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Abstract A novel idea for an optimal time delay state

space reconstruction from uni- and multivariate time

series is presented. The entire embedding process is

considered as a game, in which each move corresponds

to an embedding cycle and is subject to an evaluation

through an objective function. This way the embed-

ding procedure can be modeled as a tree, in which each

leaf holds a specific value of the objective function. By

using a Monte Carlo ansatz, the proposed algorithm
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populates the tree with many leafs by computing dif-

ferent possible embedding paths and the final embed-

ding is chosen as that particular path, which ends at

the leaf with the lowest achieved value of the objective

function. The method aims to prevent getting stuck in

a local minimum of the objective function and can be

used in a modular way, enabling practitioners to choose

a statistic for possible delays in each embedding cycle

as well as a suitable objective function themselves. The

proposed method guarantees the optimization of the

chosen objective function over the parameter space of

the delay embedding as long as the tree is sampled suf-

ficiently. As a proof of concept, we demonstrate the

superiority of the proposed method over the classical

time delay embedding methods using a variety of appli-

cation examples. We compare recurrence plot-based

statistics inferred from reconstructions of a Lorenz-96

system and highlight an improved forecast accuracy for

map-like model data as well as for palaeoclimate iso-

tope time series. Finally, we utilize state space recon-

struction for the detection of causality and its strength

between observables of a gas turbine type thermoa-

coustic combustor.

Keywords State space reconstruction · Embedding ·

Optimization · Time series analysis · Causality ·

Prediction · Recurrence analysis
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1 Introduction

The famous embedding theorems of Whitney [1], Mañé

[2], and Takens [3] together with their enhancement

by Sauer et al. [4] allow a high dimensional state

space reconstruction from (observed) uni- or multi-

variate time series. Computing dynamical invariants

[5–9] from the observed system, making meaningful

predictions even for chaotic or stochastic systems [10–

16], detecting causal interactions [17–19] or nonlin-

ear noise reduction algorithms [20,21] all rely explic-

itly or implicitly on (time delay) embedding [22] the

data into a reconstructed state space. Other ideas rather

than time delay embedding (TDE) are also possible

[22–27], but due to its simple use and its proficient

outcomes in a range of situations, TDE is by far the

most common reconstruction technique. Suppose there

is a multivariate dataset consisting of M time series

si (t), i = 1, . . . , M . The basic idea is to use lagged

values of the available time series as components of the

reconstruction vector

v(t) =
(

si1(t − τ1), si2(t − τ2), . . . , sim (t − τm)
)

.

(1)

Here, the delays τ j are multiples of the sampling time

Δt and the indices i1, i2, . . . , im each denote the time

series index i ∈ [1, . . . , M], which has been chosen

in the 1st, 2nd, . . . , mth embedding cycle. The total

number of delays τ j , j = [1, . . . , m], i.e., the embed-

ding dimension m, its values and the corresponding

time series si j
, i j ∈ [1, . . . , M] need to fulfill certain

criteria to guarantee the equivalence to the unknown

true attractor, e.g., the embedding dimension must suf-

fice m � 2DB + 1, with DB being the unknown box-

counting dimension (see Casdagli et al. [28], Gibson

et al. [24], Uzal et al. [29] or Nichkawde [30] for a

profound overview of the problem). Picking optimal

embedding parameters τ j and m comes down to make

the resulting components of the reconstruction vec-

tors v(t) as independent as possible [4,22], but at the

same time not too independent, in order to keep suf-

ficient information of the correlation structure of the

data [28,29,31–33]. Besides some unified approaches

[34–44], which tackle the estimation of the delays τ j

and the embedding dimension m simultaneously, most

researchers use two different methods to perform the

reconstruction.

(1) A statistic determines the delays τ j , we call it Λτ

throughout this paper. Usually, τ1 = 0, i.e., the

first component of v(t) is the unlagged time series

si1 in Eq. (1). For embedding a univariate time

series, si1 = . . . = sim = s(t), the approach

to choose τ2 from the first minimum of the auto-

mutual information [45,46] is most common. All

consecutive delays are then simply integer multi-

ples of τ2. Other ideas based on different statis-

tics like the auto-correlation function of the time

series have been suggested [23,32,33,40,47–50].

However, by setting τ j , j > 2 to multiples of τ2,

one ignores the fact that this “measure” of inde-

pendence strictly holds only for the first two com-

ponents of reconstruction vectors (m = 2) [51,52],

even though in practice it works fine for most cases.

More sophisticated ideas, like high-dimensional

conditional mutual information [53,54] and other

statistics [54–59], some of which include non-

uniform delays and the extension to multivari-

ate input data [30,38,39,53,54,60,60–65,65], have

been presented.

(2) A statistic, we call it Γ throughout this paper, which

serves as an objective function and quantifies the

goodness of a reconstruction, given that delays τ j

have been estimated. The embedding process is

thought of as an iterative process, starting with

an unlagged (given) time series si1 , i.e., τ1 = 0.

In each embedding cycle Dd , [d = 1, . . . , m],

a time series sid
lagged by τd gets appended to

obtain the actual reconstruction vectors vd(t) ∈

R
d+1 and these are compared to the reconstruc-

tion vectors vd−1(t) of the former embedding cycle

(if d = 1, vd−1(t) is simply the time series

si1 ). This “comparison” is usually achieved by the

amount of false nearest neighbors (FNN) [66–70],

some other neighborhood-preserving-idea [71,72],

or more ambitious ideas [29,30].

We have recently proposed an algorithm [41], which

minimizes the L-statistic [29] (the objective function)

in each embedding cycle Dd over possible delay val-

ues in this embedding cycle determined by a continu-

ity statistic [65]. Nichkawde [30] minimizes the FNN-

statistic in each embedding cycle over time delays given

by a statistic, which maximizes directional derivatives

of the actual reconstruction vectors. However, it cannot

be ruled out that these approaches result in achieving

a local minimum of the corresponding objective func-

tion, rather than attaining the global minimum.
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Here, we propose a Monte Carlo Decision Tree

Search (MCDTS) idea to ensure the reach of a global

minimum of a freely selectable objective function Γ ,

e.g., the L- or FNN-statistic or any other suitable statis-

tic, which evaluates the goodness of the reconstruc-

tion with respect to the task. A statistic Λτ , which

guides the pre-selection of potential delay values in

each embedding cycle (such as the continuity statis-

tic or conditional mutual information), is also freely

selectable and can be tailored to the research task.

