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Partitioning a graph into highly connected

subgraphs
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Abstract

Given k ≥ 1, a k-proper partition of a graph G is a partition P of V (G)
such that each part P of P induces a k-connected subgraph of G. We prove
that if G is a graph of order n such that δ(G) ≥ √

n, then G has a 2-proper
partition with at most n/δ(G) parts. The bounds on the number of parts and
the minimum degree are both best possible. We then prove that if G is a graph
of order n with minimum degree

δ(G) ≥
√

c(k − 1)n,

where c = 2123
180 , then G has a k-proper partition into at most cn

δ(G) parts. This

improves a result of Ferrara, Magnant and Wenger [Conditions for Families of
Disjoint k-connected Subgraphs in a Graph, Discrete Math. 313 (2013), 760–
764], and both the degree condition and the number of parts is best possible
up to the constant c.

1 Introduction

A graph G is k-connected if the removal of any collection of fewer than k vertices
from G results in a connected graph with at least two vertices. In this paper, we
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are interested in determining minimum degree conditions that ensure that the vertex
set of a graph can be partitioned into sets that each induce a k-connected subgraph.
In a similar vein, Thomassen [17] showed that for every s and t, there exists a
function f(s, t) such that if G is an f(s, t)-connected graph, then V (G) can be
decomposed into sets S and T such that S induces an s-connected subgraph and
T induces a t-connected subgraph. In the same paper, Thomassen conjectured that
f(s, t) = s+t+1, which would be best possible, and Hajnal [10] subsequently showed
that f(s, t) ≤ 4s+ 4t− 13.

From a vulnerability perspective, highly connected graphs represent robust net-
works that are resistant to multiple node failures. When a graph is not highly
connected, it is useful to partition the vertices of the graph so that every part in-
duces a highly connected subgraph. For example, Hartuv and Shamir [11] designed
a clustering algorithm where the vertices of a graph G are partitioned into highly
connected induced subgraphs. It is important in such applications that each part is
highly connected, but also that there are not too many parts.

Given a simple graph G and an integer k ≥ 1, we say a partition P of V (G) is
k-proper if for every part P ∈ P, the induced subgraph G[P ] is k-connected. Ferrara,
Magnant, and Wenger [5] gave a minimum-degree condition on G that guarantees a
k-proper partition.

Theorem 1 (Ferrara, Magnant, Wenger [5]). Let k ≥ 2 be an integer, and let G
be a graph of order n. If δ(G) ≥ 2k

√
n, then G has a k-proper partition P with

|P| ≤ 2kn/δ(G).

In addition, they present a graph G with δ(G) = (1 + o(1))
√

(k − 1)n that
contains no k-proper partition. This example, which we make more precise below,
leads us to make the following conjecture.

Conjecture 2. Let k ≥ 2 be an integer, and let G be a graph of order n. If δ(G) ≥
√

(k − 1)n, then G has a k-proper partition P with |P| ≤ n−k+1
δ−k+2

.

To see that the degree condition in Conjecture 2, if true, is approximately best
possible, let n, ℓ and p be integers such that ℓ =

√

(k − 1)(n− 1) and p = ℓ
(k−1)

=
n−1
ℓ
. Starting from H = pKℓ, so that |H| = n− 1, construct the graph G by adding

a new vertex v that is adjacent to exactly k − 1 vertices in each component of H .
Then δ(G) = ℓ− 1, but there is no k-connected subgraph of G that contains v.

To see that the number of components in Conjecture 2 is best possible, let r
and s be integers such that r =

√

(k − 1)n − k + 2 and s = n−k+1
r

. Consider then

G = sKr ∨ Kk−1, which has minimum degree r + k − 2 =
√

(k − 1)n, while every
k-proper partition has at least s = n−k+1

δ−k+2
parts.

As an interesting comparison, Nikiforov and Shelp [13] give an approximate ver-
sion of Conjecture 2 with a slightly weaker degree condition. Specifically, they prove
that if δ(G) ≥

√

2(k − 1)n, then there exists a partition of V (G) such that n− o(n)
vertices are contained in parts that induce k-connected subgraphs.

In Section 2, we verify Conjecture 2 in the case k = 2.

