplets, by including next to leading order effects from
symmetric dipoles and will be presented elsewhere [36].
Our work shows that active matter, which breaks time-
reversal invariance [37] and is inherently dissipative [26],
may nonetheless be described by Hamiltonian dynamics.
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Figure 4. Stroboscopic images from the dynamics of two active particles near a plane no-shear surface. A similar dynamics is
also obtained near a plane no-slip surface but with a longer time scale due to reduced strength of the hydrodynamic interactions.

SUPPLEMENTAL INFORMATION (SI)

I. FULL EQUATIONS OF MOTION AND NUMERICAL SOLUTION

We consider a system of active colloids labeled as i = 1, . . . N of radius b in an incompressible fluid of viscosity η.
The centre of mass of the ith colloid is denoted by Ri, while a unit vector pi denotes its orientation. The translational
V i and rotational velocity Ωi is given from the sum of all the forces and torques acting on the colloids

mV̇ i = −γTT
ij · (V j − vApj)− γTR

ij · (Ωj − ωApj) + FB
i = 0

IΩ̇i = −γRT
ij · (V j − vApj)− γRR

ij · (Ωj − ωApj) + TB
i = 0

Here vA (and ωA) is the self-propulsion translational (rotational) speed of an isolated colloid, γαβ , for (α, β = T,R),
are friction tensors [19], while FB

i and TB
i are the body forces and torques on the ith colloid.

In the microhydrodynamic regime, as applicable to colloidal scale, the inertia can be ignored, and the rigid body
motion is then given as[19, 26]

V i = µTT
ij · FB

j + µTR
ij · TB

j + vApi

Ωi = µRT
ij · FB

j + µRR
ij · TB

j + ωApi

Here µαβ , for (α, β = T,R), are the mobility matrices [19].

The above equations have been simulated using PyStokes, a python package for simulating Stokesian hydrodynamics
[38]. The initial parameters were set to b = 1, vA = 1, v0 = 1. We then study the system near a plane surface by
computing the mobility tensors using the appropriate Green’s function of Stokes equation which satisfies the boundary
conditions of no-slip [39] or no-shear [40] at a plane surface. Our system of active particles near a plane surface has
no periodic boundary condition and the particles are allowed to explore the infinite half-space around the surface.
For simulations near the bottom plane, an additional restoring torque of strength ωR = 0.022 was added due to
bottom-heaviness of the colloids. In this case, z becomes a dynamic variable and the separation changes greatly over
the time period of a cycle. In order to prevent the active particles getting too close to one another an additional soft
harmonic repulsion of strength 2 was introduced when the particles came within 6.3 units of radius b of one another.
This kept the particles separated by an average vertical distance z = 3 during integration allowing comparison to
be made with the analytics and numerics of the reduced equations. Making this potential soft and longer ranged
made numerical integration more stable and allowed larger integrator step sizes to be taken which reduced the cost
of running longer simulations. It was not necessary to include a repulsive contact potential from the surface as the
particles were at least a distance b away due to hydrodynamic repulsion from the image charges. A two-particle
simulation of above equation leads to the formation of time-dependent bound state as described in the main text. See
Fig.(4) for snapshots from the dynamics. For simulations near the top surface, the same values were used.
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∇
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ii = 1
8πηb3

(
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plane

µxz
12 =

1
8πη

[

(x1−x2)(z1−z2)
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−

(x1−x2)(z1+z2)

r
∗3

]

µ̃xy
12 = 1

8πη

[

(z1−z2)

r3
−

(z1+z2)

r
∗3

]

µ̂yy
12 = − 1

16πη

[

1
r3

−
3(y1−y2)(y1−y2)

r5
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1
r∗3

−
3(y1−y2)(y1−y2)

r
∗5

]

Bottom
plane
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[

1
r
+ (z1−z2)(z1−z2)

r3
− 1

r∗
−

(z1+z2)(z1+z2)

r
∗3

]

µ̃yz
12 = 1

8πη

[

(x1−x2)

r3
−

(x1−x2)

r
∗3

]

µ̂zy
12 = − 1

16πη

[

1
r3

+ 3(y1−y2)(z1−z2)

r5
−

1
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−
3(y1−y2)(z1+z2)

r
∗5

]

Top
plane

µzz
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6πηb

(

1− 3b
4(L−zi)

)

. µ̃zy
ii = 0 µ̂yy
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8πηb3

(

1− 1
16
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(L−zi)3
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[