This modular construction might be useful for prac-

titioners, since it has been pointed out that optimal

embedding parameters—thus also the used statistics

to approximate them—depend on the research ques-

tion, e.g., computing dynamical invariants or prediction

[63,64,73–75]. Thus, the proposed method is neither

restricted to the auto-mutual information, in order to

measure the independence of consecutive reconstruc-

tion vector components, nor does it necessarily rely

on the ubiquitous false nearest neighbor statistic. Inde-

pendently from the chosen statistic for potential time

delays and from the chosen objective function, the pro-

posed method computes different embedding pathways

in a randomized manner and structures these paths as

a tree. Consequently, it is able to reveal paths through

that tree— if there are any—which lead to a lower value

of the objective function than paths, which strictly min-

imize the costs in each embedding cycle. Given a suf-

ficiently high number of samplings, MCDTS guaran-

tees to optimize the chosen objective function Γ over

the (delay embedding-) parameter space. In Sect. 2, we

describe this method before we apply it to paradigmatic

examples in Sect. 3, which include Recurrence Analy-

sis, nearest-neighbor-based time series prediction and

causal analysis based on convergent cross mapping.

2 Method

When embedding a time series, in each embedding

cycle a suitable delay, and for multivariate data a suit-

able time series, has to be chosen. While the final

embedding vector is invariant to the order of cho-

sen components, the embedding process, and the used

statistics and methods to suggest suitable delays, gen-

erally depend on all the previous embedding cycles1. It

Fig. 1 All possible embeddings of a time series visualized by a

tree. Each leaf of the tree symbolizes one embedding cycle Dd

using one selected time series sid
from the multivariate data set

and delay τd . Marked in orange is one chosen full embedding

seems therefore natural to visualize all possible embed-

ding cycles in a tree-like hierarchical data structure

as shown in Fig. 1. The initial time series si1 with

delay τ1 = 0 forms the root of the tree, and each

possible embedding cycle Dd is a leaf or node of the

tree. With the large amount of possible delays and time

series to choose from, this decision tree becomes too

large to fully compute it. At the same time, aforemen-

tioned statistics like the continuity statistic or condi-

tional mutual information can guide us in pre-selecting

potentially suitable delay values and an objective func-

tion like the L- or FNN-statistic can pick the most

suitable delay value of the pre-selection by quantify-

ing the quality of the reconstruction in each embed-

ding cycle. Throughout this paper, we denote a statis-

tic, which pre-selects potential delay values as Λτ

and the objective function as Γ . The task to embed

a time series can then be interpreted as minimizing

Γ (i1, i2, .., im, τ1, τ2, ..., τm). Visualizing this with a

tree as in Fig. 1, we actually perform a tree search to

minimize Γ . However, always choosing the leaf of the

tree that decreases Γ the most might lead only to a local

minimum.

As we strive to find a global minimum and cannot

compute the full embedding tree, we proceed by sam-

pling the tree. This approach is inspired by the Monte

Carlo Tree Search algorithms that were originally envi-

sioned to master the game of Go [76]. Ultimately com-

puter programs based on these algorithms were able to

beat a reigning world champion, a feat that was long

1 The continuity statistic 〈ε⋆〉(τ ) that is used later in this article

is one example for such a statistic that depends on all previous

embedding cycles.
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thought to be impossible for computer programs [77].

Adapting this idea to the embedding problem, we pro-

ceed as follows. We randomly sample the full tree, for

each embedding cycle we compute the change in the

objective function Γ and pick for the next embedding

cycle preferably those delays that decrease Γ further.

Each node Nd of the tree encodes one possible embed-

ding cycle and holds the time series used [si1, . . . , sid
],

the delays used until this node [τ1, . . . , τd ], i.e., the

current path through the tree up to node Nd , and a

value of the objective function Γd . We sample the tree

Ntrial-times in a two-step procedure:

– Expand: Starting from the root, for each embed-

ding cycle Dd , possible next steps (si j
, τ j , Γ j ) are

either computed using suitable statistics Λτ and Γ

or, if there were already previously computed ones,

they are looked up from the tree. We consider the

first embedding cycle D2 and use the continuity

statistic 〈ε⋆〉(τ ) for Λτ . Then, for each time series

si the corresponding local maxima of all 〈ε⋆〉(τ )

(for a univariate time series there will only be one

〈ε⋆〉(τ )) that determines the set of possible delay

values τ2 (see the rows in Figs. 1, 2 correspond-

ing to D2). Then, one of the possible τ2’s is ran-

domly chosen with probabilities computed with a

softmax of the corresponding values of Γ j . Due

to its normalization, the softmax function is able

to convert all possible values of Γ j to probabili-

ties with p j = exp(−βΓ j )/
∑

k exp(−βΓk). This

procedure is repeated (consecutive rows for D3 . . .,

etc., in Figs. 1, 2) until the very last computed

embedding cycle Dm+1. This is, when the objec-

tive function Γm+1 cannot be further decreased for

any of the τm+1-candidates. Figure 2 visualizes this

procedure.

– Backpropagation: After the tree is expanded, the

final value Γm is backpropagated through the taken

path of this trial, i.e., to all leafs (previous embed-

ding cycles d), that were visited during this expand,

updating their Γd values to that of the final embed-

ding cycle.

With this two-step procedure, we iteratively build

up the part of the tree that leads to embedding with

the smallest values for the objective function. The fol-

lowing two refinements are made to improve this gen-

eral strategy: in case of multivariate time series input,

the probabilities are chosen uniformly random in the

zeroth embedding cycle D1. This ensures an even sam-

pling over the given time series, which can all serve

as a valid first component of the final reconstruction

vectors. Additionally, as soon as a Γ j is found that is

smaller than the previous global minimum, this embed-

ding cycle is directly chosen and not randomized via

the softmax function. This also means that for the very

first trial always the smallest value of Γ j is chosen,

resulting in a good starting point for the further Monte

Carlo search of the tree. In case, the continuity statistic

〈ε⋆〉(τ ) is used as the delay pre-selection statistic Λτ

and the ΔL-statistic [29] as the objective function Γ ,

the first sample thus is identical to the PECUZAL algo-

rithms [41] and every further sample improves upon

this embedding further minimizing ΔL . Aside from

the choice of Λτ and Γ , the two hyperparameters of

the method are the number of trials Ntrials and the β

parameter of the probability distribution choosing the

next delay value. The parameter β governs how likely

it is that the minimum of all Γi is chosen, i.e., in the

extreme cases for β = 0 the possible delay times are

chosen uniformly random and for β → ∞ always the

smallest Γi is chosen. For the tree search algorithms,

this means that β governs how “wide” the tree search is,

larger β values search the tree more along the already

found previously found minima, whereas for smaller

values the tree search will stress previously unvisited

paths through tree stronger. The default value for β

which is used in all shown results is β = 2.

The computational complexity of this algorithm

obviously scales with the number of trials Ntrials, even

though already computed embedding cycles are not

computed again in later trials. When sampling the tree

many times, the path through the tree of the first few

embedding cycles will likely often be the same as that

of previous trials. In these cases, computing the delay-

preselection and objective function will be identical to

that of previous trials. All the values of possible delays

and values of the objective function that are computed

in previous trials are saved during the tree search and

are reused when the same embedding cycle needs to be

computed again.

Otherwise, the complexity depends on the chosen

delay pre-selection function Λτ and the objective func-

tion Γ . It has to be clear that the algorithm is computa-

tionally much more demanding than a classical TDE.