Theorem 3. Let G be a graph of order n. If δ(G) ≥ √
n, then G has a 2-proper

partition P with |P| ≤ (n− 1)/δ(G).
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Ore’s Theorem [14] states that if G is a graph of order n ≥ 3 such that σ2(G) =
min{d(u)+d(v) | uv /∈ E(G)} ≥ n, then G is hamiltonian, and therefore has a trivial
2-proper partition. As demonstrated by Theorem 3 however, the corresponding min-
imum degree threshold is considerably different. Note as well that if G has a 2-factor
F, then G has a 2-proper partition, as each component of F induces a hamiltonian,
and therefore 2-connected, graph. Consequently, the problem of determining if G
has a 2-proper partition can also be viewed as an extension of the 2-factor problem
[1, 15], which is itself one of the most natural generalizations of the hamiltonian
problem [6, 7, 8].

In Section 3, we improve the bound on the minimum degree to guarantee a k-
proper partition for general k, as follows.

Theorem 4. If G is a graph of order n with

δ(G) ≥
√

2123

180
(k − 1)n

then G has a k-proper partition into at most 2123n
180δ

parts.

Conjecture 2 yields that both the degree condition and the number of parts in
the partition in Theorem 4 are best possible up to the constant 2123

180
. Our proof of

Theorem 4 has several connections to work of Mader [12] and Yuster [18], discussed in
Section 3. One interesting aspect of our proof is that under the given conditions, the
greedy method of building a partition by iteratively removing the largest k-connected
subgraph will produce a k-proper partition.

Definitions and Notation

All graphs considered in this paper are finite and simple, and we refer the reader to
[4] for terminology and notation not defined here. Let H be a subgraph of a graph
G, and for a vertex x ∈ V (H), let NH(x) = {y ∈ V (H) | xy ∈ E(H)}.

A subgraph B of a graph G is a block if B is either a bridge or a maximal
2-connected subgraph of G. It is well-known that any connected graph G can be
decomposed into blocks. A pair of blocks B1, B2 are necessarily edge-disjoint, and if
two blocks intersect, then their intersection is exactly some vertex v that is necessarily
a cut-vertex in G. The block-cut-vertex graph of G is defined to be the bipartite graph
T with one partite set comprised of all cut-vertices of G and the other partite set
comprised of all blocks of G. For a cut-vertex v and a block B, v and B are adjacent
in T if and only if v is a vertex of B in G.

2 2-Proper Partitions

It is a well-known fact that the block-cut-vertex graph of a connected graph is a
tree. This observation makes the block-cut-vertex graph, and more generally the
block structure of a graph, a useful tool, specifically when studying graphs with
connectivity one. By definition, each block of a graph G consists of at least two
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vertices. A block B of G is proper if |V (B)| ≥ 3. When studying a block decompo-
sition of G, the structure of proper blocks is often of interest. In particular, at times
one might hope that the proper blocks will be pairwise vertex-disjoint. In general,
however, such an ideal structure is not possible. However, the general problem of
determining conditions that ensure a graph has a 2-proper partition, addressed in
one of many possible ways by Theorem 3, can be viewed as a vertex analogue to that
of determining when a graph has vertex-disjoint proper blocks.

Proof of Theorem 3. We proceed by induction on n, with the base cases n ≤ 4
being trivial. Thus we may assume that n ≥ 5.

First suppose that G is disconnected, and let G1, · · · , Gm be the components of
G. For each 1 ≤ i ≤ m, since

δ(Gi) ≥ δ(G) ≥
√
n >

√

|V (Gi)|,

Gi has a 2-proper partition Pi with at most (|V (Gi)|−1)/δ(Gi) (≤ (|V (Gi)|−1)/δ(G))
parts, by induction. Therefore, P =

⋃

1≤i≤m Pi is a 2-proper partition of G with

|P| =
∑

1≤i≤m

|Pi| ≤
∑

1≤i≤m

(|V (Gi)| − 1)/δ(G) < (n− 1)/δ(G).

Hence we may assume that G is connected. If G is 2-connected, then the trivial
partition P = {V (G)} is a desired 2-proper partition ofG, so we proceed by supposing
that G has at least one cut-vertex.

