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Abstract

The reversible pebble game is a combinatorial game played on rooted DAGs. This
game was introduced by Bennett [1] motivated by applications in designing space ef-
ficient reversible algorithms. Recently, Siu Man Chan [2] showed that the reversible
pebble game number of any DAG is the same as its Dymond-Tompa pebble number
and Raz-Mckenzie pebble number.

We show, as our main result, that for any rooted directed tree T , its reversible
pebble game number is always just one more than the edge rank coloring number of
the underlying undirected tree U of T . The most striking implication of this result is
that the reversible pebble game number of a tree does not depend upon the direction of
edges, a fact that does not hold in general for DAGs. It is known that given a DAG G

as input, determining its reversible pebble game number is PSPACE-hard. Our result
implies that the reversible pebble game number of trees can be computed in polynomial
time as edge rank coloring number of trees can be computed in linear time ([8]).

We also address the question of finding the number of steps required to optimally
pebble various families of trees. It is known that trees can be pebbled in nO(log(n)) steps
where n is the number of nodes in the tree. Using the equivalence between reversible
pebble game and the Dymond-Tompa pebble game [2], we show that complete binary
trees can be pebbled in nO(log log(n)) steps, a substantial improvement over the naive
upper bound of nO(log(n)).

It remains open whether complete binary trees can be pebbled in polynomial num-
ber of steps (i.e., nk for some constant k). Towards this end, we show that almost

optimal (i.e., within a factor of (1 + ǫ) for any constant ǫ > 0) pebblings of complete
binary trees can be done in polynomial number of steps.

∗Sponsored by TCS Research Fellowship
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We also show a time-space trade-off for reversible pebbling for families of bounded
degree trees by a divide-and-conquer approach: for any constant ǫ > 0, such families
can be pebbled using O(nǫ) pebbles in O(n) steps. This generalizes an analogous result
of Královic[7] for chains.

1 Introduction

Pebbling games of various forms on graphs abstracts out resources in different combinatorial
models of computation (See [3]). A rooted DAG can be used to model computation as follows
– Each node in the DAG represents a value obtained during computation, the source nodes
represent input values, the internal nodes represent intermediate values, and the root node
represents the output value. A pebble placed on a vertex in a graph corresponds to storing
the value at that node, and an edge (a, b) in the graph would represent a data-dependency -
namely, the value at b can be computed only if the value at a is known (or stored). Devising
the rules of the pebble game to capture the rules of the computation, and establishing bounds
for the total number of pebbles used at any point in time, gives rise to a combinatorial
approach to proving bounds on the space used by the computation. The Dymond-Tompa
and Raz-Mckenzie pebble games depict some of the combinatorial barriers in improving
upper bounds for depth (or parallel time) of Boolean circuits (or parallel algorithms).

Motivated by applications in the context of reversible computation (for example, quantum
computation), Bennett[1] introduced the reversible pebble game. Given any DAG G with a
unique sink node r, the reversible pebble game starts with no pebbles on G and ends with
a pebble (only) on r. Pebbles can be placed or removed from any node according to the
following two rules.

1. To pebble v, all in-neighbors of v must be pebbled.

2. To unpebble v, all in-neighbors of v must be pebbled.

The goal of the game is to pebble the sink node r using the minimum number of pebbles
(also using the minimum number of steps).

Recently, Chan[2] showed that for any DAG G the number of pebbles required for the
reversible pebble game is exactly the same as the number of pebbles required for the Dymond-
Tompa pebble game and the Raz-Mckenzie pebble game. However, connections between the
reversible pebble game and graph parameters not arising from computational considerations
were not known. For irreversible pebble games, we know that the black white pebbling
number of trees is closely related to min-cut linear arrangements of trees[13].

On the computational complexity front, Chan[2] also studied the complexity of the fol-
lowing problem – Given a DAG G = (V,E) with a unique sink r and an integer 1 ≤ k ≤ |V |,
check if G can be pebbled using at most k pebbles. He showed that this problem is PSPACE-
complete. Determining the irreversible black and black-white pebbling number are known to
be PSPACE-complete on DAGs (See [5], [6]). If we restrict the irreversible black pebble game
to be read-once (each node is pebbled only once), then the problem becomes NP-complete
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(See [11]). However, if we restrict our attention to trees, the irreversible black pebble game[9]
and black-white pebble game[13] are solvable in polynomial time. The key insight is that
the optimal irreversible (black or black-white) pebbling number of trees can be achieved by
read-once pebblings. Deciding whether the pebbling number is at most k for a given tree is
in NP since the optimal pebbling serves as the certificate. We cannot show that determining
the reversible pebbling number is in NP using the same argument as we do not know whether
the optimal value can always be achieved using pebblings taking only polynomially many
steps.