However, once an embedding is computed for a speci-

fied system, it can be reused in later applications.
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Fig. 2 Visualization of the

expand step of the MCDTS

algorithm. Here, we

exemplary use the

continuity statistic 〈ε⋆〉(τ )

as the delay pre-selection

statistic Λτ and the

ΔL-statistic [29] as the

objective function Γ , as it

has been utilized in the

recently proposed

PECUZAL algorithm [41]

3 Applications

In this section, we present the potential of the pro-

posed MCDTS method by various applications. Here,

we aim to provide suggestions and show that there are a

number of state-space based applications that directly

benefit from our method or provide better results than

with the state-of-the-art embedding techniques. A vari-

ety of applications are presented to support the fact

that different research questions elicit different embed-

ding behavior and that our proposed method is able to

optimize the embedding with respect to different study

objectives. In particular, we investigate the influence

of the state space reconstruction parameters on a recur-

rence analysis of the chaotic Lorenz-96 system (Sect.

3.1), a nearest-neighbor time series prediction for the

chaotic Hénon map and for a palaeoclimate dataset

(Sects. 3.2, 3.3), and last but not least, a causal anal-

ysis of two physical observables of a combustion pro-

cess (Sect. 3.4). The selected applications cover many

areas of nonlinear time series analysis, and it is not our

intention here to propose new techniques for predic-

tion or causal analysis which are necessarily superior

to other, alternative approaches. We rather chose well

established state-space-based methods and use them to

show how our proposed method optimizes results with

respect to the chosen embedding.

3.1 Recurrence properties of the Lorenz-96 system

At first, we consider a potentially higher dimensional

nonlinear dynamical system and compare the recur-

rence properties of its dynamics as derived from the

original set of system variables with such by apply-

ing the different embedding approaches. We utilize the

Lorenz-96 system [79], a set of N ordinary first-order

differential equations

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, (2)

with xi being the state of the system of node i =

1, . . . , N and it is assumed that the total number

of nodes is N ≥ 4. We can think of this system

as a ring-like structure of N coupled oscillators—

each representing some atmospheric quantity—all con-

nected to the same forcing. The forcing constant F

serves as the control parameter. Here, we vary F

from F = 3.7 to 4.0 in steps of 0.002 covering

limit cycle dynamics as well as chaos. We set N =

8, randomly choose the initial condition to u0 =

[0.590; 0.766; 0.566; 0.460; 0.794; 0.854; 0.200;

0.298], and use a sampling time of Δt = 0.1. By dis-

carding the first 2500 points of the integration as tran-

sients, we get time series consisting of 5000 samples for

each of the encountered values of F . We focus on two

scenarios: (1) only the time series of the 2nd node (uni-

variate embedding) and (2) three time series of nodes

2, 4, and 7 are used to mimic a uni- and a multivari-

ate embedding case. For each of these time series, we

perform an embedding, using three classic time delay

approaches as proposed by Kennel et al. [69] (5%-
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threshold), Cao [66] (slope threshold of 0.2), and Heg-

ger and Kantz [67] (5%-threshold) with a uniform delay

value estimated as the first minimum of the auto-mutual

information (only applicable to the univariate case) and

the recently proposed PECUZAL algorithm [41]. For

our proposed MCDTS approach, we embed the data

using the continuity statistic 〈ε⋆〉(τ ) as the delay pre-

selection statistic Λτ . For the objective function Γ , we

try two different approaches, namely the ΔL-statistic

[29] (MCDTS-C-L) as well as the FNN-statistic [67]

(MCDTS-C-FNN). In all approaches, we discard seri-

ally correlated points from the nearest neighbor search

by setting a Theiler window [80] to the first minimum of

the mutual information. An overview over all MCDTS

implementations and abbreviations is given in Table 1.

By varying the control parameter F , the system

varies its dynamics which is well represented by a

change in the recurrence behavior [81]. In previous

work, we have demonstrated that recurrence quantifi-

cation analysis (RQA) can be used to qualitatively char-

acterize the typical dynamical properties of the Lorenz-

96 system such as chaotic or periodic dynamics [82].

We, therefore, compare the recurrence properties of all

reconstructed trajectories to recurrence properties of

the true trajectory (obtained from the numerical inte-

gration) by using RQA. The neighborhood relations of

a trajectory can be visualized in a recurrence plot (RP),

a binary, square matrix R representing the recurrences

of states xi (i = 1, . . . , N , with N the number of points

forming the trajectory) in a d-dimensional (optionally

reconstructed) state space [83,84]

Ri, j (ε) = Θ
(

ε − ‖xi − x j‖
)

, x ∈ R
d , (3)

with ‖ · ‖ a norm, ε a recurrence threshold, and Θ the

Heaviside function. There are numerous ideas of how to

quantify a RP [84,85]. Some statistics are based on the

distribution of recurrence points, some on the diago-

nal line structures, some on the vertical structures, and

it is also possible to use complex-network measures,

when interpreting R (subtracting the main diagonal) as

an adjacency matrix A = R − 1 of a recurrence net-

work (RN) [86]. Some of these quantifiers are related

to dynamical invariants [87,88].

For our purpose of comparing different aspects of

recurrence properties of original and reconstructed tra-

jectories, we use the transitivity (TRANS) of the ε-RN,

the determinism (DET ), the mean diagonal line length

(Lmean), the maximum diagonal line length (Lmax)

and its reciprocal (DI V ), the entropy of diagonal line

lengths (ENTR), the TREND, the mean recurrence time

(MRT ), the recurrence time entropy (RTE), and finally,

the joint recurrence rate fraction (JRRF). JRRF mea-

sures the accordance of the recurrence plot of the (true)

reference system, Rref with the RP of the reconstruc-

tion, Rrec.

JRRF =

∑N
i, j J Ri, j

∑N
i, j Rref

i, j

, JRRF ∈ [0, 1] (4)

JR = Rref ◦ Rrec. (5)

We compute both, Rref and Rrec, by fixing the recur-

rence threshold corresponding to a global recurrence

rate (R R) of 5% in order to ensure comparability

[89]. Although the quantification measures depend cru-

cially on the chosen recurrence threshold, the particular

choice we make here is not so important, since we apply

it to all RPs we compare. R R = 5% ensures a proper

resolution of the inherent structures to be quantified by

the ten aforementioned measures.