Claim 1. If G has a block B of order at least 2δ(G), then G has a 2-proper partition
P with |P| ≤ (n− 1)/δ(G).

Proof. It follows that

|V (G)− V (B)| ≤ n− 2δ(G) ≤ n− 2
√
n,

and
δ(G− V (B)) ≥ δ(G)− 1 ≥

√
n− 1.

Since
√
n− 1 =

√

n− 2
√
n + 1 >

√

n− 2
√
n,

δ(G− V (B)) ≥ √
n− 1 >

√

|V (G)− V (B)|.

Applying the induction hypothesis, G− V (B) has a 2-proper partition P with

|P| ≤ (n− |V (B)| − 1)/δ(G− V (B)) ≤ (n− 2δ(G)− 1)/(δ(G)− 1).

Since (n− 1)(δ(G)− 1)− (n− δ(G)− 2)δ(G) = δ(G)2 − n+ δ(G) + 1 > n− n = 0,
(n− 1)/δ(G) ≥ (n− δ(G)− 2)/(δ(G)− 1), and hence

|P ∪ {V (B)}| ≤ n− 2δ(G)− 1

δ(G)− 1
+ 1 =

n− δ(G)− 2

δ(G)− 1
≤ n− 1

δ(G)
.

Consequently P ∪ {V (B)} is a 2-proper partition of G with |P ∪ {V (B)}| ≤ (n −
1)/δ(G).
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By Claim 1, we may assume that every block of G has order at most 2δ(G)− 1.
Let B be the set of blocks of G. For each B ∈ B, let XB = {x ∈ V (B) | x is not a
cut-vertex of G}. Note that NG(x) ⊆ V (B) for every x ∈ XB. Let X =

⋃

B∈B XB.
For each vertex x of G, let Bx = {B ∈ B | x ∈ V (B)}. In particular, for each
cut-vertex x of G we have |Bx| ≥ 2.

Claim 2. Let x be a cut-vertex of G, and let C be a component of G − x. Then

|V (C)| ≥ δ(G). In particular, every end-block of G has order at least δ(G) + 1.

Proof. Let y ∈ V (C). Note that dC(y) ≥ dG(y)−1 ≥ δ(G)−1. Since NC(y)∪{y} ⊆
V (C), (δ(G)− 1) + 1 ≤ dC(y) + 1 ≤ |V (C)|.

Claim 3. For each x ∈ V (G), |NG(x) ∩X| ≥ 2. In particular, for a block B of G,

if XB 6= ∅, then |XB| ≥ 3.

Proof. Suppose that |NG(x) ∩ X| ≤ 1. For each vertex y ∈ NG(x) − X , since y is
a cut-vertex of G, there exists a component Cy of G − y such that x 6∈ V (Cy). By
Claim 2, |V (Cy)| ≥ δ(G). Futhermore, for distinct vertices y1, y2 ∈ NG(x) − X , we
have V (Cy1) ∩ (V (Cy2) ∪NG(x)) = ∅. Hence

n ≥ |NG(x) ∪ {x}|+
∑

y∈NG(x)−X

|V (Cy)|

≥ (δ(G) + 1) + |NG(x)−X|δ(G)

≥ (δ(G) + 1) + (δ(G)− 1)δ(G)

= δ(G)2 + 1

≥ n+ 1,

which is a contradiction.

Claim 4. Let B be a block of G with XB 6= ∅, and let x ∈ V (B) be a cut-vertex of

G. Then there exists a block C of B − x with XB ⊆ V (C). In particular, if B is an

end-block of G, then B − x is 2-connected.