Our Results: In this paper, we study the reversible pebble game on trees. For an undi-
rected tree T , the edge rank coloring number of the tree is the minimum number of colors
required to color the edges of T using integers such that for any two edges in T having the
same color i, there is at least one edge on the path between those edges that has a higher
color. We show that the reversible pebbling number of any tree is exactly one more than the
edge rank coloring number of the underlying undirected tree. Besides, the reversible pebbling
number, another interesting parameter related to reversible pebble game is the number of
steps required to optimally pebble the given DAG. For example, it is known that paths can
be optimally pebbled in O(n logn) steps. We show that the connection with Dymond-Tompa
pebble game can be exploited to show that complete binary trees have optimal pebblings
that take at most nO(log log(n)) steps. This is a significant improvement over the previous up-
per bound of nO(log(n)) steps. It remains open whether complete binary trees can be pebbled
in polynomial number of steps. Towards this end, we show that “almost” (within a factor
of (1 + ǫ) for any constant ǫ > 0) optimal pebblings of complete binary trees can be done in
polynomial number of steps. We also generalize a time-space trade-off result given for paths
by Královic to families of bounded degree trees showing that for any constant ǫ > 0, such
families can be pebbled using O(nǫ) pebbles in O(n) steps.

Complexity of Reversible Pebbling Number on Trees: We show that the reversible
pebbling number of trees along with strategies achieving the optimal value can be computed
in polynomial time. This is obtained by combining our main result with the linear-time algo-
rithm given by Lam and Yue [8] for finding an optimal edge rank coloring of the underlying
undirected tree. Our proof of the main result also shows how to convert an optimal edge
rank coloring into an optimal reversible pebbling.

2 Preliminaries

We assume familiarity with basic definitions in graph theory, such as those found in [12]. A
directed tree T = (V,E) is called a rooted directed tree if there is an r ∈ V such that r is
reachable from every node in T . The node r is called the root of the tree.

An edge rank coloring of an undirected tree T with k colors {1, . . . , k} labels each edge of
T with a color such that if two edges have the same color i, then the path between these two
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edges consists of an edge with some color j > i. The minimum number of colors required
for an edge rank coloring of T is denoted by χ′

e(T ).

Definition 1 (Reversible Pebbling[1]) Let G be a rooted DAG with root r. A reversible
pebbling configuration of G is a set P ⊆ V (the set of pebbled vertices). A reversible
pebbling of G is a sequence of reversible pebbling configurations P = (P1, . . . , Pm) such that
P1 = φ and Pm = {r} and for every i, 2 ≤ i ≤ m, we have

1. Pi = Pi−1 ∪ {v} or Pi−1 = Pi ∪ {v} and Pi 6= Pi−1 (Exactly one vertex is peb-
bled/unpebbled at each step).

2. All in-neighbors of v are in Pi−1.

The number m is called the time taken by the pebbling P . The number of pebbles or
space used in a reversible pebbling of G is the maximum number of pebbles on G at any time
during the pebbling. The persistent reversible pebbling number of G, denoted by R•(G), is
the minimum number of pebbles required to persistently pebble G.

A closely related notion is that of visiting reversible pebbling, where the pebbling P sat-
isfies (1) P1 = Pm = φ and (2) there exists a j such that r ∈ Pj. The minimum number of
pebbles required for a visiting pebbling of G is denoted by Rφ(T ).

It is easy to see that Rφ(G) ≤ R•(G) ≤ Rφ(G) + 1 for any DAG G.

Definition 2 (Dymond-Tompa Pebble Game [4]) Let G be a DAG with root r. A Dymond-
Tompa pebble game is a two-player game on G where the two players, the pebbler and the
challenger takes turns. In the first round, the pebbler pebbles the root node and the challenger
challenges the root node. In each subsequent round, the pebbler pebbles a (unpebbled) node
in G and the challenger either challenges the node just pebbled or re-challenges the node
challenged in the previous round. The pebbler wins when the challenger challenges a node v
and all in-neighbors of v are pebbled.