The described procedure is schematically illustrated

in Fig. 3. For each reconstruction method and for

each of the ten RQA-statistics, the mean squared error

(MSE) with respect to the RQA-statistics of the true

reference trajectory is computed (normalized to the ref-

erence RQA-values). The pairwise comparison of the

MSEs is evaluated as the percentage of the ten RQA-

MSEs, which take a lower MSE (Fig. 4). For instance,

a value of 70% in the table indicates that for seven out

of the ten considered RQA-quantifiers the normalized

mean squared error for the reconstruction method dis-

played on the y-axis is lower than for the reconstruc-

tion method displayed on the x-axis. The m-notation

indicates the multivariate embedding approach, where

three instead of one time series have been passed to

the reconstruction methods (x2(t), x4(t), and x7(t), see

Fig. 3). Since the classic TDE algorithms from Cao,

Kennel et al., and Hegger & Kantz are not able to han-

dle multivariate input data, only PECUZAL and the

proposed MCDTS-idea combined with the L-statistic

and with the F N N -statistic are considered in the mul-

tivariate scenario. The superiority over the three clas-

sic TDE methods is discernible in values > 50% for

PECUZAL and MCDTS in the first three columns.

While we would expect a better reconstruction for the

multivariate cases—because we simply provide more

information—our proposed method also performs bet-

ter in the univariate case when the F N N -statistic is
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Table 1 The different implementations of the MCDTS algorithm used throughout the article and their choice of delay-preselection and

objective function, which is minimized through the tree search

Notation Delay pre-selection method Λτ Objective function Γ

MCDTS-C-FNN Maxima of continuity statistic 〈ε⋆〉(τ ) [65,78] FNN [67–69]

MCDTS-C-L Maxima of continuity statistic 〈ε⋆〉(τ ) L/ΔL-statistic [29,41]

MCDTS-C-MSE Maxima of continuity statistic 〈ε⋆〉(τ ) Mean squared prediction error

MCDTS-C-MSE-KL Maxima of continuity statistic 〈ε⋆〉(τ ) Mean Kullback-Leibler divergence of true and predicted

MCDTS-C-CCM Maxima of continuity statistic 〈ε⋆〉(τ ) Negative CCM-correlation coefficient [18]

MCDTS-R-MSE-KL Given range of delay values Mean Kullback-Leibler divergence of true and predicted

MCDTS-R-MSE Given range of delay values Mean squared prediction error

Time series  (L96-system, 8 nodes)
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Fig. 3 Schematic visualization of the data analysis for the

Lorenz-96 system, Eq. (2) (see text for details). In case of the uni-

variate approach, the x2(t)-time series gets embedded by all con-

sidered reconstruction methods, for the multivariate approach,

three time series (x2(t), x4(t) and x7(t)) are passed to the recon-

struction algorithms. From the reconstructed attractors, we obtain

a recurrence plot and quantify it (RQA) by using ten different

quantifiers. The same is done for the reference trajectory gained

from all 8 time series from the numerical integration. Repeating

the analysis for time series corresponding to varying values of

the control parameter F of the system, we finally obtain time

series of the RQA-quantifiers for each reconstruction method as

well as for the true trajectory

used as an objective function. When using MCDTS

with the L-statistic, there is hardly any improvement

discernible, while the computational costs are magni-

tudes higher. Here, PECUZAL reveals better results,

even though it uses the same statistics. However, com-

bined with the F N N -statistic our proposed idea per-

forms very well in the univariate case and reveals excel-

lent results for the multivariate case.
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Fig. 4 Results of the analysis of the Lorenz-96 system with

varying control parameter and for all considered reconstruction

approaches (see Table 1 for notations). Shown is the pairwise

comparison of the normalized mean squared error of all con-

sidered ten RQA-quantifiers with respect to the truth RQA-time

series (see text for details). For instance, a value of 70% in the

table indicates that for seven out of the ten considered RQA-

quantifiers the normalized mean squared error for the recon-

struction method displayed on the y-axis is lower than for the

reconstruction method displayed on the x-axis

3.2 Short time prediction of the Hénon map time

series

In the following, a state space reconstruction v(t) of

a single time series s(t) is used to further predict its

course. Besides a very recent idea [90] to train neural

ordinary differential equations on a reconstructed tra-

jectory, which then allows prediction, several attempts

have been published [10–16] which more or less rely

on the same basic idea. For the last vector of the recon-

structed trajectory, denoted with a time-index l, v(tl),

a nearest neighbor search is performed. Then, these

neighbors are used to predict the future value of this

point T time steps ahead, v(tl+T ). Knowledge of the

used embedding, which led to the reconstruction vec-

tors v(t), then allows to read the prediction of the time

series s(tl+T ) from the predicted reconstruction vector

v(tl+T ). Usually, T = 1, i.e., the forecast is iteratively

build by appending v(tl+T ) to the trajectory v(ti ), i =

1, . . . , l, and this procedure is repeated N times, in

order to obtain an N -step prediction. The aforemen-

tioned approaches differ from the way they construct

a local model of the dynamics based on the nearest

neighbors. For instance, Farmer and Sidorowich [11]

proposed a linear approximation, i.e., a linear polyno-

mial is fitted to the pairs (v(tnni
), v(tnni +T )), where nni

denotes the ith nearest neighbor time-index. Sugihara

and May [16] used a simplex with minimum diameter

to select the nearest neighbor indices nni and projected

this simplex T steps into the future. The prediction is

then being made by computing the location of the orig-

inal predictee v(tl) within the range of the projected

simplex, “giving exponential weight to its original dis-

tances from the relevant neighbors.” Here, a much sim-

pler idea is considered: a zeroth-order approximation

of the local dynamics. The prediction is simply the pro-

jection of the nearest neighbor of v(tl), denoted by the

index nn1, v(tl+T ) = v(tnn1+T ). It is clear that the

performance of all prediction approaches based on an

approximation of the local dynamics by making use of

nearest neighbors will crucially depend on the length of

the training set. By training set, we mean the time series

s(t), which has been used to construct the trajectory

v(t). We hypothesize that the accuracy of such a pre-

diction will also depend on the reconstruction method,

especially when the training set is rather short (Small

and Tse [43] and also Bradley and Kantz [73]). In

particular, Garland and Bradley [74] have shown that

accurate predictions can be achieved with the afore-

mentioned zeroth-order approximation when using an

incomplete embedding of the data, i.e., reconstructions
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that do not satisfy the theoretical requirements on the

embedding dimension in Takens’ sense.

As a proof of concept, we now use the described

nearest-neighbor prediction method to predict the x-

time series of the Hénon map [91], even though other

simple models like low order polynomial models might

be superior for such noise-free and pure deterministic

dynamics (we provide a more challenging example in

Sect. 3.3). The time series xi+1 = yi + 1 − ax2
i and

yi+1 = bxi , with standard parameters a = 1.4, b =

0.3 and 100 randomly chosen different initial condi-

tions are used. For each of those 100 samples x- and

y-time series of length N = 10, 030 are obtained (tran-

sients removed). The first 10, 000 points of the time

series are used for state space reconstruction (both time

series for the multivariate cases, only the x-time series

in the univariate case), while the last 30 points are the

prediction test set (only the x-time series is predicted).

The same reconstruction methods as in Sect. 3.1 are

used, but for MCDTS we try two different delay pre-

selection statistics Λτ . Rather than only considering the

continuity-statistic (denoted as C in the model descrip-

tion) we also look at a whole range of delay values

τ = 0, . . . , 50 (denoted as R in the model description).

