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Abstract: This paper presents active vibration control and morphing of thin plates using an array
of piezoelectric actuator-sensor system whose locations are determined by optimization. The sudden
application of control input for morphing leads to unwanted vibrations which are suppressed using the
piezoelectric actuator-sensor couples, which form a feedback control loop. Dynamic Inversion technique
is used to determine the control inputs to morph the plate and to suppress the vibrations in the process.
The Dynamic Inversion controlled system is compared to uncontrolled system and as a reference,
the results are compared with that of Linear Quadratic Controller. The partial differential equations
governing the behaviour of plate and piezoelectric actuation are solved using lower dimensional
projection method, following Design-then-Approximate (DTA) method, which will reduce spillover
effects. Two reference configurations are considered to perform simulations. The actuators are designed
for both vibration control and morphing since thin plates have poor damping characteristics and need
external damping. The displacement, velocity and error norm time histories are analysed and the
configuration achieved by the system by both controllers are compared.

Keywords: distributed systems, dynamic inversion, linear systems theory, piezoelectric actuators,
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1. INTRODUCTION

Many industries are incorporating thin, light weight, and smart
structures in their designs to improve the efficiency of struc-
tural components like morphing wing, satellite solar panels etc.
The most important structural element in these structures are
thin plates. One of the key issues in employing thin plates is
the poor damping characteristics with a lighter mass which
is more vulnerable to external disturbances. In order to sup-
press the unwanted vibrations, external damping should be
provided through actuators. Due to the electro-mechanical cou-
pling properties of piezoelectric materials, they have become
the right candidates as sensors and actuators. This lead to
the development of whole new field of smart thin structures
with actuated damping along with morphing abilities. Vibration
control of thin cantilever elastic plate excited by impulsive
transversal force at free corner is addressed in Caruso et al.
(2003). H2 control laws are used in the controller design based
on the finite element model with modal reduction of the system
with three piezoelectric patches. Prior to this study, much work
has been done with single piezoelectric actuators in the control
schemes. This study emphasizes on usage of multiple sensors
and actuation for controlling more complex structures. In Qiu
et al. (2007), vibrations of a cantilever plate with piezoelectric
sensors and actuators is controlled using positive position feed-
back and proportional-derivative control. The bending modes
are separated from torsional modes by applying Ritz’s method
to the plate equation. The optimal position of piezoelectric
patches are obtained based on the degree of observability and
controllability indices. The experimental and the simulations
show the effectiveness of the controller in suppressing the vi-

brations. Padhi and Balakrishnan (2007) presented a control
design approach combining the principles of dynamic inversion
and optimisation for a class of nonlinear distributed parameter
systems. The control theory is applied to both continuous and
discrete actuators based on design-then-approximate approach.
A real life temperature problem is solved to demonstrate the
potential of the proposed technique.
Decades of research have lead to a great deal of literature on
control of distributed parameter systems. Padhi and Ali (2009)
attempted to give a brief account on the chronological develop-
ments of this field of research with less mathematics to attract
a wider audience. Ali et al. (2009) developed a two staged state
feedback control design with first stage consisting of a primary
controller which provides the force required to obtain desired
closed loop response and second stage consisting of optimal
dynamic inversion to control the forces applied through MR
dampers. The proposed control design was simulated for the
study of benchmark highway bridge problem. Ali and Padhi
(2009) presented an active vibration control approach based
on optimal dynamic inversion for nonlinear Euler-Bernoulli
beams that utilises the nonlinear PDE and hence, it is free from
approximation errors. The performance of the control system
is demonstrated by simulation of beam with continuous and
discrete controllers.
In Sadek et al. (2014), active vibration control of rectangu-
lar plates integrated with piezoelectric sensors and actuators
is studied. An explicit control law is arrived using maximum
principle theory, a Hamiltonian functional, in two spatial di-
mensions. The system of equations are solved using modal ap-
proximation. In formulating maximum principle, a Hamiltonian
functional is introduced. Due to its uniqueness, the admissible
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Fig. 1. Differential element to derive equilibrium equations.

