
Discrete Applied Mathematics 157 (2009) 3181–3186

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

Optimal popular matchings✩

Telikepalli Kavitha 1, Meghana Nasre ∗

Indian Institute of Science, Bangalore, India

a r t i c l e i n f o

Article history:

Received 16 February 2009

Received in revised form 1 May 2009

Accepted 3 June 2009

Available online 26 June 2009

Keywords:

Design of algorithms

Bipartite graphs

Matchings

One-sided preference lists

a b s t r a c t

In this paper we consider the problem of computing an ‘‘optimal’’ popular matching. We

assume that our input instance G = (A∪P , E1 ∪̇ · · · ∪̇ Er ) admits a popular matching and

here we are asked to return not any popular matching but an optimal popular matching,

where the definition of optimality is given as a part of the problem statement; for instance,

optimality could be fairness inwhich casewe are required to return a fair popularmatching.

We show an O(n2 + m) algorithm for this problem, assuming that the preference lists are

strict, wherem is the number of edges in G and n is the number of applicants.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem of computing an optimal popular matching in a bipartite graph G = (A ∪ P , E)

with one-sided preference lists. Optimality is described succinctly as a part of the problem statement, for instance, rank-
maximality, fairness, or minimum cost of matched edges can be considered as optimality. The algorithm that we present, in
fact, works for several notions of optimality. We consider the problem of computing a popular matching M in G such that
no popular matching ismore optimal than M . We first describe below the popular matching problem.

1.1. The popular matching problem

An instance of the popular matching problem is a bipartite graph G = (A ∪ P , E) and a partition E = E1 ∪̇ E2 · · · ∪̇ Er of
the edge set. The vertices of A are called applicants and the vertices of P are called posts. For each 1 ≤ i ≤ r , the elements
of Ei are called the edges of rank i. If (a, p) ∈ Ei and (a, p′) ∈ Ej with i < j, we say that a prefers p to p′. This ordering of posts
adjacent to a is called a’s preference list. For any applicant a and any rank i, where 1 ≤ i ≤ r , we assume that there is at
most one post p such that (a, p) ∈ Ei, that is, we assume that preference lists are strictly ordered.

A matching M of G is a set of edges such that no two edges share an endpoint. We denote by M(a) the post to which
applicant a is matched inM . We say that an applicant a prefers matchingM ′ toM if (i) a is matched inM ′ and unmatched in
M , or (ii) a is matched in bothM ′ andM , and a prefersM ′(a) toM(a).M ′ ismore popular than M if the number of applicants
that preferM ′ toM exceeds the number of applicants that preferM toM ′. A matchingM∗ is popular if there is no matching
that is more popular thanM∗.

✩ A preliminary version of thiswork appeared in theworkshopMATCH-UP:Matching Under Preferences (http://www.optimalmatching.com/workshop),

July 2008, Reykjavik, Iceland.
∗ Corresponding address: Computer Science and Automation Department, Indian Institute of Science, Bangalore 560012, India. Tel.: +91 80 22932368;

fax: +91 80 23602911.

E-mail addresses: kavitha@csa.iisc.ernet.in (T. Kavitha), meghana@csa.iisc.ernet.in (M. Nasre).
1 Work done as a part of the DST-MPG partner group on Efficient Graph Algorithms, IISc Bangalore.

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.dam.2009.06.004

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://www.optimalmatching.com/workshop
mailto:kavitha@csa.iisc.ernet.in
mailto:meghana@csa.iisc.ernet.in
http://dx.doi.org/10.1016/j.dam.2009.06.004


3182 T. Kavitha, M. Nasre / Discrete Applied Mathematics 157 (2009) 3181–3186

The popular matching problem is to determine if a given instance admits a popular matching, and to find such amatching,
if one exists. The popularmatching problemwas considered by Abraham et al. in [1] and a linear time algorithm (for the case
of strictly ordered preference lists) was given to determine if G admits a popular matching and to compute a maximum-
cardinality popular matching.

1.2. Problem definition

In this paper we assume that the input instance G admits a popular matching and here we are not content in returning
any popular matching or any maximum-cardinality popular matching. Our goal is to compute an optimal popular matching,
where the definition of optimality is given succinctly as a part of the problem definition. For instance, the problem
description could state fairness as optimality, which means that, among all popular matchings in G, we have to return that
popular matching which is the most fair.