For the objective function Γ , we try

– The ΔL-statistic (denoted as L in the model

description),

– The FNN-statistic (denoted as FNN in the model

description),

– The root mean squared in-sample one-step predic-

tion error on the first component of the reconstruc-

tion vectors, i.e., the x-time series (denoted as MSE

in the model description), and finally

– The mean Kullback–Leibler-distance of the in-

sample one-step prediction and the “true” trajectory

points (denoted as MSE-KL in the model descrip-

tion).

By “in-sample,” we mean the training set, which is used

for the reconstruction. For all MCDTS implementa-

tions and abbreviations, see again Table 1. The accu-

racy of the prediction is evaluated by the normalized

root-mean-square forecast error (RMS),

erms(T ) =

√

〈

[

xpred(T ) − xtrue(T )
]2

〉

√

〈

[xtrue(T ) − 〈xtrue(T )〉]2
〉

with index true denoting the test set values. This way

erms(T ) = 0 indicates a perfect prediction, whereas

erms(T ) ≈ 1 means that the prediction is not better

than a constant mean-predictor of the test set. Figure 5

shows the mean forecast accuracy for the traditional

TDE methods (Cao, Kennel et al., Hegger & Kantz) and

two selected MCDTS approaches as a function of the

prediction time. The largest Lyapunov exponent is esti-

mated to λ1 ≈ 0.419, and we display Lyapunov times

on the x-axis, i.e., units of 1/λ1. As in Sect. 3.1, m indi-

cates the multivariate case, in which both, x- and y-time

series are fed into the reconstruction algorithms. The

results for all discussed reconstruction methods can be

found in Appendix A (Fig. 8). As expected, the forecast

accuracy is worse in case of added white noise (Fig. 5B)

and the predictions based on multivariate reconstruc-

tions perform slightly better. The MCDTS-based fore-

casts perform significantly better than the forecasts

based on the traditional TDE methods. Even though

the continuity statistic constitutes a reasonable delay

pre-selection statistic with a clear physical meaning,

when utilized in our MCDTS approach (MCDTS-C-),

it performs not as good as if we would not pre-select

delays on the basis of some statistic, but try delays in

a whole range of values (τ ∈ [0, 50], MCDTS-R-). At

least, this statement holds for this example of the Hénon

map time series.

A Wilcoxon rank sum test is applied to underpin the

better performance of the MCDTS-approaches in com-

parison with the classical time delay methods. There-

fore, we define a threshold ζ = 0.1 and compute the

prediction times for which erms(T ) first exceeds ζ for

all trials and for all considered reconstruction methods.

These distributions of prediction times for each method

are used for the statistical test with the null hypothesis

that two considered distributions have equal medians.

The tests complement the visual analysis of Figs. 5

and 8. A significantly better forecast performance

(α=0.01) than the classic time delay embedding meth-

ods for PECUZAL and all considered MCDTS-based

approaches, but the ones combined with the FNN-

statistic (MCDTS-FNN) can be verified for the noise

free case. In the case of the noise corrupted time series

PECUZAL (m), all MCDTS-MSE-approaches and

MCDTS-C-L (m) achieve a significantly better predic-

tion performance than the classical time delay methods.

Some remarks: Together with PECUZAL (m) and

MCDTS-R-MSE (m), MCDTS-C-L (m) achieves the

overall best results (Fig. 8). The choice of the threshold

ζ is obviously subjective, but a range of thresholds gave

similar results and the “grouping” of the results accord-
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Fig. 5 A Normalized root-mean-square prediction errors (RMS)

for the Hénon x-time series and for selected reconstruction meth-

ods (see Fig. 8 for all mentioned approaches and Table 1) as a

function of the prediction time. Shown are mean values of a dis-

tribution of 100 trials with different initial conditions. For the

prediction, we use a one step ahead zeroth-order approximation

on the nearest neighbor of the last point of the reconstructed tra-

jectory and iteratively repeated that procedure 30 times in order

to obtain a prediction of 31 samples in total for each trial. B Same

as in A but with 3% additive white noise

ing to the different techniques is clearly discernible

already when looking at the mean (Figs. 5, 8). We have

to mention that we could not achieve results as shown

here for continuous systems like the Lorenz-63 or the

Rössler model. In those cases, the difference in the pre-

diction accuracy was not as clear as it is in the Hénon

example and not significant, for both, noise-free and

noise corrupted time series. We also investigated the

influence of the time series length of the training sets,

but the results did not change much. All reconstruc-

tion methods gave similar prediction results. We could,

however, observe that simple and incomplete embed-

dings, i.e., a too low embedding dimension, often—but

not always—led to similarly good prediction results,

when compared to “full” embeddings. This was true

for the continuous examples (not shown in this work),

but this also holds for the Hénon example shown here,

where the MCDTS-C-L approach does not yield the

best results in the univariate case, although it targets

the total minimum of the L-objective-function, which

the authors consider to be a suitable cost-function for

a good/full embedding. These observations are in line

with the findings of Garland and Bradley [74] and the

fact that our reconstruction methods tend to suggest

higher dimensional embeddings with smaller delays

in the presence of noise support the findings of Small

and Tse [43]. The FNN-statistic does not seem to be

useful in the prediction application shown here, since

all approaches which make use of it (including clas-

sic TDE) perform clearly worse compared to the other

methods used.

3.3 Improved short-time predictions for CENOGRID

To demonstrate that the prediction procedure from the

preceding section works for real, noisy data, we apply

it to the recently published CENOzoic Global Ref-

erence benthic foraminifer carbon and oxygen Iso-

tope Dataset (CENOGRID) [92]. The temperature-

dependent fractionation of carbon and oxygen isotopes

in benthic foraminifera is an important means to recon-

struct past global temperatures and environmental con-

ditions. Moreover, the Cenozoic is interesting, because

it provides an analogue of future greenhouse climate

and how and which regime shifts in large-scale atmo-

spheric and ocean circulation can be expected in the

future warming climate. Predicting these data may be

unrealistic and not motivated by an actual research

question. However, this task shall serve as a proof

of concept. The non-stationarity and noise level of

CENOGRID make prediction particularly difficult.
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The dataset consists of a detrended δ18O and a