control function that maximises Hamiltonian forms the opti-
mal control. Active vibration control of circular plate, sand-
wiched within piezoelectric layers was studied in Khorshidi
et al. (2015). The sandwiched plate is excited by planar sound
waves and the transverse vibrations are controlled using Fuzzy
Logic Controller and Linear Quadratic Regulator. The system is
solved analytically along with Maxwell’s electricity equation to
get closed form solutions. Active vibration control of geomet-
rically nonlinear simply supported thin plates using continuous
and discrete controller based on Optimal Dynamic Inversion
technique is studied in Pradeesh and Ali (2016). Continuous
optimization, as well as discrete optimization with constraint
laws, are used to find the control inputs for the system.
In much of the references, the control theories are used on the
numerically approximated system equations or modal reduced
systems which can lead to spillover effects where the higher
modes of excitation are left out during approximation. This
paper investigates morphing of a thin plate, using an array of
piezoelectric sensors and actuators whose positions are opti-
mized, to attain a predefined reference displacement profile.
The input voltages to various patches are obtained using Dy-
namic Inversion (DI) control technique. The controller is de-
signed from the PDE and then approximated (DTA) to reduce
spillover effects. Linear Quadratic Regulator control scheme
is also used to compare the results of the DI controller. The
sensors and actuators have a dual role in morphing the can-
tilever plate as well as providing external damping towards the
vibrations of the structure.

2. MATHEMATICAL FORMULATION

A thin simply supported plate P is considered in Ω× [− h
2 ,

h
2 ]

where Ω ⊂ R2. According to the classical plate theory, Timo-
shenko and Woinowsky-Krieger (1959), the displacement field,
u(x1,x2,x3), where xi are the coordinate axes of the plate at a
given point in spatial domain, x̄ = (x1,x2,x3) is given as,

u = {u1,u2,u3}= {x3w,1,x3w,2,w} (1)
where w is the out of plane displacement at a point in plate
(x1,x2,x3), w,i is differentiation of w with respect to xi. ()

denotes tensor quantity of 2nd or higher order. The stress tensor
σ can be obtained from the curvature κ of displacement field.

σ =C : ε =C : x3 κ (2)
The bending moment tensor due to the stresses in the cross

section of plate are derived as,

M =

∫

x3

x3 σ dx3 (3)

M = D : κ
where, D =

∫
x3

x2
3 C dx3 is the bending stiffness of the plate, C

is the constitutive matrix of the material. The external, shear
forces and bending moments acting on a differential plate
element is shown in the Fig. 1. The transverse shear equilibrium

4 and moment equilibrium 5 equations are derived by equating
the shear forces Q and bending moments M in the differential
plate element.

∇ ·Q =−q (4)
∇ ·M =−Q (5)

By combining 4 & 5, yields the relation between the internal
moments and the external force applied to the plate.

∇ ·∇ ·M = q (6)

2.1 Piezoelectric Constitutive Relations

The constitutive relation for the piezoelectric material is given
by

σ =CE : ε − e : E (7)

D = eT : ε +ζ S : E

where, the superscript ( )E and ( )S denotes measurement at
constant electric field and at constant strain respectively, ( )T

denotes transpose of a matrix, D is the electric displacement
vector, E is the electric field vector, e is the piezoelectric tensor
and ζ is the dielectric tensor.
Assuming a linear variation of electric potential along the
thickness of piezoelectric patch, the electric field can be derived
as,

E =−∇Φz =−{0,0,1/h}T Φz (8)
The piezoelectric patches, attached to the plate, exerts a bending
moment on the plate due to the potential difference in the
piezoelectric material.
The addition of piezoelectric patches to the plate can be mathe-
matically defined by,

ρẅ+ cẇ+Dp∆2w = u(x̄, t) (9)

u(x̄, t) =
N

∑
m=1

ūmH

H defines the domain of the mth patch, ūm is the force generated
by nth patch.