(x1−x2)(z1−z2)
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(x1−x2)(z1+z2−2L)
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8πη

[

(z1−z2)

r3
−

(z1+z2−2L)

r
∗3

]

µ̂yy
12 = − 1

16πη

[

1
r3

−
3(y1−y2)(y1−y2)

r5
+

1
r∗3

−
3(y1−y2)(y1−y2)

r
∗5
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Top
plane

µzz
12 = 1

8πη

[

1
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−

(z1+z2)(z1+z2−2L)

r
∗3
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[

(x1−x2)
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−
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r
∗5

]

Table I. Explicit forms of mobility matrices near the bottom and top parallel no-shear planes, separated by a distance L. The first
three rows contain the near bottom plane expressions which satisfy the no-shear boundary condition. Here Gαβ(x1, z1;x2, z2) =
Go

αβ(x1 − x2, z1 − z2) + (δβρδργ − δβ3δ3γ)G
o
αγ(x1 − x2, z1 + z2) is the Green’s function of Stokes equation which satisfy the

no-shear condition at a plane surface [40], ρ takes values x, y, which correspond to directions in the plane surface and Go
αβ(r) =

1
8πη

(

∇
2δαβ −∇α∇β

)

r is the Oseen tensor. The vectors r =
√

(x1 − x2)2 + (z1 − z2)2 and r∗ =
√

(x1 − x2)2 + (z1 + z2)2 are,
respectively, inter-colloidal distance and the distance from one colloid to the other’s image charge. The last three rows are the
near top plane expression. We emphasize that we do not include any periodic boundary condition and the particles are allowed
to explore the full space between the planes.

II. EXACT SOLUTION FOR HAMILTONIAN LIMIT CYCLE

The two-body dynamics is described in Eqs.(2-3) of the main text. In an unbounded domain these are simplified
to the form

dθ

mgx/8πηr3
=

dx

2vA sin θ
=

dh

vA cos θ − mg
8πη

(

4
3b +

1
r + z2

r3

) = dt.

All the remaining variables are not dynamical. In particular, the separation z between the particles now remains
constant. In this limit, we obtain an integral of the motion

H(x, θ) =
mg

8πη

1√
x2 + z2

+ 2vA cos θ. (9)

We denote the level sets as H(x, θ) = E. We now use the fact that z is a constant and perform the following
substitutions

x = z tanφ, mg = 6πηbv0. (10)

We can then find the time integrals
∫ t
O dt′ for any quantity O (φ(t), E) that can be expressed in the form c0 +

c1 cosφ+ c2 cos
2 φ+ c3 cos

3 φ. Throughout, we use the variable substitution
∫ TE O dt =

∫ xm O
ẋ dx =

∫ φx O
φ̇
dφ, where

xm = z tanφm and xm is the maximum amplitude such that E = mg
8πη

1√
x2
m+z2

+ 2vA. Under these substitutions the

integrals of interest take the form
∫ φ c0 + c1 cosφ

′ + c2 cos
2 φ′ + c3 cos

3 φ′

cos2 φ′
√

(a1 − cosφ′) (cosφ′ − a2)
dφ. (11)
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Figure 5. Plots of the 5 basis functions defined in Table (II) for E = 2.245.

We can then find an exact solution as a linear combination αF + βE + γΠ1 + δΠ2 + ǫG of elliptic integrals [33] and a
5th basis function G (see Table (II)). These integrals then become

∫

3
∑

i=0

ci

(

1− (n sinu)
2
)i (

1 + (n sinu)
2
)3−i

(

1− (n sinu)
2
)2 (

1 + (n sinu)
2
)

√

(

1 +
(

n
m sinu

)2
)

du, (12)

where we have used the definitions

tan
φ

2
= n sinu, n =

√

1− a2
1 + a2

, m =

√

a1 − 1

a1 + 1
.