detrended δ13C isotope record with a total length of

N = 13, 421 samples and a sampling period of Δt =

5000yrs (Fig. 9 in Appendix B). Here, we make pre-

dictions on the δ13C isotope record. The first 13, 311

samples are used as a training set, from which state

space reconstructions are obtained. The remaining 110

samples of the δ13C record act as the test set. For 100

different starting points in the test set, we make 10-

step-ahead predictions for each reconstruction method

by using the embedding parameters gained from the

training and with the iterative zeroth-order approxima-

tion prediction procedure described in Sect. 3.2. This

way we simulate different initial conditions for the pre-

diction and obtain a distribution of forecasts for each

reconstruction method. We again use a Wilcoxon rank

sum test on these distributions in order to see whether

predictions based on some reconstruction method are

significantly better than the predictions obtained from

classic TDE (Cao, Kennel et al., Hegger & Kantz). Only

one of the applied reconstruction methods (listed in

Table 1), MCDTS-R-MSE (m), score significantly bet-

ter predictions (highly significant for prediction hori-

zons up to 4Δt and significant for prediction hori-

zon up to 5Δt). Figure 6A shows the mean normal-

ized root mean square prediction error gained from the

100 predictions for the classic TDE and the mentioned

MCDTS-R-MSE (m). The distribution of all prediction

trials for the best performing classic TDE method (Heg-

ger & Kantz) and for MCDTS-R-MSE (m) is shown in

panels B, C. Even though the multivariate approach

MCDTS-R-MSE (m) could have been used both, the

δ18O and the δ13C time series for the reconstruction, it

only uses δ13C lagged by 1 and 2 samples in a three-

dimensional reconstruction. The classic TDE methods

and all other reconstruction methods (listed in Table

1, not shown in Fig. 9) revealed higher dimensional

embeddings (Table 2). Yet, all these higher dimensional

reconstructions give poor prediction results, except for

MCDTS-C-MSE-KL (m), which gives significant bet-

ter predictions (α = 0.05) than the classic TDE meth-

ods at least for the one-step-ahead prediction.

3.4 Estimating causal relationship of observables of a

thermoacoustic system

As a final proof of concept, we utilize state space recon-

struction for detecting causality between observables

X and Y in a turbulent combustion flow in a gas tur-

bine. It is possible to infer a causal relationship between

two (or more) time series x(t) and y(t) via convergent

cross mapping (CCM) [18,19,93], which—in contrast

to Granger causality [94]—also works for time series

stemming from nonseparable systems, i.e., determin-

istic dynamical systems. The CCM method “tests for

causation by measuring the extent to which the histor-

ical record of Y values can reliably estimate states of

X . This happens only if X is causally influencing Y .”

[18] This also incorporates the embedding theorems

[1–3] in a sense that a state space reconstruction based

on x(t) is diffeomorphic to a reconstruction of y(t),

if x(t) and y(t) describe the same dynamical system

and the embedding parameters have been chosen cor-

rectly. To check for a causal relationship from X → Y ,

a state space reconstruction of y(t) yields a trajectory

vy(t) ∈ R
m , with m denoting the embedding dimen-

sion, which is then used for estimating values of x(t),

namely x̂(t). It is said that vy(t) cross-maps x(t), in

order to get estimates x̂(t). Technically, this is done

by first searching for m + 1 nearest neighbors of a

point corresponding to a time index t ′ ∈ t , i.e., find

the m + 1 time indices t ′N Ni
, i = 1, . . . , m + 1 of the

nearest neighbors of vy(t
′). Further, these time indices

t ′N Ni
are used to “identify points (neighbors) in X (a

putative neighborhood) to estimate x(t ′) from a locally

weighted mean of the m + 1 x(t ′N Ni
) values” [18]:

x̂(t ′) =
∑

wi x(t ′N Ni
), i = 1, . . . , m + 1, (6)

with the weighting wi based on the nearest neighbor

distance to vy(t
′).

wi = ui/
∑

u j , j = 1, . . . , m + 1 (7)

ui = exp
[

−‖vy(t
′) − vy(t

′
N Ni

)‖ / ‖vy(t
′) − vy(t

′
N N1

)‖
]

(8)

with ‖·‖ a norm (we used Euclidean distances). Finally,

the agreement of the cross-mapped estimates x̂(t ′) with

the true values x(t ′) is quantified for all considered

t ′ ∈ t , e.g., by computing a linear Pearson correla-

tion ρCCM, which has been done in this study. The

clou is that the estimation skill, here represented by

ρCCM, increases with the considered amount of data

used, if X indeed causally influences Y . This is because

the attractor—represented by the reconstruction vec-

tors vy(t)—gets resolved better with increasing time
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A B C

Fig. 6 A Mean normalized root mean square prediction error for

four selected reconstruction methods on the δ13C CENOGRID

record. B Prediction error for all 100 trials for the classic TDE

method of [67] (yellow line in panel A). C Prediction error for

all 100 trials for the MCDTS-R-MSE (m) method (purple line

in panel A). The forecasts based on this method are significantly

better than for all three classic TDE methods (up to 4 predic-

tion time steps under a significance level α = 0.01 and up to 5

prediction time steps under a significance level α = 0.05)

series length, resulting in closer nearest neighbors and

therefore a better concordance of x̂(t) and x(t), i.e.,

an increase in ρCCM with increasing time series length.

This convergence of the estimation skill based on cross-

mapping is a necessary condition for causation, not

only a high value of ρCCM itself (Fig. 7A). Although the

embedding process is key to a successful application

of CCM to data, its influence has not been discussed

by Sugihara et al. [18]. However, Schiecke et al. [95]

discussed the impact of the embedding parameters on

CCM briefly and we hypothesize that the embedding

method can play a crucial role, when analyzing real-

world data. Therefore, we utilize the MCDTS frame-

work in the following way. As a delay pre-selection

method Λτ , we use the reliable continuity statistic

〈ε⋆〉(τ ) [65,78]. As a suitable objective function Γ ,

we use the negative of the corresponding ρCCM, i.e.,

MCDTS optimizes the embedding with respect to max-

imizing ρCCM of two given time series. According to

our abbreviation-scheme given in Table 1, we will refer

to this approach as MCDTS-C-CCM.

We apply the CCM-method to time series data that

spans the different dynamical regimes of a thermoa-

coustic system. Here, we investigate the mutual causal

influence of two recorded variables of the thermoacous-

tic system, namely the pressure and the heat release rate

fluctuations (Fig. 10). The original experiments were

performed on a turbulent combustor with a rectangu-

lar combustion chamber (length 700 mm, cross-section

90 mm × 90 mm, Fig. 11). In such a combustion exper-

iment, a fixed vane swirler is used to stabilize the flame

and a central shaft that supports the swirler injects

the fuel through four radial injection holes. The fuel

used is liquefied petroleum gas (60% butane and 40%

propane). The airflow enters through the inlet to the

combustion chamber. The partially premixed reactant

mixture is ignited using a spark plug. Once the flame

is established in the combustor, we continuously var-

ied the control parameter (mass flow rate of air, which,

in turn, varies the Reynolds number2 and the equiva-

lence ratio3) to observe the dynamical transitions in the

2 Reynolds number is
ρU D

μ
, where ρ is the density, U is a char-

acteristic velocity, D is a characteristic dimension (the diameter)

and μ is the viscosity.