2.2 Dynamic Inversion Control

The control forces are applied through the actuators attached to
the plate to suppress the vibrations and to reach the reference
configuration i.e. w(x, t) → wre f & ˙w(x, t) → 0 as t → ∞,
where wre f is the reference output. In the Dynamic Inversion
technique, the control force is obtained by enforcing the system
to follow a sliding surface of stable error dynamics defined by
the same order of equation as the system. The second order
plate dynamics with output is given as,

ρẅ+ cẇ+Dp∆2w =Hūm (10)
Y =Gw

w ∈ Rn, ūm ∈ Rm,Y ∈ Rp

where Y is the output of the system, say sensor potential, m and
p are the number of actuators and sensors respectively, w is the
configuration, u are the control variables, G defines domains
of sensors. To obtain the control variables, the error vector is
defined as,

E(t) = Y (t)−Y ∗(t); (11)
where Y ∗ is the reference output. The controller is designed
such that as t →∞, E(t)→ 0 and Y (t)→Y ∗. To ensure reaching
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is the constitutive matrix of the material. The external, shear
forces and bending moments acting on a differential plate
element is shown in the Fig. 1. The transverse shear equilibrium

4 and moment equilibrium 5 equations are derived by equating
the shear forces Q and bending moments M in the differential
plate element.

∇ ·Q =−q (4)
∇ ·M =−Q (5)

By combining 4 & 5, yields the relation between the internal
moments and the external force applied to the plate.

∇ ·∇ ·M = q (6)

2.1 Piezoelectric Constitutive Relations

The constitutive relation for the piezoelectric material is given
by

σ =CE : ε − e : E (7)

D = eT : ε +ζ S : E

where, the superscript ( )E and ( )S denotes measurement at
constant electric field and at constant strain respectively, ( )T

denotes transpose of a matrix, D is the electric displacement
vector, E is the electric field vector, e is the piezoelectric tensor
and ζ is the dielectric tensor.
Assuming a linear variation of electric potential along the
thickness of piezoelectric patch, the electric field can be derived
as,

E =−∇Φz =−{0,0,1/h}T Φz (8)
The piezoelectric patches, attached to the plate, exerts a bending
moment on the plate due to the potential difference in the
piezoelectric material.
The addition of piezoelectric patches to the plate can be mathe-
matically defined by,

ρẅ+ cẇ+Dp∆2w = u(x̄, t) (9)

u(x̄, t) =
N

∑
m=1

ūmH

H defines the domain of the mth patch, ūm is the force generated
by nth patch.

2.2 Dynamic Inversion Control

The control forces are applied through the actuators attached to
the plate to suppress the vibrations and to reach the reference
configuration i.e. w(x, t) → wre f & ˙w(x, t) → 0 as t → ∞,
where wre f is the reference output. In the Dynamic Inversion
technique, the control force is obtained by enforcing the system
to follow a sliding surface of stable error dynamics defined by
the same order of equation as the system. The second order
plate dynamics with output is given as,

ρẅ+ cẇ+Dp∆2w =Hūm (10)
Y =Gw

w ∈ Rn, ūm ∈ Rm,Y ∈ Rp

where Y is the output of the system, say sensor potential, m and
p are the number of actuators and sensors respectively, w is the
configuration, u are the control variables, G defines domains
of sensors. To obtain the control variables, the error vector is
defined as,

E(t) = Y (t)−Y ∗(t); (11)
where Y ∗ is the reference output. The controller is designed
such that as t →∞, E(t)→ 0 and Y (t)→Y ∗. To ensure reaching
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the target response, positive gains Kv and Kp are selected and
the error dynamics is defined as

Ë +KvĖ +KpE = 0 (12)
Keeping the reference outputs Ẏ ∗ and Ÿ ∗ as 0, the control
variable is obtained as

GHū =−KpGw+GDp∆2w− (KvG−Gc)ẇ+KpY ∗ (13)
Au = b

Selection of Kv and Kp is particular to the problem and designer.
Solving for Au = b, the control variable can be obtained. If the
matrix A is not a square matrix, the system of equations can be
solved in two cases.

Case 1: p>m The problem can be solved by least squares
method,

u = A+b (14)
This provides optimum values for u. A+ denotes Moore-
Penrose pseudoinverse.