Proof. For the moment, we show that any two vertices in XB belong to a common
block of B − x. By way of contradiction, we suppose that there are distinct vertices
y1, y2 ∈ XB such that no block of B − x contains both y1 and y2. In particular,
y1y2 6∈ E(G). Then |NB−x(y1) ∩ NB−x(y2)| ≤ 1, and hence |NB−x(y1) ∪ NB−x(y2) ∪
{y1, y2}| = |NB−x(y1)|+ |NB−x(y2)| − |NB−x(y1) ∩NB−x(y2)|+ 2 ≥ 2(δ(G)− 1) + 1.
It follows that

|V (B)− {x}| ≥ |NB−x(y1) ∪NB−x(y2) ∪ {y1, y2}| ≥ 2δ(G)− 1,

and hence |V (B)| ≥ 2δ(G), which contradicts the assumption that every block of
G has order at most 2δ(G) − 1. Thus any two vertices in XB belong to a common
block of B − x. This together with the definition of a block implies that a block C
of B − x satisfies XB ⊆ V (C).
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Fix an end-block B0 of G. Then we can regard the block-cut-vertex graph T of G
as a rooted tree with the root B0. For a block B of G, let G(B) denote the subgraph
which consists of B and the descendant blocks of B with respect to T (i.e., G(B)
is the graph formed by the union of all blocks of G contained in the rooted subtree
of T with the root B). A 2-proper partition P of a subgraph of G is extendable if
|P | ≥ δ(G) for every P ∈ P.

Claim 5. Let B∗ be a block of G with B∗ 6= B0, and let u ∈ V (B∗) be the parent

of B∗ with respect to T . Then G(B∗) − u has an extendable 2-proper partition.

Furthermore, if XB∗ 6= ∅, then G(B∗) has an extendable 2-proper partition.

Proof. We proceed by induction on the height h of the block-cut-vertex graph of
G(B∗) with the root B∗. If h = 0, then G(B∗) (= B∗) is an end-block of G, and hence
the desired conclusion holds by Claims 2 and 4. Thus we may assume that h ≥ 2 (i.e.,
B∗ has a child in T ). By the assumption of induction, for x ∈ V (B∗)− (XB∗ ∪ {u})
and B ∈ Bx − {B∗}, G(B)− x has an extendable 2-proper partition Px,B. For each
x ∈ V (B∗)− (XB∗ ∪{u}), let Px =

⋃

B∈Bx−{B∗} Px,B and fix a block Bx ∈ Bx−{B∗}
so that XBx

is not empty, if possible.
Suppose that XB∗ = ∅. Fix a vertex x ∈ V (B∗)−{u}. Then by Claim 3, we may

assume that XBx
6= ∅. By the assumption of induction, G(Bx) has an extendable

2-proper partition Qx. This together with the assumption that XB∗ = ∅ implies that
⋃

x∈V (B∗)−{u}((Px−Px,Bx
)∪Qx) is an extendable 2-proper partition of G(B∗)−u, as

desired. Thus we may assume that XB∗ 6= ∅.
Subclaim 5.1. There exists a block A of B∗ − u such that

(i) XB∗ ⊆ V (A),

(ii) |V (A)| ≥ δ(G), and

(iii) for x ∈ V (B∗) − (V (A) ∪ {u}), there exists a block B′
x ∈ Bx − {B∗} with

XB′

x
6= ∅.

Proof. By Claim 4, there exists a block A of B∗−u satisfying (i). We first show that
A satisfies (ii). Suppose that |V (A)| ≤ δ(G) − 1. By the definition of a block, for
any x, x′ ∈ XB∗ with x 6= x′, NB∗−u(x) ∩ NB∗−u(x

′) ⊆ V (A), and so |(NB∗−u(x) −
V (A)) ∪ (NB∗−u(x

′)− V (A))| = |NB∗−u(x)− V (A)|+ |NB∗−u(x
′)− V (A)|. For each

x ∈ XB∗ , since x ∈ V (A)−NB∗−u(x), |NB∗−u(x)−V (A)| ≥ δ(G)− 1− (|V (A)| − 1).
By Claim 2, |V (G(Bx)) − {x}| ≥ δ(G) for every x ∈ V (B∗) − (XB∗ ∪ {u}). Hence
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by Claim 3,

n ≥

∣

∣

∣

∣

∣

∣

(V (B∗)− {u}) ∪





⋃

x∈V (B∗)−(XB∗∪{u})

(V (G(Bx))− {x})





∣

∣

∣

∣

∣

∣

= |V (B∗)− {u}|+
∑

x∈V (B∗)−(XB∗∪{u})

|V (G(Bx))− {x}|

≥ |V (B∗)− {u}|+ δ(G) (|V (B∗)− {u}| − |XB∗ |)
= (δ(G) + 1)|V (B∗)− {u}| − δ(G)|XB∗|