3 Equivalence ratio is the ratio between the actual fuel-air ratio

to the stoichiometric fuel-air ratio.
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Fig. 7 A Linear correlation coefficient of convergent cross map-

ping (CCM) heat release → pressure as a function of the consid-

ered time series length for Cao’s embedding method (gray) and

the proposed MCDTS embedding (blue) exemplary shown for

one out of 50 drawn sub-samples of length N = 5000 from the

entire time series (Fig. 10, c.f. Table 1 for abbreviations). While

the dashed black lines show the linear trend for both CCM corre-

lations, the dashed red line shows the Pearson linear correlation

between the heat release and the pressure time series, indicat-

ing no influence. We ensure convergence of the cross mapping,

and, thus, a true causal relationship, if there is a positive trend

in the CCM-correlation over increasing time series length (slope

of the dashed black lines) and when the last point of the CCM-

correlation (i.e., longest considered time series length) exceeds

a value of 0.2 (in the shown case Cao’s method does not detect a

causal influence of the heat release to the pressure). We test this

on all 50 sub-samples for both causal directions. B True classi-

fied causal relationships as a fraction of all sub-samples based

on the embedding of each time series using Cao’s method and

our proposed MCDTS method

system. Acoustic pressure fluctuations were measured

using a piezoelectric transducer (PCB103B02) and heat

release rate using a photomultiplier tube (Hamamatsu

H10722-01) at a sampling rate of 4 kHz.

The interactions between the turbulent flow, the

unsteady fluctuations of the flame due and the acous-

tic field of the chamber lead to different dynamical

states. As the airflow rate increases, the system transi-

tions from a state of stable operation (which comprises

high dimensional chaos having low amplitude [96]) to

intermittency, a state that comprises bursts of periodic

oscillations amid epochs of aperiodicity [97], and then

to limit cycle [98]. The self-sustained limit cycle oscil-

lations represent a state of oscillatory instability, known

as thermoacoustic instability [99]. When the flow rate

of air is further increased, the flame loses its stability

inside a combustor and blows out. The pressure and

heat release rate data capture the transition through all

these dynamical states in sequence. In the many differ-

ent dynamical regimes recorded in the time series, we

expect the strength of causal interference between the

heat release and the pressure to vary. But in all dynam-

ics, we expect a mutual causal interaction between heat

release and pressure. Moreover, since a possible asym-

metric bi-directional coupling between heat release and

pressure has been discovered in a stationary setup of a

very similar experiment [100], we would also expect

that the heat release rate has a slightly stronger causal

influence on pressure than vice versa.

In short, the goal here is twofold:

1. Prove the expected mutual causal relationship

between heat release rate and pressure as well as

2. the hypothesized asymmetry in its strengths by

applying MCDTS-C-CCM on a range of time series,

sampled from the entire record (Fig. 10).

We compare it to results obtained from using the CCM

method with the classical embedding approach of Cao

[66]. Specifically, we set up the following workflow for

this analysis:

1. 50 time indices t ′ ∈ t are drawn randomly, where t

covers the entire record.

2. For each of these indices t ′, time series of length

N = 5000 for pressure and heat release are obtained

and standardized to zero mean and unit variance

(Fig 10).

3. Both time series samples (of full length N =

5000) each are embedded using Cao’s method
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as a classical reference and our proposed frame-

work MCDTS-C-CCM with 100 trials (Table 1).

Based on the obtained reconstructions, ρCCM-Cao

and ρCCM-MCDTS are computed for both directions

as a function of increasing time series length as

exemplary shown in Fig. 7A.

4. To ensure convergence in the CCM-sense, we fit a

linear model to ρCCM (dashed black lines in Fig. 7A)

and whenever that model gives a positive slope and

the last value of ρCCM (i.e., for the longest consid-

ered time series of length N = 5000) exceeds a

value of 0.2, we infer a true causal relationship.

5. When we can detect a causal relation simultane-

ously in both directions, we compute the average

of the pointwise difference ρCCM heat→pressure −

ρCCM pressure→heat

The minimum considered value of 0.2 for ρCCM is

an arbitrary and subjective choice, and we could have

made other choices. But since this procedure is applied

to ρCCM-Cao and ρCCM-MCDTS at the same time, we

think this is reasonable and it prevents samples to be

accounted for as “true causal” when there is near-0

ρCCM, but a positive linear trend. Results do only

change slightly when varying this value in some inter-

val [0.2 0.3]. Figure 7B summarizes the results obtained

for both considered embedding methods. Shown are the

classification results for correctly deducing a causal

influence of pressure on heat release (left panel) and

of heat release on pressure (middle panel) based on

our definition (item 4 in the list above). Thus, in this

first step, we do not measure the strength of the causal

relationship, but rather test whether such a relation-

ship actually exists. While MCDTS-C-CCM maintains

a correct classification in 92% of all cases considered

(50 samples) for pressure → heat release and 94% for

heat release → pressure, Cao’s method is only able

to correctly classify 44% and 74%, respectively. These

results themselves already demonstrate a clear advan-

tage of our proposed method, but recall that we expect

a causal relationship between heat release and pres-

sure simultaneously for each sample. The right panel

of Fig. 7B reveals that in 88% of all cases considered,

MCDTS-C-CCM is able to detect a mutual causal rela-

tionship, while Cao’s method managed to do so in only

28% of the cases.

Furthermore, we try to validate a hypothesis made by

Godavarthi et al. [100] that heat release has a stronger

effect on pressure than vice versa for most of the consid-

ered dynamics. The problem of measuring the strength

of a causal relationship is twofold: First, the exper-

iment considered here exhibits a number of differ-

ent dynamics due to the continuously changing con-

trol parameter. The hypothesis of an asymmetry in

the strength of the interaction was made for station-

ary cases and four considered dynamics the authors

investigated. Second, in describing the CCM method,

Sugihara et al. [18] merely described that in the case

of a stronger causal effect of X on Y , cross-mapping

X with vy converges faster than the other way around.

Thus, we would have to define what faster means with

respect to our experimental curves like the ones shown

in Fig. 7A. That would mean introducing some param-

eters on which the results would depend too much.

Here, we pursue a simpler idea in order to detect the

strength of a causal interaction. For samples where a

causal relation in both directions has been detected,

we compute the average of the pointwise difference

of the CCM-correlation coefficients, i.e., ΔρCCM =

ρCCM heat→pressure −ρCCM pressure→heat. When this dif-

ference is positive, we claim that heat release stronger

effects pressure in a causal sense than vice versa. Our

analysis reveals that the proposed method is able to

reflect the hypothesized stronger causal effect of the

heat release on pressure data. Figure 12 shows that for

29 of the 50 samples (∼ 58%) ΔρCCM is indeed posi-

tive. Using the Cao method, we were able to derive such

a result in only ∼ 26% of all samples. In this case, how-

ever, only∼ 28% of the samples were found to be mutu-

ally causally related at all (cf. Fig. 7B). Within the group

of mutually causally related samples, the assumed

asymmetry is reflected very well (13 of 14 mutually

causally related samples had a positive ΔρCCM).

The proposed MCDTS reconstruction approach

shows a clear advantage when using it together with

the CCM method. Not only is the general classifica-

tion ability remarkable, but the MCDTS reconstruc-

tions also allow verification of an assumed asymmetric

causal interaction, which would be limited by the clas-

sical time delay method.