Case 2: p<m Optimal Dynamic Inversion technique can be
used. For the same system in (10), the error dynamics (12) and
the constraint (13), a cost function is constructed to minimize
the control variable.

J =
1
2
(uT Ru) (15)

Subjected to Au = b
So, the performance index is constructed as,

J̄ =
1
2
(uT Ru)+λ T (Au−b) (16)

Optimising the cost function, the control variable can be ob-
tained by finding λ . The control variable is given as,

u = R−1AT (AR−1AT )−1b (17)
Asymptotic tracking is guaranteed for Optimal Dynamic Inver-
sion technique based control.
Dynamic Inversion technique is very sensitive to the control pa-
rameters Kp & Kv. An approximate estimation of the parameters
can be obtained by applying the control variable to the equation
and approximating the PDE using projection method.

ẅ+[C′]ẇ+[K′]w = [F ′]Y ∗ (18)
The modified damping, [D′], and stiffness, [S′], of the system, as
given in (18), should be positive definite in order for the system
to reach equilibrium. By insisting this condition, the optimal
estimate of Kp and Kv values can be obtained.

2.3 Linear Quadratic Regulator

The aim of optimal control is operating a dynamical system
with minimum cost. The system is defined using linear dif-
ferential equations and the cost function is quadratic. For an
infinite horizon continuous system, the state space form can be
constructed from the differential equations.

Ẋ = AX +Bu (19)
And the cost function is defined as,

JLQR =
∫ ∞

0

(
XT QX +uT Ru

)
dt (20)

The feedback control law that minimizes the cost function is
given as

u =−KX (21)

where K = R−1BT P

P is found by solving the contnuous time Riccati differential
equation.

AT P+PA−PBR−1BT P+Q = 0 (22)
The new system dynamics will be,

Ẋ = AcX (23)
Ac = A−BK

2.4 Solution of PDE

The configuration space of distributed parameter systems is
infinite dimensional. An optimal solution is obtained by pro-
jecting the infinite dimensional configuration to a finite dimen-
sional vector space.
Let the configuration of the system be denoted by Ψ. The
configuration of the system, in the space Ω, is derived from the
differential equation,

L2 (Ψ)− f = 0 (24)

where L2 is a differential operator defined over the domain
Ω and f a forcing function. Let V be a finite dimensional
vector space defined by independent vectors {V1,V2, ..,Vn}. The
system, defined in (24), is projected onto the space V. This leads
to bilinear symmetric system of equations.

N

∑
k=1

∫

δΩk

V
(
L2(Ψ)− f

)
dδΩk = 0

N

∑
k=1

∫

δΩk

(L(V)L(Ψ)−V f ) dδΩk = 0 (25)

The configuration of the system can be written as a linear
combination of the functions Vn.

Ψ =
N

∑
n=1

ψnVn(x1,x2) (26)

Vn(x1,x2) = X(x1)Y (x2) (27)
where Vn is a set of decoupled shape functions which are
admissible for the system boundary conditions. Substituting
(26) in (25), the algebraic system of equations are arrived.[

∑
i, j

∫

δΩk

L2(Vi)L2(Vj)dδΩk

]
{ψ}−∑

i

∫

δΩk

Vi f dδΩk = 0

(28)
By applying the technique to (10), the dynamical system is
obtained in matrix set of equations. The inertial and stiffness
forces of the system with plate and piezoelectric patches are
modelled directly using projection method. Derivation of piezo-
electric and dielectric stiffness matrices are given in Allik and
Hughes (1970). The combined set of equations are given as,

[M] ¨{ψ}+[Kψψ ]{ψ}+[Kψφ ]{φ}= F(t)
[Kφψ ]{ψ}+[Kφφ ]{φ}= Q(t) (29)

where [M] is the combined mass matrix, [Kψψ ] is the elastic
stiffness matrix, [Kψφ ] = [Kφψ ]

T is the piezoelectric stiffness
matrix, [Kψψ ] is the dielectric stiffness matrix, F & Q are the
force and charge vectors respectively. The system of equations
in (29) is common for both sensor potentials φs and actuator
potentials φa. These equations are used to simulate uncontrolled
plate behaviour when actuation is applied.
The system of equations after rearranging for actuator inputs is
given as,