The Dymond-Tompa pebble number of G, denoted DT (G), is the minimum number of
pebbles required by the pebbler to win against an optimal challenger play.

The Raz-Mckenzie pebble game is also a two-player pebble game played on DAGs. The
optimal value is denoted by RM(G). A definition for the Raz-Mckenzie pebble game can
be found in [10]. Although the Dymond-Tompa game and the reversible pebble game look
quite different. The following theorem reveals a surprising connection between them.

Theorem 3 (Theorems 6 and 7, [2]) For any rooted DAG G, we have DT (G) = R•(G) =
RM(G).

Definition 4 (Effective Predecessor [2]) Given a pebbling configuration P of a DAG G with
root r, a node v in G is called an effective predecessor of r iff there exists a path from v to
r with no pebbles on the vertices in the path (except at r).
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Lemma 5 (Claim 3.11, [2]) Let G be any rooted DAG. There exists an optimal pebbler
strategy for the Dymond-Tompa pebble game on G such that the pebbler always pebbles an
effective predecessor of the currently challenged node.

The height or depth of a tree is defined as the maximum number of nodes in any root to
leaf path. We denote by Chn the rooted directed path on n nodes with a leaf as the root.
We denote by Bth the complete binary tree of height h. We use root(Bth) to refer to the
root of Bth. If v is any node in Bth, we use left(v) (right(v)) to refer to the left (right) child
of v. We use righti and lefti to refer to iterated application of these functions. We use the
notation Chi +Bth to refer to a tree that is a chain of i nodes where the source node is the
root of a Bth.

Definition 6 We define the language TREE-PEBBLE as the set of all tuples (T, k), where
T is a rooted directed tree and k is a integer satisfying 1 ≤ k ≤ n, such that R•(T ) ≤ k. The
language TREE-VISITING-PEBBLE is the same as TREE-PEBBLE except that the goal is to
check whether Rφ(T ) ≤ k.

In the rest of the paper, we use the term pebbling to refer to persistent reversible pebbling
unless explicitly stated otherwise.

3 Pebbling meets Coloring

In this section, we prove our main theorem which states that the reversible pebbling number
of any tree is exactly one more than the edge rank coloring number of its underlying undi-
rected tree. It is helpful to think about how to solve TREE-PEBBLE in polynomial time or
even NP. The first attempt would be to try and use the pebbling sequence as a certificate
that the input tree has low pebbling number. But, this approach fails because trees are not
guaranteed to have optimal pebbling sequences of polynomial number of steps. We propose
the strategy tree (Definition 7) as a succinct encoding of pebbling sequences. A strategy tree
describes a pebbling sequence. The key property is that for any tree, there is an optimal
pebbling sequence that can be described using a strategy tree (Lemma 8).

Definition 7 (Strategy Tree) Let T be a rooted directed tree. If T only has a single node v,
then any strategy tree for T only has a single node labeled v. Otherwise, we define a strategy
tree for T as any tree satisfying

1. The root node is labelled with some edge e = (u, v) in T .

2. The left subtree of root is a strategy tree for Tu and the right subtree is a strategy tree
for T \ Tu.

The following properties are satisfied by any strategy tree S of T = (V,E).
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1. Each node has 0 or 2 children.

2. There are bijections from E to internal nodes of S and from V to leaves of S.

3. Let v be any node in S. Then the subtree Sv corresponds to the subtree of T spanned
by the nodes labeling the leaves of Sv. If u and v are two nodes in S such that one
is not an ancestor of the other, then the subtrees in T corresponding to u and v are
vertex-disjoint.

Lemma 8 Let T be a rooted directed tree. Then R•(T ) ≤ k if and only if there exists a
strategy tree for T of depth at most k.

Proof We prove both directions by induction on |T |. If T is a single node tree, then the
statement is trivial.

(if) Assume that the root of a strategy tree for T of depth k is labelled by an edge (u, v) in
T . The pebbler then pebbles the node u. If the challenger challenges u, the pebbler follows
the strategy for Tu given by the left subtree of root. If the challenger re-challenges, the
pebbler follows the strategy for T \ Tu given by the right subtree of the root. The remaining
game takes at most k − 1 pebbles by the inductive hypothesis. Therefore, the total number
of pebbles used is at most k.