≥ (δ(G) + 1)

∣

∣

∣

∣

∣

∣

V (A) ∪





⋃

x∈XB∗

(NB∗−u(x)− V (A))





∣

∣

∣

∣

∣

∣

− δ(G)|XB∗|

= (δ(G) + 1)



|V (A)|+
∑

x∈XB∗

|NB∗−u(x)− V (A)|



− δ(G)|XB∗|

≥ (δ(G) + 1)



|V (A)|+
∑

x∈XB∗

(δ(G)− 1− (|V (A)| − 1))



− δ(G)|XB∗|

= (δ(G) + 1)(|V (A)|+ |XB∗|(δ(G)− |V (A)|))− δ(G)|XB∗|
= |XB∗|δ(G)2 − |V (A)|(δ(G) + 1)(|XB∗| − 1)

≥ |XB∗|δ(G)2 − (δ(G)− 1)(δ(G) + 1)(|XB∗| − 1)

= δ(G)2 + |XB∗ | − 1

≥ n+ 3− 1,

which is a contradiction. Thus |V (A)| ≥ δ(G).
We next check that A satisfies (iii). Let x ∈ V (B∗) − (V (A) ∪ {u}). Since A is

a block of B∗ − u and satisfies (i), |NG(x) ∩ XB∗| ≤ 1. This together with Claim 3
implies that there exists a block B′

x ∈ Bx − {B∗} with XB′

x
6= ∅.

Let A and B′
x ∈ Bx−{B∗} (x ∈ V (B∗)−(V (A)∪{u})) be as in Subclaim 5.1. By

the assumption of induction, for x ∈ V (B∗)−(V (A)∪{u}), G(B′
x) has an extendable

2-proper partition Q′
x. Then

{V (A)} ∪





⋃

x∈V (B∗)−(V (A)∪{u})

((Px − Px,B′

x
) ∪ Q′

x)



 ∪





⋃

x∈V (A)−XB∗

Px





is an extendable 2-proper partition of G(B∗)− u.
Since NG(x) ∪ {x} ⊆ V (B∗) for x ∈ XB∗ , |V (B∗)| ≥ δ(G) + 1, and hence

{V (B∗)}∪ (
⋃

x∈V (B∗)−(XB∗∪{u}) Px) is an extendable 2-proper partition of G(B∗).

By Claim 5, G − V (B0) has an extendable 2-proper partition P0. Hence P =
{V (B0)} ∪ P0 is a 2-proper partition of G. Furthermore, since |V (B0)| ≥ δ(G) + 1
by Claim 2, n =

∑

P∈P |P | = |V (B0)| +
∑

P∈P0
|P | ≥ (δ(G) + 1) + (|P| − 1)δ(G) =

|P|δ(G) + 1, and hence |P| ≤ (n− 1)/δ(G).
This completes the proof of Theorem 3.

7



3 k-Proper Partitions

Let e(k, n) be the maximum number of edges in a graph of order n with no k-
connected subgraph. Define d(k) to be

sup

{

2e(k, n) + 2

n
: n > k

}

and
γ = sup{d(k)/(k − 1) : k ≥ 2}.

Recall that the average degree of a graph G of order n with e(G) edges is 2e(G)
n

.
This leads to the following useful observation.

Observation 5. If G is a graph with average degree at least γ(k−1), then G contains

a k-connected subgraph.

In [12], Mader proved that 3 ≤ γ ≤ 4 and constructed a graph of order n with
(

3
2
k − 2

)

(n−k+1) edges and without k-connected subgraphs. This led him to make
the following conjecture.

Conjecture 6. If k ≥ 2, then e(k, n) ≤
(

3
2
k − 2

)

(n− k + 1). Consequently, d(k) ≤
3(k − 1) and γ = 3.

Note that Conjecture 6 holds when k = 2, as it is straightforward to show that
e(2, n) = n− 1. The most significant progress towards Conjecture 6 is due to Yuster
[18].