The fair matching problem in a bipartite graph G = (A ∪ P , E1 ∪̇ E2 · · · ∪̇ Er) asks for a matching M that satisfies the
properties below: (i) M is a maximum-cardinality matching in G, and (ii) among all maximum-cardinality matchings in
G, M matches the least number of applicants to their rank r posts, subject to this constraint, matches the least number of
applicants to their rank r − 1 posts, subject to this constraint, matches the least number of applicants to their rank r − 2
posts, and so on. Currently, there are no purely combinatorial algorithms known for computing a fair matching and the best
algorithm for the fair matching problem reduces this to the minimum weight maximum-cardinality matching problem by
assigning weight nk−1 to a rank k edge for each 1 ≤ k ≤ r .

For convenience, as was done in [1], we will add a dummy post ℓa at the end of a’s preference list, for each applicant a,
and assign the edge (a, ℓa) rank r + 1. Thus henceforth, the edge set E = E1 ∪̇ · · · ∪̇ Er+1 and any unmatched applicant
a will be assumed to be matched to ℓa. So all matchings are always applicant-complete from now. A fair popular matching
can now be defined as follows.

Definition 1. A popular matching M in G that matches the least number of applicants to their rank r + 1 posts, subject to
this constraint, matches the least number of applicants to their rank r posts, subject to this constraint, matches the least
number of applicants to their rank r − 1 posts, and so on, is a fair popular matching.

Other notions of optimality include rank-maximality2 [4], or min-cost of matched edges (each edge here has a cost asso-
ciated with it). Analogous to a fair popular matching, we can define a rank-maximal popular matching or amin-cost popular

matching.
Our optimality criteria: Recall that we assumed the optimality criterion O is specified as a part of the problem. For any

twomatchingsM1,M2, letM1 ≤O M2 stand for eitherM1 <O M2 (that is,M1 is less optimal thanM2) orM1 ≈O M2 (that is,M1

andM2 are as optimal as each other). We need the following properties.

(a) ≤O is complete, that is, for any pair of matchings M1,M2 either M1 ≤O M2 or M2 ≤O M1. In fact, exactly one of (i), (ii),
(iii) holds: (i)M1 <O M2, (ii) M2 <O M1, (iii)M1 ≈O M2.

(b) ≤O is transitive: that is,M1 ≤O M2 and M2 ≤O M3 ⇒ M1 ≤O M3.

(c) If an edge e belongs to two matchings Mi,Mj, then Mi <O Mj ⇔ Mi − {e} <O Mj − {e}. Note that this implies that if e
belongs toMi and Mj, then Mi ≈O Mj ⇔ Mi − {e} ≈O Mj − {e}.

Note that optimality criteria like rank-maximality, fairness, min-cost of matched edges satisfy these properties. In fact,
any natural optimality criterion that one defines in practice would satisfy the above properties.

1.3. Related results

The notion of popular matchings was originally introduced by Gardenfors [2] in the context of the stable marriage
problem with two-sided preference lists. In the case of two-sided preference lists where the two sides of the bipartite
graph are considered men and women, a stable matching is considered the ideal answer to what is a desirable matching.
However there is a wide spectrum of stable matchings ranging from men-optimal stable matchings to women-optimal
stable matchings. Irving, Leather, and Gusfield [5] considered the problem of computing a stable matching that is optimal
under somemore equitable criterion of optimality. In fact, muchwork has been done in the two-sided preference list setting
on finding stablematchings that satisfy additional criteria (see [3] for an overview). In the same vein, assuming that the input
instance G admits a popular matching, here we ask for an optimal popular matching where optimality is defined as a part of
the problem statement.

The problem of computing a fair popular matching/rank-maximal popular matching/min-cost popular matching can be
solved by assigning suitable costs to the edges of an appropriate bipartite graph H derived from G = (A∪P , E1 ∪̇ · · · ∪̇ Er)

and computing a min-cost or max-cost perfect matching in H . Here we present a simple combinatorial algorithm that runs

2 A matching M is rank-maximal if M matches the maximum number of applicants to their rank 1 posts, subject to this constraint M matches the

maximum number of applicants to their rank 2 posts, and so on.