(only if) Consider an upstream pebbler that uses at most k pebbles. We are going to
construct a strategy tree of depth at most k. Assume that the pebbler pebbles u in the
first move where e = (u, v) is an edge in T . Then the root node of S is labelled e. Now we
have R•(Tu), R

•(T \ Tu) ≤ k − 1. Let the left (right) subtree be the strategy tree obtained
inductively for Tu (T \Tu). Since the pebbler is upstream, the pebbler never places a pebble
outside Tu (T \ Tu) once the challenger has challenged u (the root).

We now introduce a new game called the matching game played on undirected trees
(Definition 9). This game acts as a link between the reversible pebble game and edge rank
coloring.

Definition 9 (Matching Game) Let U be an undirected tree. Let T1 = U . At each step
of the matching game, we pick a matching Mi from Ti and contract all the edges in Mi to
obtain the tree Ti+1. The game ends when Ti is a single node tree. We define the contraction
number of U , denoted c(U), as the minimum number of matchings in the matching sequence
required to contract U to the single node tree.

Lemma 10 Let T be a rooted directed tree and let U be the underlying undirected tree for
T . Then R•(T ) = k + 1 if and only if c(U) = k.

Proof First, we describe how to construct a matching sequence of length k from a strategy
tree S of depth k+1. Let the leaves of S be the level 0 nodes. For i ≥ 1, we define the level
i nodes to be the set of all nodes v in S such that one child of v has level i− 1 and the other
child of v has level at most i − 1. Define Mi to be the set of all edges in U corresponding
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to level i nodes in S. We claim that M1, . . . ,Mk is a matching sequence for U . Define Si

as the set of all nodes v in S such that the parent of v has level at least i+ 1. Let Q(i) be
the statement “Ti+1 is obtained from T1 by contracting all subtrees corresponding to nodes
(See Property 3) in Si”. Let P (i) be the statement “Mi+1 is a matching in Ti+1”. We will
prove Q(0) and Q(i) =⇒ P (i) and (Q(i) ∧ P (i)) =⇒ Q(i+ 1). Indeed for i = 0, we have
Q(0) because T1 = U and S0 is the set of all leaves in S or nodes in T (Property 2). To
prove Q(i) =⇒ P (i), observe that the edges of Mi+1 correspond to nodes in S where both
children are in Si. So these edges correspond to edges in Ti+1 (by Q(i)) and the fact that
these edges are pairwise disjoint since no two nodes in S have a common child).

To prove that (Q(i)∧P (i)) =⇒ Q(i+1), consider the tree Ti+2 obtained by contracting
Mi+1 from Ti+1. Since Q(i) is true, this is equivalent to contracting all subtrees corresponding
to Si and then contracting the edges in Mi+1 from T1. The set Si+1 can be obtained from Si

by adding all nodes in S corresponding to edges in Mi+1 and then removing both children
(of these newly added nodes) from Si. This is equivalent to combining the subtrees removed
from Si using the edge joining them. This is because Mi+1 is a matching by P (i) and hence
one subtree in Si will never be combined with two other subtrees in Si. But then contracting
subtrees in Si+1 from T1 is equivalent to contracting Si followed by contracting Mi+1.

We now show that a matching sequence of length at most k can be converted to a strategy
tree of depth at most k + 1. We use proof by induction. If the tree T is a single node tree,
then the statement is trivial. Otherwise, let e be the edge in the last matching Mk in the
sequence and let (u, v) be the corresponding edge in T . Label the root of S by e and let
the left (right) subtree of root of S be obtained from the matching sequence M1, . . . ,Mk−1

restricted to Tu (T \ Tu). By the inductive hypothesis, these subtrees have height at most
k − 1.

Lemma 11 For any undirected tree U , we have c(U) = χ′

e(U).

Proof Consider an optimal matching sequence for U . If the edge e is contracted in Mi,
then label e with the color i. This is an edge rank coloring. Suppose for contradiction that
there exists two edges e1 and e2 with label i such that there is no edge labelled some j ≥ i
between them. We can assume without loss of generality that there is no edge labelled i
between e1 and e2 since if there is one such edge, we can let e2 to be that edge. Then e1 and
e2 are adjacent in Ti and hence cannot belong to the same matching.