Theorem 7. If n ≥ 9
4
(k − 1), then e(k, n) ≤ 193

120
(k − 1)(n− k + 1).

Note that Theorem 7 requires n ≥ 9
4
(k − 1), which means that we cannot imme-

diately obtain a bound on γ. The following corollary, however, shows that we can
use this result in a manner similar to Observation 5.

Corollary 8. Let G be a graph of order n with average degree d. Then G contains

a ⌊60d
193

⌋-connected subgraph.

Proof. Let k = ⌊60d
193

⌋ and suppose that G does not contain a k-connected subgraph.
If n ≥ 9

4
(k − 1), then Theorem 7 implies

1

2
dn = e(G) ≤ 193

120
(k − 1)(n− k + 1) <

193

120

(

60

193
d

)

n =
1

2
dn.

Thus, assume that n < 9
4
(k − 1). This implies that

n <
9

4
(k − 1) <

9

4

60

193
d <

7

10
∆(G),

a contradiction.

Finally, prior to proving our main result, we require the following simple lemma,
which we present without proof.
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Lemma 9. If G is a graph of order n ≥ k + 1 such that δ(G) ≥ n+k−2
2

, then G is

k-connected.

We prove the following general result, and then show that we may adapt the
proof to improve Theorem 4.

Theorem 10. Let k ≥ 2 and c ≥ 11
3
. If G is a graph of order n with minimum

degree δ with δ ≥
√

cγ(k − 1)n, then G has a k-proper partition into at most
⌊

cγn

δ

⌋

parts.

Proof. Since n > δ ≥
√

cγ(k − 1)n, we have n2 > cγ(k − 1)n and hence n >
cγ(k − 1) ≥ 11(k − 1). Therefore, by Lemma 9, it follows that

δ <
n+ k − 2

2
<

n + (k − 1)

2
≤ n+ 1

11
n

2
≤ 6

11
n.

Let G0 = G, δ0 = δ, and n0 = |V (G)|. We will build a sequence of graphs Gi of
order ni and minimum degree δi by selecting a k-connected subgraph Hi of largest
order from Gi and assigning Gi+1 = Gi − V (Hi). This process terminates when
either Gi is k-connected or Gi does not contain a k-connected subgraph. We claim
the process terminates when Gi is k-connected and Hi = Gi.

By Observation 5, Gi contains a (⌊ δi
γ
⌋+1)-connected subgraph Hi. If

δi
γ
≥ k− 1,

then Hi is k-connected and has order at least ⌊ δi
γ
⌋ + 1 > δi

γ
. Since Hi is a maximal

k-connected subgraph in Gi, every vertex v ∈ V (Gi) \V (Hi) has at most k−1 edges
to Hi by a simple consequence of Menger’s Theorem. Therefore, we have

δi+1 ≥ δi − (k − 1)

and
ni+1 = ni − |Hi| < ni − δi/γ.

This gives us the estimates on δi and ni of

δi ≥ δ − i(k − 1),

and

ni ≤ n−
i−1
∑

j=0

δj/γ ≤ n− 1

γ

i−1
∑

j=0

[δ − j(k − 1)] = n− 1

γ

[

iδ − (k − 1)

(

i

2

)]

.

Let t =
⌈

cγn

δ
− 4

⌉

= cγn

δ
− (4 − x), where x ∈ [0, 1). We claim that the process

terminates with a k-proper partition at or before the (t + 1)st iteration (that is, at
or before the point of selecting a k-connected subgraph from Gt). First, we have

δt−1 ≥ δ − (t− 1)(k − 1) > δ −
(cγn

δ
− 4

)

(k − 1) = δ − cγ(k − 1)n

δ
+ 4(k − 1).

Note that δ2 ≥ cγ(k − 1)n and hence δ − cγ(k−1)n
δ

≥ 0. Therefore,

δt−1 > 4(k − 1) ≥ γ(k − 1) and δt ≥ 3(k − 1).