T. Kavitha, M. Nasre / Discrete Applied Mathematics 157 (2009) 3181–3186 3183

in O(n2 +m) time for the problem of computing an ‘‘optimal’’ popular matching in a bipartite graph wherem is the number
of edges and n is the number of applicants. We assume that given twomatchingsM1 andM2, we can determine ifM1 <O M2,
M2 <O M1 or M1 ≈O M2 in O(n) time; this is a reasonable assumption which is indeed true for fairness, rank-maximality, or
min-cost.

Very recently, McDermid and Irving [7] also considered the optimal popular matchings problem in G = (A∪P , E) with
strict preference lists. They showed an O(m + n log n) algorithm for computing fair popular matchings and rank-maximal
popular matchings and an O(m + n) algorithm for min-cost popular matchings. Their main tool was a graph called the
switching graph, used by Mahdian [6] to investigate the probability of the existence of popular matchings in random graphs.
Though our algorithm is slower, our algorithm is extremely simple. Our algorithm is iterative: in the ith iteration, it adds
the ith applicant ai to the current graph on applicants a1, . . . , ai−1 and augments the current matching on a1, . . . , ai−1 to
a most optimal matching that matches all of a1, . . . , ai and all their top choice posts. We show that this yields the desired
matching at the end of n iterations. It is indeed interesting that a method as simple as this works. The problem of computing
an optimal popular matching is not only of theoretical interest but also of practical importance and our algorithm is useful
for such applications because it can be implemented very easily.

2. Preliminaries

In this section we review the algorithmic characterisation for computing a popular matching from [1]. Since our problem
is restricted to the case where preference lists do not have ties, we will present the characterisation from [1] of popular
matchings for strictly ordered preference lists.

For each applicant a, define a first choice post for a, denoted by f (a), and a second choice post for a, denoted by s(a), as
follows. The post f (a), is one that occurs at the top of a’s preference list, that is, it is a’s most preferred post. The post s(a) is
the most preferred post on a’s list that is not f (a′) for any applicant a′. Note that by the above definition, f -posts are disjoint
from s-posts. For each applicant a, f (a) is guaranteed to exist if its preference list is non-empty. Note that the dummy post
ℓa added at the end of a’s preference list ensures that s(a) always exists for each applicant a.

The following lemma from [1] characterises a popular matching.

Lemma 1. A matching M is popular if and only if

(1) every f -post is matched in M,

(2) for each applicant a, M(a) ∈ {f (a), s(a)}.

Let G′(A ∪ P, E ′) denote the graph in which each applicant a has exactly two edges, (a, f (a)) and (a, s(a)) incident to it.
From Lemma 1, it is immediate that the input instance G admits a popular matching if and only if the graph G′ defined above
admits an A-perfect matching. Using this characterisation, a linear time algorithm was presented in [1] to determine if G
admits a popular matching and compute one, if it exists.

3. Our algorithm

In this section we describe our algorithm to compute an optimal popular matching in G with respect to the optimality
criterion specified as a part of the input. Any optimal popular matching, by the virtue of being popular, needs to satisfy the
properties specified in Lemma 1. So we can operate on a reduced graph G = (A∪P , E ′) where E ′ consists of edges (a, f (a))

and (a, s(a)) for each a ∈ A. Hence from now on we can assume that every applicant in G has degree at most 2.

Let n be the number of applicants in G and a1, . . . , an be an arbitrary ordering of the applicants. We denote by Hk, for
1 ≤ k ≤ n, the graph on vertex set {a1, . . . , ak} ∪ {f (a1), . . . , f (ak), s(a1), . . . , s(ak)} and edges {(aj, f (aj)), (aj, s(aj))}, for
1 ≤ j ≤ k. We present a simple iterative strategy for computing an optimal popular matching in G. For each 1 ≤ k ≤ n, we
will compute a matching Mk that satisfies the following 2 properties: (1) Mk is a matching of size k in Hk that matches all
the posts f (a1), . . . , f (ak); (2) among all matchings that satisfy (1),Mk is an optimal matching.

We compute matching Mk satisfying the above mentioned properties iteratively. Say we have already computed the
desired matching Mk−1 in the graph Hk−1. We add to the graph Hk−1 the applicant ak, the posts f (ak), s(ak) if they do not
exist and the edges (ak, f (ak)) and (ak, s(ak)) to form the graph Hk. We will show that Mk can be computed by augmenting

Mk−1 appropriately. Since the matchingMk has to be popular,Mk has to match each of the applicants a1, . . . , ak: due to the
fact that we augment Mk−1 in Hk, each of a1, . . . , ak−1 remains matched (to either its f -post or s-post). Also since Mk needs
to match ak, either (ak, f (ak)) or (ak, s(ak)) has to belong toMk. Our algorithm tries both the options:

(1) it tries to find augmenting paths pk and qk with respect toMk−1 inHk in order tomatch ak to f (ak) and to s(ak), respectively.
We will show that at least one of pk, qk has to exist.