Consider an optimal edge rank coloring for U . Then in the ith step all edges labelled i
are contracted. This forms a matching since in between any two edges labelled i, there is an
edge labelled j > i and hence they are not adjacent in Ti.

The theorems in this section are summarized in Fig. 1

Theorem 12 Let T be a rooted directed tree and let U be the underlying undirected tree for
T . Then we have R•(T ) = χ′

e(U) + 1.

Corollary 13 Rφ(T ) and R•(T ) along with strategy trees achieving the optimal pebbling
value can be computed in polynomial time for trees.
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(a) The complete binary tree of height 3
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(b) Optimal edge rank coloring

(3, 1)

(7, 3)

7 (6, 3)

6 3

(2, 1)

(4, 2)

4 (5, 2)

5 2

1

(c) Optimal strategy tree
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1T5

(d) Optimal matching sequence

Figure 1: This figure illustrates the equivalence between persistent reversible pebbling,
matching game and edge rank coloring on trees by showing an optimal strategy tree and
the corresponding matching sequence and edge rank coloring for height 3 complete binary
tree.
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Proof We show that TREE-PEBBLE and TREE-VISITING-PEBBLE are polynomial time
equivalent. Let T be an instance of TREE-PEBBLE. Pick an arbitrary leaf v of T and root the
tree at v. By Theorem 12, the reversible pebbling number of this tree is the same as that of T .
Let T ′ be the subtree rooted at the child of v. Then we have R•(T ) ≤ k ⇐⇒ Rφ(T ′) ≤ k−1.

Let T be an instance of TREE-VISITING-PEBBLE. Let T ′ be the tree obtained by adding
the edge (r, r′) to T where r is the root of T . Then we have Rφ(T ) ≤ k ⇐⇒ R•(T ′) ≤ k+1.

The statement of the theorem follows from Theorem 12 and the linear-time algorithm for
finding an optimal edge rank coloring of trees[8].

The following corollary is immediate from the equivalence of pebble games (Theorem 3).

Corollary 14 For any rooted directed tree T , we can compute DT (T ) and RM(T ) in poly-
nomial time.

An interesting consequence of Theorem 12 is that the persistent reversible pebbling num-
ber of a tree depends only on its underlying undirected graph. A natural question would be
to ask whether this fact generalizes to DAGs. The following proposition shows that this is
not the case.

Proposition 15 There exists two DAGs with the same underlying undirected graph and
different pebbling numbers.

Proof Consider the following two DAGs DAGs G1 and G2 have the same underlying

1

2 4

3

5

6

7

(a) R•(G1) = 5

1

2 4

3

5

6

7

(b) R•(G2) = 6

undirected graph and different persistent pebbling numbers.

4 Time Upper-bound for an Optimal Pebbling of Com-

plete Binary Trees

In this section, we improve time upper bounds for optimally pebbling complete binary trees.
It is known that the optimal pebbling number of complete binary trees is log(h)+θ(log∗(h)),
where h is the height of the tree and log∗ is the iterated logarithmic function([7]). We give
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an optimal pebbling of complete binary trees that takes at most nO(log log(n)) steps, where
n is the number of nodes in the tree. Our pebbling is essentially the same as in [7]. Our
main contribution is to show that the pebbling given in [7] is optimal. This proof , like
the proof of Theorem 12, uses the equivalence between the reversible pebble game and the
Dymond-Tompa pebble game.

Proposition 16 The following statements hold.

1. R•(Bth) ≥ R•(Bth−1) + 1

2. R•(Bth) ≥ h + 2 for h ≥ 3

3. ([1]) R•(Chn) ≤ ⌈log2(n)⌉ + 1 for all n

Proof (1) In any persistent pebbling of Bth, consider the earliest time after pebbling the
root at which one of the subtrees of the root node has Rφ(Bth−1) pebbles. At this time,
there is a pebble on the root and there is at least one pebble on the other subtree of the root
node. So, in total, there are at least Rφ(Bth−1) + 2 ≥ R•(Bth−1) + 1 pebbles on the tree.

(2) Item (1) and the fact that R•(Bt3) = 5.

Theorem 17 There exists an optimal pebbling of Bth that takes at most nO(log log(n)) steps.