4 Conclusions

A novel perspective of the embedding process has been

proposed, in which the state space reconstruction from

single time series can be treated as a game, in which

each move corresponds to an embedding cycle and is

subject to an evaluation through an objective function.
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It is possible to model different embeddings, i.e., dif-

ferent choices of delay values and time series (if there

are multivariate data at hand) in the embedding cycles,

in a tree like structure. Consequently, our approach ran-

domly samples this tree, in order to ensure the finding

of a global minimum of the chosen objective function.

We leave it to practitioners which state space evalua-

tion statistic, i.e., objective function, they use, since dif-

ferent research questions require different reconstruc-

tion approaches. There is also a free choice of a delay

pre-selection method for each embedding cycle, e.g.,

using the minima of the auto-mutual information statis-

tic. We recommend the combination of the continuity

statistic of Pecora et al. [65] as a delay pre-selection

method together with the L-statistic of Uzal et al. [29]

as an objective function as a very good “all-rounder” for

many research questions in nonlinear time series analy-

sis, as already shown by Kraemer et al. [41] (PECUZAL

algorithm). Since the sampling of the tree is a random

procedure, the proposed idea only yields converging

embedding parameters for a sufficient sampling size

Ntrial. In our numerical investigations, Ntrial = 50 usu-

ally led to satisfying results for univariate cases and

Ntrial = 80 for multivariate embedding scenarios. Our

proposed method initializes in a local minimum of the

objective function, which is achieved by minimizing

the objective function in each embedding cycle to the

maximum extend. So in practice, even setting Ntrial too

low would lead to similar—but never worse—results as

the state-of-the-art methods. Moreover, the proposed

method is not limited to delay pre-selection and objec-

tive functions that take into account certain physical

constraints. It would also optimize the reconstruction

vectors of the state space for research questions such

as classification, where we could speak of a feature or

latent space instead of the state or phase space nota-

tion associated with statistical physics. We exempli-

fied the use of such a modular algorithm by combin-

ing different objective- and delay pre-selection func-

tions. Its superiority to classical time delay embedding

methods has been demonstrated for a recurrence anal-

ysis of the Lorenz-96 system, a prediction of the x-

time series of the chaotic Hénon map and the δ13C

CENOGRID record as well as on studying causal inter-

actions between variables in a combustion process.

With these applications, we showed the advantage

MCDTS brings for any kind of method that utilizes

an embedding such as recurrence analysis, embedding-

based predictions of time series, or causal analysis with

convergent cross-mapping. It, thus, has potential in

many applications and disciplines, everywhere where

such phase space-based approaches are used, but an

automatic phase space reconstruction is required. The

latter is of increasing interest, e.g., for big data analy-

sis, analysis with highly reliable requirements (e.g., in

medical applications), and also for deep learning-based

frameworks.
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Appendix

A: Forecast of Hénon map time series
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Fig. 8 A Normalized root-mean-square prediction errors (RMS)

for the Hénon x-time series for all discussed reconstruction meth-

ods as a function of the prediction time. Shown are mean values of

a distribution of 100 trials with different initial conditions. For the

prediction, we used a one-step-ahead zeroth-order approximation

on the nearest neighbor of the last point of the reconstructed tra-

jectory and iteratively repeated that procedure 30 times in order

to obtain a prediction of 31 samples in total for each trial. B Same

as in A but with 3% additive white noise

B: CENOGRID prediction
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Table 2 Obtained embedding parameters for the different recon-

struction methods. Time series index 1 in the third column cor-

responds to the detrended δ13C and time series index 2 to the

detrended δ18O record shown in Fig. 9. For a description of the

reconstruction methods see Table 1. The sequence of the delays

(center column) and time series (right column) are a result of the

embedding cycles which have been passed through in the cor-

responding reconstruction methods, which is why they are not

necessarily ordered. For a reconstruction based on these embed-

ding parameters, it would make no difference whether delays and

corresponding time series were sorted beforehand

Reconstruction method Chosen delays [in index values] Chosen time series

Cao [66] 0,14,28,42,56,70,84 1,1,1,1,1,1,1

Kennel et al. [69] 0,14,28,42,56,70 1,1,1,1,1,1

Hegger and Kantz [67] 0,14,28,42,56,70,84,98 1,1,1,1,1,1,1,1

PECUZAL [41] 0,13,7,10,56,27,3,5,77,42,20,17,15 1,1,1,1,1,1,1,1,1,1,1,1,1

PECUZAL (m) [41] 0,13,7,10,56,27,3,5,77,42,20,17,15 1,1,1,1,1,1,1,1,1,1,1,1,1

MCDTS-C-FNN 0,69,84,54,37,48,63,26,12,20,16 1,1,1,1,1,1,1,1,1,1,1

MCDTS-C-FNN (m) 0,53,51,98,33,67,73,91,25,40,46 1,2,1,2,2,2,2,1,1,1,1

MCDTS-C-MSE-KL 0,54,117,93,126 1,1,1,1,1

MCDTS-C-MSE-KL (m) 0,109,78,198,37,155,53,95,133 1,2,1,2,2,1,1,1,1

MCDTS-R-MSE-KL 0,39,38,40,1,27 1,1,1,1,1,1

MCDTS-R-MSE-KL (m) 0,41,48,33,45,31 1,2,1,1,1,2

MCDTS-R-MSE 0,28,1,2 1,1,1,1

MCDTS-R-MSE (m) 0,1,2 1,1,1

C: Causal relationships in combustion process
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Fig. 10 Entire time series of length N ′ = 400, 000 of A turbine

pressure (measured in V) and B combustion heat release (mea-

sured in mV). This is a non-stationary setup with a linearly vary-

ing control parameter (air flow rate) leading to bifurcations and

different dynamics. For the calculations in Sect. 3.4, we sampled

both time series 50 times in subsamples of length N = 5000. Pan-

els C, D show one sample for both cases. Each sample has been

normalized to zero mean and unit variance before we applied the

embedding and the CCM
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Fig. 11 Schematic

experimental setup of the

combustion experiment, see

main text for details
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Fig. 12 Average pointwise difference of the CCM-correlation

coefficients for the direction heat release → pressure and vice

versa for both underlying reconstruction approaches. For a bet-

ter visualization, we sorted these values here separately for both

methods. A positive value indicates that the heat release has a

stronger causal influence on pressure than vice versa, which is

the expectation value. Diamonds indicate cases, where we could

not deduce a causal relationship for both directions in one sam-

ple. As also shown in the right panel of Fig. 7B, MCDTS-C-

CCM was able to correctly detect a mutual causal relationship

in 88% of all considered samples (only 12 % marked with blue

diamonds in this Figure), whereas in the case of Cao’s recon-

struction approach, we could only detect this in 28% of all cases

(72 % marked with gray diamonds in this Fig. )
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