(2) If pk does not exist, thenMk = Mk−1 ⊕ qk and if qk does not exist, thenMk = Mk−1 ⊕ pk. If both pk and qk exist, then the
more optimal ofMk−1 ⊕ pk andMk−1 ⊕ qk is chosen asMk. Theorem 1 shows that this simple method suffices.

Our algorithm is presented as Algorithm 3.1.

Theorem 1. The matching Mn returned by our algorithm is a popular matching that is maximal w.r.t. O.



3184 T. Kavitha, M. Nasre / Discrete Applied Mathematics 157 (2009) 3181–3186

Algorithm 3.1 Our algorithm to compute an optimal popular matching

– Set any order among the applicants so that the applicants can be labelled a1, a2, . . . , an.

– Let H1 be the graph on vertex set {a1} ∪ {f (a1), s(a1)} and edge set {(a1, f (a1)), (a1, s(a1))}; letM1 be the matching {(a1, f (a1)}.

– Initialize i = 2.

while i ≤ n do

UpdateHi−1 toHi by adding the applicant ai and posts f (ai), s(ai) (if they do not already exist) to the vertex set and the edges (ai, f (ai))

and (ai, s(ai)) to the edge set.

if f (ai) is newly added then

Mi = Mi−1 ∪ {(ai, f (ai))}.

else

find an augmenting path pi with respect toMi−1 in Hi that begins with the edge (ai, f (ai))

find an augmenting path qi with respect toMi−1 in Hi that begins with the edge (ai, s(ai))

if pi (similarly, qi) does not exist then

Mi = Mi−1 ⊕ qi (resp.,Mi−1 ⊕ pi).

else if both pi and qi exist then

Mi = the more optimal of Mi−1 ⊕ pi and Mi−1 ⊕ qi. {In case Mi−1 ⊕ pi ≈O Mi−1 ⊕ qi, then Mi can be either.}

end if

end if

i = i + 1.

end while

– ReturnMn.

Note that it is easy to see that the matching Mn returned by our algorithm is popular. First, for each i, Mi is a maximum-
cardinality matching in Hi. Thus Mn is a maximum-cardinality matching in Hn; we know that Hn = (A ∪ P , E ′) admits
an A-perfect matching since the input instance admits a popular matching. Thus Mn is an A-perfect matching. Also, by
construction, we never let an f -post remain unmatched. Thus, Mn is an A-perfect matching in G that matches all f -posts.
ThusMn is a popular matching in the input instance.

We now need to show that among all popular matchings, Mn is an optimal matching. We will prove this by induction:
we will show that for each i, Mi is a matching of size i in Hi that matches all posts f (a1), . . . , f (ai) and amongst all such
matchings,Mi is a most optimal one. Then it is immediate thatMn is an optimal popular matching.

Note that we can compare 2 matchingsM,M ′ of Hi with respect to the optimality criterion O by extending each ofM,M ′

to {a1, . . . , an} by matching {ai+1, . . . , an} to their last resort posts (of rank r + 1). Thus we can use the relative order w.r.t.
O on matchings in the input instance to compare two matchings in Hi.

We will now show that for all 1 ≤ i ≤ n,Mi is optimal in Hi subject to the constraint thatMi has to match all of a1, . . . , ai
and f (a1), . . . , f (ai). The base case i = 1 is trivial. By induction hypothesis, we assume thatMk−1 is optimal in Hk−1 subject
to the constraint that it has to match all of a1, . . . , ak−1 and f (a1), . . . , f (ak−1). Using this hypothesis, we will show thatMk

is optimal in Hk subject to the constraint that it has to match all of a1, . . . , ak and f (a1), . . . , f (ak).

We consider two cases: (i) f (ak) is not present in Hk−1 and (ii) f (ak) is present in Hk−1. We will now consider the first
case, that is, f (ak) is not present in Hk−1, and show the following lemma.