Proof We will describe an optimal upstream pebbler in a pebbler-challenger game who
pebbles root(Bth), left(root(Bth)), left(right(root(Bth))) and so on. In general, the pebbler
pebbles left(righti−1(root(Bth))) in the ith step for 1 ≤ i < h − log(h). An upper bound
on the number of steps taken by the reversible pebbling obtained from this game (which is,
recursively pebble left(righti−1(root(Bth))) for 0 ≤ i < h − log(h) and optimally pebble
the remaining tree Chh−log(h) + Btlog(h) using any algorithm) is given below. Here the term

(2h− log(h) + 1)3 log(h) is an upper bound on the number of different pebbling configurations
with 3 log(h) pebbles, and therefore an upper bound for time taken for optimally pebbling
the tree Chh−log(h) +Btlog(h).

t(h) ≤ 2 [t(h− 1) + t(h− 2) + . . .+ t(log(h) + 1)] + (2h− log(h) + 1)3 log(h)

≤ 2ht(h− 1) + (2h− log(h) + 1)3 log(h)

= O
(

(2h)h(2h)3 log(h)
)

= (log(n))O(log(n)) = nO(log log(n))

In the first step, the pebbler will place a pebble on left(root(Bth)) and the challenger
will re-challenge the root node. These moves are optimal. Before the ith step, the tree
has pebbles on the root and left(rightj(root(Bth))) for 0 ≤ j < i − 1. We argue that if
i < h − log(h), placing a pebble on left(righti−1(root(Bth))) is an optimal move. If the
pebbler makes this move, then the cost of the game is max(R•(Bth1−1), R

•(Chi+Bth1−1)) =
R•(Chi+Bth1−1) ≤ R•(Bth1−1)+1 = p, where h1 = h− i+1. Note that the inequality here
is true when i < h − log(h) by Prop 16. We consider all other possible pebble placements
on ith step and prove that all of them are inferior.
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• A pebble is placed on the path from the root to righti−1(root(Bth)) (inclusive): The
challenger will challenge the node on which this pebble is placed. The cost of this game
is then at least R•(Bth1

) ≥ p.

• A pebble is placed on a node with height less than h1−1: The challenger will re-challenge
the root node and the cost of the game is at least R•(Chi +Bth1−1).

The theorem follows. For completeness, the following figure represents the optimal pebbler
strategy used in the proof of Theorem 17 for proving time upper bounds for complete binary
tree.

i

Figure 2: An Optimal Pebbling for Complete Binary Trees

5 Almost Optimal Pebblings of Complete Binary Trees

In light of Theorem 17, the natural question to ask is whether there are polynomial time
optimal pebblings for complete binary trees. In this section, we show that we can get
arbitrarily close to optimal pebblings for complete binary trees using a polynomial number
of steps (Theorem 18).

Theorem 18 For any constant ǫ > 0, we can pebble Bth using at most (1+ ǫ)h pebbles and
nO(log(1/ǫ)) steps for sufficiently large h.
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Proof Let k ≥ 1 be an integer. Then consider the following pebbling strategy parameter-
ized by k.

1. Recursively pebble the subtrees rooted at left(righti(root(Bth))) for 0 ≤ i ≤ k − 1
and rightk(root(Bth)).

2. Leaving the (k+1) pebbles on the tree (from the previous step), pebble the root node
using an additional k pebbles in 2k − 1 steps.

3. Retaining the pebble on the root, reverse step (1) to remove every other pebble from
the tree.

The number of pebbles and the number of steps used by the above strategy on Bth for
sufficiently large h is given by the following recurrences.

S(h) ≤ S(h− k) + (k + 1) ≤
(k + 1)

k
h

T (h) ≤ 2

[

k
∑

i=1

T (h− i)

]

+ (2k + 2) ≤ (2k)h(2k + 2) ≤ nlog(k)+1(2k + 2)

where n is the number of nodes in Bth.
If we choose k > 1/ǫ, then the theorem follows.

6 Time-space Trade-offs for Bounded-degree Trees

In [7], it is shown that there are linear time pebbling sequences for paths that use only nǫ

pebbles for any constant ǫ > 0. In this section, we generalize this result to bounded degree
trees (Theorem 19).

Theorem 19 For any constant positive integer k, a bounded-degree tree T consisting of n
vertices can be pebbled using at most O

(

n1/k
)

pebbles and O(n) pebbling moves.