By comparison with Table (II) it is easy to see that a linear combination of the 5 functions will span the space of the
integrand in Eq.(12). The coefficients (α . . . ǫ) are given by

α =− c0
a2

− c1 + c2 − c3, β =
(a1 − 1)(a2 + 1)c0

2a1a2
, γ = c0

(

1

a1
+

1

a2

)

+ 2c1, δ = 2c3, ǫ = − (a1 − 1)(a2 − 1)c0
4a1a2

To find the height h(x,E) we start from the dynamical systems and transform x using Eq.(10) to get

h (x,E) =

∫ φ E
2 − v0 − 9v0

8z cosφ′ − 3v0
4z cos3 φ′

cos2 φ′
√

4v2A −
(

E − 3v0

4z cosφ′
)2
dφ′

=

∫ φ E
2 − v0 − 9v0

8z cosφ′ − 3v0
4z cos3 φ′

cos2 φ′
√

(

2vA − E + 3v0

4z cosφ′
) (

2vA + E − 3v0

4z cosφ′
)

dφ′.

The above integral is of the form given in Eq.(11), and thus, can be rendered in the analytic form

4z

3v0
(αF + βE + γΠ1 + δΠ2 + ǫG) ,

c0 =

(

E

2
− v0

)

, c1 = −9v0
8z

, c2 = 0, c3 = −3v0
4z

, a1 =
4z

3v0
(2vA + E) , a2 =

4z

3v0
(2vA − E)
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The constant of integration can be set to 0 w.l.o.g due to translational invariance in the z direction in the unbounded
domain. We can also calculate other useful quantities such as the average sedimentation velocity, the time period of
the oscillation and the maximum h amplitude of the closed orbits seen in a co-sedimenting frame of reference

〈

ḣ
〉

=
1

TE
4

∫ φm

0

˙̃
h

φ̇
dφ = 4h (φm, E)

TE = 4

∫ φm

0

dφ

φ̇
= 4

∫ φm

0

dφ
√

(

2vA − E + 3v0

4z cosφ
) (

2vA + E − 3v0

4z cosφ
)

cos2 φ

∆h = h (φ0, E)−
∫ φ0

0

〈

ḣ
〉 dφ

φ̇

where φ0 is the solution of E
2 −v0− 9v0

8z cosφ0− 3v0
4z cos3 φ0 = 0. In each case the coefficients for the cis can be written

down and hence the integral evaluated using Table (II).

Function Derivative Common denominator

F F

(

u,− n2

m2

)

1
√

1+ n2

m2
sin2(u)

(1−n2 sin2 u)2(1+n2 sin2 u)

(1−n2 sin2 u)2(1+n2 sin2 u)
√

1+ n2

m2
sin2(u)

E E

(

u,− n2

m2

)
√

1 + n2

m2 sin2(u)
(1−n2 sin2 u)2(1+n2 sin2 u)

(

1+ n2

m2
sin2 u

)

(1−n2 sin2 u)2(1+n2 sin2 u)
√

1+ n2

m2
sin2 u

Π1 Π
(

n2;u,− n2

m2

)

1

(1−n2 sin2(u))
√

1+ n2

m2
sin2(u)

(1−n2 sin2 u)(1+n2 sin2 u)

(1−n2 sin2 u)2(1+n2 sin2 u)
√

1+ n2

m2
sin2 u

Π2 Π
(

−n2;u,− n2

m2

)

1

(1+n2 sin2(u))
√

1+ n2

m2
sin2(u)

(1−n2 sin2 u)2

(1−n2 sin2 u)2(1+n2 sin2 u)
√

1+ n2

m2
sin2 u

G
sin 2u

√

1+ n2

m2
sin2 u

1−n2 sin2 u

2−2

(

2−n2+2 n2

m2

)

sin2 u+6 n2

m2
sin4 u−2n2 sin6 u

(1−n2 sin2 u)2
√

1+ n2

m2
sin2 u

(1+n2 sin2 u)
(

2−2

(

2−n2+2 n2

m2

)

sin2 u+6 n2

m2
sin4 u−2n2 sin6 u

)

(1−n2 sin2 u)2(1+n2 sin2 u)
√

1+ n2

m2
sin2 u

Table II. The 5 basis functions that make up integral in Eq.(11). F ,E ,Π are incomplete elliptic integrals of the first, second
and third kind respectively. These have been plotted in Fig.(5).