9



As the bound on δi is a decreasing function of i, we have δi > 4(k − 1) for all
0 ≤ i ≤ t − 1. Thus each Gi with i < t contains a k-connected subgraph. Next,
consider nt.

nt ≤ n− 1

γ

[

tδ − (k − 1)

(

t

2

)]

= n− 1

γ

[

cγn− (4− x)δ − 1

2
(k − 1)

(cγn

δ
− (4− x)

)(cγn

δ
− (5− x)

)

]

= n− 1

γ

[

cγn− (4− x)δ − c2γ2(k − 1)

2

n2

δ2
+

cγ(9− 2x)(k − 1)

2

n

δ
− 1

2
(k − 1)(4− x)(5 − x)

]

=
1

δ2

[

4− x

γ
δ3 +

c2γ(k − 1)

2
n2 − (c− 1)nδ2

]

+
(4− x)(5 − x)

2γ
(k − 1)− c(9− 2x)(k − 1)

2

n

δ
.

We have δ2 ≥ cγ(k − 1)n and (c− 1)2 ≥ c2/2, so

(c− 1)

c
((c− 1)nδ2) ≥ (c− 1)2γ(k − 1)n2 ≥ c2

2
γ(k − 1)n2.

Also, we have n > 11
6
δ, and c−1

c
≥ 8

11
, hence

1

c
((c− 1)nδ2) >

8

11
· 11
6
δ3 =

4

3
δ3 ≥ 4− x

γ
δ3.

Summing these inequalities, we get that

[

4− x

γ
δ3 +

c2γ(k − 1)

2
n2 − (c− 1)nδ2

]

< 0

and hence nt <
(4−x)(5−x)

2γ
(k− 1) ≤ 20

2γ
(k− 1) ≤ 10

3
(k− 1). However, δt ≥ 3(k− 1), so

if the process has not terminated prior to the (t + 1)st iteration, Gt is k-connected
by Lemma 9.

Theorem 10 immediately yields the following.

Corollary 11. Suppose Conjecture 6 holds. We then see that if G is a graph with

minimum degree δ where δ ≥
√

11(k − 1)n, then G has a k-proper partition into at

most 11n
δ

parts.

We are now ready to prove Theorem 4.

Proof. Observe that the proof of Theorem 10 holds at every step when substituting
γ = 193

60
by using Corollary 8 to imply that Gi contains a ⌊60δi

193
⌋-connected subgraph.

Finally, note that
(

11
3

)

193
60

= 2123
180

.
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4 Application: Edit Distance to the Family of k-

connected Graphs

Define the edit distance between two graphs G and H to be the number of edges one
must add or remove to obtain H from G (edit distance was introduced independently
in [2, 3, 16]). More generally, the edit distance between a graph G and a set of graphs
G is the minimum edit distance between G and some graph in G.

Utilizing Theorem 4 and observing that 2123/180 = 11.794 < 11.8 we obtain the
following corollary, which is a refinement of Corollary 11 in [5] for large enough k.

Corollary 12. Let k ≥ 2 and let G be a graph of order n. If δ(G) ≥
√

11.8(k − 1)n,
then the edit distance between G and the family of k-connected graphs of order n is

at most 11.8kn
δ(G)

− k < k(4
√
n− 1).

Proof. Let H1, . . . , Hl be the k-connected subgraphs of the k-proper partition of G
guaranteed by Theorem 4; note that l ≤ 11.8n

δ(G)
. For each i ∈ {1, . . . , l−1}, it is possible

to produce a matching of size k between Hi and Hi+1 by adding at most k edges

between Hi and Hi+1. Thus, adding at most k
(

11.8n
δ(G)

)

edges yields a k-connected

graph.

5 Conclusion

We note here that it is possible to slightly improve the degree conditions in Theorems
4 and 10 at the expense of the number of parts in the partition. In particular, a
greedy approach identical to that used to prove Theorem 10 can be used to prove
the following.

Theorem 13. Let k ≥ 2, ck ≥ k−1
k

· 2γ, and p =
√

ckn
k
. If G is a graph of order n

with δ(G) ≥ kp =
√
ckkn, then G has a k-proper partition into at most k

k−1
p parts.

This gives rise to the following, which improves on the degree condition in The-
orem 4.

Theorem 14. If G is a graph of order n with minimum degree

δ(G) ≥ kp =

√

193

30
(k − 1)n,

then G has a k-proper partition into at most k
k−1

p parts.
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