Lemma 2. Mk = Mk−1 ∪ {(ak, f (ak))} is an optimal matching in Hk subject to the constraint that all of a1, . . . , ak and f (a1),

. . . , f (ak) have to be matched.

Proof. It is immediate from the definitions of Mk−1 and Mk that Mk matches all of a1, . . . , ak and f (a1), . . . , f (ak). What
remains to prove is thatMk is an optimal matching.

Suppose not, let Nk be such a matching in Hk that is more optimal than Mk. We know that f (ak) is not an f -post for any
applicant in {a1, . . . , ak−1} (by virtue of the fact that f (ak) is not present in Hk−1). Since Nk has to satisfy the constraint that
all f -posts in Hk are matched, it follows that Nk(ak) = f (ak). Thus Nk andMk agree on the edge e = (ak, f (ak)).

SinceMk <O Nk and both thesematchings contain the edge e, it follows from our condition (c) on O thatMk −{e} <O Nk −
{e}. The matching Nk − {e} matches all of a1, . . . , ak−1 and f (a1), . . . , f (ak−1) since Nk matches all of a1, . . . , ak and
f (a1), . . . , f (ak). However we know that Mk − {e}, which is the same as Mk−1 (recall that Mk = Mk−1 ∪ {e}) is an optimal
matching in Hk−1, contradicting thatMk − {e} <O Nk − {e}. This completes the proof of Lemma 2. �

Wenowdealwith the casewhen f (ak) is present inHk−1. In this case,we try to find augmenting paths pk and qk inHk. Note
that at least one of pk, qk has to exist since Hk admits a matching of size k (any A-perfect matching of (A ∪ P , E ′) restricted
to a1, . . . , ak is a matching of size k in Hk)—thus there has to exist an augmenting path with respect to the (k − 1)-sized
matchingMk−1 in Hk. Say, pk exists and qk does not exist. Then we show the following.

Lemma 3. Mk−1 ⊕ pk is an optimal matching in Hk subject to the constraint that it has to match all of a1, . . . , ak and f (a1),

. . . , f (ak).

Proof. It is easy to see that Mk = Mk−1 ⊕ pk matches all of a1, . . . , ak and f (a1), . . . , f (ak). We need to show that Mk is an
optimal matching. Suppose not and let Nk be such a matching that is more optimal thanMk.



T. Kavitha, M. Nasre / Discrete Applied Mathematics 157 (2009) 3181–3186 3185

Fig. 1. The path pk: the bold edges are present in Mk−1 and the dashed edges are inMk and in Nk .

We first claim that since qk does not exist, any matching that matches all of a1, . . . , ak in Hk has to match ak to f (ak).
Suppose not and let L be a matching in Hk that matches all of a1, . . . , ak−1 and also matches ak to s(ak). Then consider that
component of L ⊕ Mk−1 which contains ak. Since ak is unmatched by Mk−1, this component is a path (call it q) that begins
with the edge (ak, s(ak)). The existence of q contradicts our assumption that there was no augmenting path with respect to
Mk−1 in Hk that begins with the edge (ak, s(ak)).

The above claim implies that thematching Nk has tomatch ak to f (ak). Thus bothMk and Nk agree on the edge (ak, f (ak)).
Let a′ be the applicant that was matched byMk−1 to f (ak) = f (a′). Since f (ak) is matched to ak by Nk, the applicant a′ has to
be matched to its s-post by Nk. ThusMk and Nk also agree on the edge (a′, s(a′)). In fact, every edge in pk that is present inMk

has to be present in Nk. Thus Nk and Mk contain the same subset of edges of pk. Call these edges e1, . . . , et (refer to Fig. 1).
So ifMk <O Nk, thenMk−{e1, . . . , et} <O Nk−{e1, . . . , et} since e1, . . . , et are present in bothNk andMk (refer to Fig. 1). By

adding the edges e′
1, e

′
2, . . . , e

′
t−1 (see Fig. 1) of pk −Mk to both Nk −{e1, . . . , et} andMk −{e1, . . . , et}, we get thematchings

Nk ⊕ pk and Mk ⊕ pk, since e′
1, e

′
2, . . . , e

′
t−1 are also the edges of pk − Nk. It follows that Nk ⊕ pk is more optimal than

Mk ⊕ pk (by condition (c) on O). Now Nk ⊕ pk is a matching in Hk−1 that matches all of a1, . . . , ak−1 and f (a1), . . . , f (ak−1).
However Mk ⊕ pk = Mk−1 is a most optimal such matching in Hk−1. Thus Nk ⊕ pk cannot be more optimal than Mk−1, a
contradiction. �

The case when qk exists and pk does not exist is absolutely similar to the above lemma. The only case that we are left
with is the case when both pk and qk exist. In this case our algorithm computes bothMk−1 ⊕ pk andMk−1 ⊕ qk and chooses
the more optimal of these two matchings to beMk. We now have to show thatMk is what we desire.