III. KRYLOV-BOGOLYUBOV AVERAGING OF LIMIT CYCLE AT BOTTOM PLANE

The constant of the motion

H(x, θ) =
mg

8πη

1√
x2 + z2

+ 2vA cos θ

remains a constant if, to first order, perturbations introduced into the equations of motion cancel. Then the pertur-
bations have no effect on the average orbital quantities. Our equations of motion are

θ̇ = − mgx

8πηr3
− ωR sin θ

ẋ = 2vA sin θ +
9b2v20x

32h2
,

where the first term on the right hand side is the transient and the second term is the perturbation. The average
change of the H over a cycle is given by

〈

Ḣ
〉

=

∫ TE dH

dt
dt =

∫ TE

∇H · ẋdt (13)

=

∫ TE

∇H ·∆dt =
∮ ∇H ·∆

ẋ
dx (14)



10

where the transient parts of ∇H · ẋ, which are the equations of motion far from the planes, vanish by the symplectic
structure. The remaining part needs to be evaluated for the perturbation vector

∆ =

(

−ωR sin θ
9b2v2

0
x

32h2

)

.

We require the period average of ∇H · ∆/ẋ to vanish to ensure that the average “energy” E∗ over a cycle remains
constant. We define h∗ to be the period averaged height from the bottom plane. This immediately gives the condition

〈

Ḣ
〉

= 〈2ωRvA sin2 θ − 9b2v20x
2

32 (x2 + z2)
3/2

h∗2
〉

=
4

TE

∫ xm

0

ωR

[

4v2A −
(

E∗ − 3bv0

4
√
x2+z2

)2
]

− 9b2v2

0
x2

32(x2+z2)3/2h∗2

√

4v2A −
(

E∗ − 3bv0
4
√
x2+z2

)2
dx

= 0

which, under the transformation x = z tanφ, gives an integral of the form given in Section II. This condition relates the
“equilibrium” height h∗ and “energy” E∗. A second condition comes from balancing levitation against sedimentation
over a cycle immediately giving

〈

ḣ
〉

= − (v0 + E) + 〈3vA cos θ − v0

(

3bz2

4r3
− 3b

2h∗

)

〉.

= − (v0 + E) +
4

TE

∫ xm

0

3
2

(

E∗ − 3bv0

4
√
x2+z2

)

− v0

(

3bz2

4r3 − 3b
2h∗

)

√

4v2A −
(

E∗ − 3bv0

4
√
x2+z2

)2
dx

= 0.

again this integral can be put in the form of Eq.(11) and thus we arrive at a second condition relating h∗ and E∗.
These can be solved simultaneously to give a unique estimate for the orbit parameters of the limit cycle near the
bottom plane. The pair (E∗, h∗) is plotted as a function of ωR in Fig.(3c) in the main text.

IV. EXCHANGE OF DANCING PARTNERS

In this section, we consider two pairs of active particles near a plane no-slip and no-shear surface. We emphasize
that the qualitative features of bound states predicted in the main text do not depend on the no-slip or no-shear
nature of the plane surface. Here, we show that the interaction times at the no-shear surface is much longer compared
to a no-slip surface [42] and that one of the scattering states involves these interacting pairs exchanging partners.

The monopolar flow around an active colloid near the bottom of a parallel plate geometry is of similar symmetry
as that of a contractile dipole [20], whose axis is along the normal to the bottom surface. This has the effect of
repulsion between the bound states. These contractile flows also produce a torque on the particles in other pairs
which rotate nearby neighbours towards one another. Active swimming is then able to bring the two bound pairs
towards one another. Repulsion dominates when pairs are separated from each other such that x≫ z. On the other
hand attraction occurs if x ∼ z. After the interaction particles can either leave as bound pairs or single particles.
Free particles are able to swim up towards the top surface while bound pairs stabilize near the bottom of the cell and
continue their dance indefinitely. If a no-slip surface is used instead, the individual dancing behaviour remains the
same however the inter-pair interaction is weakened by the no-slip condition. The result is that the timescale for pairs
to come into contact is dramatically increased. Otherwise the actual interaction and final states appear qualitatively
unchanged (see Fig.(6). We postpone further discussion of this effect to future work. Multiparticle simulations were
done with ωR = 0.02, v0 = 0.3, vA = 0.3. The sedimentation force was reduced in these simulations for integrator
stability since the effective hydrodynamic forces on particles becomes extremely large when multiple particles come
into close proximity.
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Figure 6. Stroboscopic images of two active bound pairs near a plane no-shear and no-slip surface. The presence of the no-slip
condition at the surface weakens hydrodynamic interactions and hence increases the interaction time scale. The particles are
pulled down towards the lower surface under the effect of their mutual sedimentation force. Here scattering leads to an exchange
of partners in the no-shear geometry and an exchange of places in the no-slip geometry. The end product of scattering events
is highly dependent on the initial conditions. See movie 2.
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