Proof Let us prove this by induction on the value of k. In the base case (k = 1), we
are allowed to use O(n) pebbles. So, the best strategy would to place a pebble on every
vertex of T in bottom-up fashion, starting from the leaf nodes. After the root is pebbled,
we unpebble each node in exactly the reverse order, while leaving the root pebbled.

In this strategy, clearly, each node is pebbled and unpebbled at most once. Hence the
number of pebbling moves must be bounded by 2n. Hence, a tree can be pebbled using O(n)
pebbles in O(n) moves.

Now consider that for k ≤ k0 − 1, where k0 is an integer ≥ 2, any bounded-degree tree T
with n vertices can be pebbled using O

(

n1/k
)

pebbles in O(n) moves. Assume that we are

allowed O
(

n1/k0
)

pebbles. To apply induction, we will be decomposing the tree into smaller
components. We prove the following claim first.
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Claim 20 Let T ′ be any bounded-degree tree with n′ > n(k0−1)/k0 vertices and maximum
degree ∆. There exists a subtree T ′′ of T ′ such that the number of vertices in T ′′ is at least
⌊n(k0−1)/k0/2⌋ and at most ⌈n(k0−1)/k0⌉.

Proof From the classical tree-separator theorem, we know that T ′ can be divided into

two subtrees, where the larger subtree has between ⌊n′/2⌋ and ⌈n′ ·
∆

∆+ 1
⌉ vertices. The

key is to recursively subdivide the tree in this way and continually choose the larger subtree.
However, we need to show that in doing this we will definitely strike upon a subtree with the
number of vertices within the required range. Let T ′

1, T
′

2, . . . be the sequence of subtrees we
obtain in these iterations. Also let vi be the number of vertices in T ′

i for every i. Note that

∀i, ⌊vi/2⌋ ≤ vi+1 ≤ ⌈vi ·
∆

∆+ 1
⌉. Assume that j is the last iteration where vj > ⌈n(k0−1)/k0⌉.

Clearly vj+1 ≥ ⌊n(k0−1)/k0/2⌋. Also, by the definition of j, vj+1 ≤ ⌈n(k0−1)/k0⌉. Hence the
proof.

The final strategy will be as follows:

1. Separate the tree into θ(n1/k0) connected subtrees, each containing θ(n(k0−1)/k0) ver-
tices. Claim 20 indicates that this can always be done.

2. Let us number these subtrees in the following inductive fashion: denote by T1, the
‘lowermost’ subtree, i.e. every path to the root of T1 must originate from a leaf of T .
Denote by Ti, the subtree for which every path to the root originates from either a leaf
of T or the root of some Tj for j < i. Also, let ni denote the number of vertices in Ti.

3. Pebble T1 using O
(

n
1/(k0−1)
1

)

= O
(

n1/k0
)

pebbles. From the induction hypothesis, we

know that this can be done using O(n1) pebbling moves.

4. Retaining the pebble on the root node of T1, proceed to pebble T2 in the same way
as above. Continue this procedure till the root node of T is pebbled. Then proceed
to unpebble every other vertex by executing every pebble move up to this instant in
reverse order.

Now we argue the bounds on the number of pebbles and pebbling moves of the algorithm.
Recall that the number of these subtrees is O

(

n1/k0
)

. Therefore, the number of intermediate

pebbles at the root nodes of these subtrees is O
(

n1/k0
)

. Additionally, while pebbling the

last subtree, O
(

n1/k0
)

pebbles are used. Therefore, the total number of pebbles at any time

remains O
(

n1/k0
)

. Each of the subtrees are pebbled and unpebbled once (effectively pebbled
twice). Therefore the total number of pebbling moves is at most

∑

i 2O(ni) = O(n).
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7 Discussion & Open Problems

We studied reversible pebbling on trees. Although there are polynomial time algorithms for
computing black and black-white pebbling numbers for trees, it was unclear, prior to our
work, whether the reversible pebbling number for trees could be computed in polynomial
time. We also established that almost optimal pebbling can be done in polynomial time.

We conclude with the following open problems.

• Prove or disprove that there is an optimal pebbling for complete binary trees that takes
at most O

(

nk
)

steps for a fixed k.

• Prove or disprove that the there is a constant k such that optimal pebbling for any
tree takes at most O

(

nk
)

(for black and black-white pebble games, this statement is
true with k = 1).

• Give a polynomial time algorithm for computing optimal pebblings of trees that take
the smallest number of steps.
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