Lemma 4. Mk, the more optimal matching between Mk−1 ⊕ pk and Mk−1 ⊕ qk, is an optimal matching in Hk that matches all of

a1, . . . , ak and f (a1), . . . , f (ak).

Proof. It is obvious thatMk matches all of a1, . . . , ak and f (a1), . . . , f (ak). SupposeMk is not an optimal such matching, let
Nk be such a matching that is more optimal than Mk. The matching Nk has to match ak to either f (ak) or to s(ak). We will
show the following:

Claim 1. If Nk(ak) = f (ak), then Nk ≤O Mk−1 ⊕ pk.
Claim 2. If Nk(ak) = s(ak), then Nk ≤O Mk−1 ⊕ qk.

We know that either Nk(ak) = f (ak) or Nk(ak) = s(ak), which implies by Claims 1 and 2 that either Nk ≤O Mk−1 ⊕ pk or
Nk ≤O Mk−1⊕qk. BecauseMk is themore optimal ofMk−1⊕pk andMk−1⊕qk, we have:Mk−1⊕pk ≤O Mk andMk−1⊕qk ≤O Mk.
It thus follows from the transitivity of ≤O that Nk ≤O Mk. This contradicts our assumption that Nk is more optimal than Mk.
Hence, what we need to show are Claims 1 and 2.

Proof of Claim 1
If Nk(ak) = f (ak), then as we argued in the proof of Lemma 3, it follows thatMk−1 ⊕ pk and Nk contain the same subset of

edges of pk. Now consider Nk ⊕ pk: this is a matching in Hk−1 that matches all of a1, . . . , ak−1 and f (a1), . . . , f (ak−1). Since
Mk−1 is an optimal matching inHk−1 that matches all of a1, . . . , ak−1 and f (a1), . . . , f (ak−1), it follows that Nk ⊕pk ≤O Mk−1.
Hence by condition (c), Nk = (Nk ⊕ pk) ⊕ pk ≤O Mk−1 ⊕ pk. This finishes the proof of Claim 1.

The proof of Claim 2 is absolutely similar to the proof of Claim 1. �

This completes the proof of Theorem 1. We will now analyse the running time of Algorithm 3.1. The f - and s-posts of
all applicants can be computed in O(m) time. The main while loop of Algorithm 3.1 runs for n iterations and each iteration
takes O(n) time to construct the augmenting paths pi, qi and to compare Mi−1 ⊕ pi and Mi−1 ⊕ qi. Thus our algorithm runs
in O(n2 + m) time.



3186 T. Kavitha, M. Nasre / Discrete Applied Mathematics 157 (2009) 3181–3186

Acknowledgments

We thank the reviewers for their helpful comments.

References

[1] D.J. Abraham, R.W. Irving, T. Kavitha, K. Mehlhorn, Popular matchings, SIAM Journal on Computing 37 (4) (2007) 1030–1045.
[2] P. Gardenfors, Match making: Assignments based on bilateral preferences, Behavioural Sciences 20 (1975) 166–173.
[3] D. Gusfield, R.W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT Press, 1989.
[4] R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, K. Paluch, Rank-maximal matchings, ACM Transactions on Algorithms 2 (4) (2006) 602–610.
[5] R.W. Irving, P. Leather, D. Gusfield, An efficient algorithm for the optimal stable marriage, Journal of the ACM 34 (3) (1987) 532–543.
[6] M. Mahdian, Random popular matchings, in: Proceedings of the 7th ACM Conference on Electronic-Commerce, 2006, pp. 238–242.
[7] E. McDermid, R.W. Irving, Popular matchings: Structure and algorithms, in: University of Glasgow, Computing Science Department Research Report,

TR-2008-292, 2008. To appear in COCOON 2009.


	Optimal popular matchings
	Introduction
	The popular matching problem
	Problem definition
	Related results

	Preliminaries
	Our algorithm
	Acknowledgments
	References