[M] ¨{ψ}+[Kψψ ]
∗{ψ}= [B]

(
{φ}−{φ}re f

)
(30)
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where [Kψψ ]
∗ is net effective stiffness matrix of the system after

applying the control variables. The system of equations with the
control forces is of the form,

[M]ψ̈ +[Kψψ ]
∗ψ =

N

∑
i=1

Biφi (31)

where Bi is the force vector corresponding to ith actuator input.
In the eigenspace, the B consists of the modal participation
factors for each mode and actuator.

2.5 Optimization of Patch Location

An optimal position method of piezoelectric sensors and actu-
ators for the plate system to attain the defined shape is given
according to the maximum modal participation factor of the
sensors and actuators. Based on the sizes of sensors and ac-
tuators, an optimal location is derived for collocated sensors
and actuators. The cost function is a squared sum of the modal
participation factors of an actuator with its arbitrary position for
different modes. The cost function is defined as,

J(xa,ya) = 1/2∗B(xa,ya)
T B(xa,ya) (32)

where (xa,ya) is the centre coordinate of the piezoelectric patch.
The width of the patches are fixed in the model itself. The
cost function in 32 is nonlinear and is used to find the optimal
locations for the centre of actuator-sensor couple for different
modes as well as combination of modes. The cost function gives
the effectiveness of actuator for various positions. The number
of local maxima of the function provides the minimum number
of actuators to be provided to achieve a shape. The hierarchy of
importance of actuators can be determined by the value of the
cost function at different maxima.

3. NUMERICAL SIMULATION

3.1 Location Optimization

the simulation studies of optimal placement of piezoelectric
actuator-sensor couples are carried out. A unit square plate
is considered to determine the optimal locations for various
modes. The size of piezoelectric patch is taken as 25% area
of the plate. Fig. 2 and Fig. 3 show 1st four modes and
corresponding optimal positions of patches respectively. Using
the optimal position coordinates, the piezoelectric patches are
modelled along with the plate.
For the simulation of simply supported thin plate for vibration
control and shape morphing, a combined mode shape consisting
of modes 1, 2 & 3 is taken as reference displacement profile as
shown in Fig. 4. Based on the cost function of first four modes,
four locations of maximum performance is considered to attach
piezoelectric patches.

3.2 Morphing and Vibration Control

A thin simply supported plate is considered fo numerical sim-
ulations. The dimensions of the plate are 200× 200× 0.1mm.
The material and piezoelectric properties are given in the table
1. Based on the optimal placement locations obtained from Fig.
4, four piezoelecrtic patches of size 5×5mm is attached to the
base plate in bi-morph configuration. Damping is not consid-
ered for the current system in order to study the characteristics
of the control scheme. The controller for the plate system is
designed from the equations and are applied. The control volt-
ages are applied to the actuators depending on the position and

(a) Mode 1.

(b) Mode 2.

(c) Mode 4.

Fig. 2. Mode shapes of unit square plate.

the difference in the cuurent and reference configurations. The
bottom patches act as sensors for feedback.

Table 1. Material Properties
Description Parameter Value

Young’s Modulus (alum) Ealum 69GPa
Young’s Modulus (piezo) Epiezo 69GPa

Poisson’s ratio ν(alum, piezo) 0.3
Density (alum) ρalum 2700kg/m3

Density (piezo) ρpiezo 7500kg/m3

Piezo Dielectric ζ S 1.6×10−8

Piezoelectric strain e −12.5
Capacitance C 6.3×10−7

4. DISCUSSIONS

The time evolution of the states is obtained by solving the equa-
tions. The time histories of the displacement, velocity and dis-
placement error norms with and without controllers are shown
in Fig. 6, Fig. 7 and Fig. ?? respectively. The reference shape
is chosen as a combination of modes 2 & 3 in order to verify
working of the controller. The optimal placement method can
be extensively used to obtain the patch locations.
The displacement norms time history in Fig. 6 shows effective-
ness of DI controller. The vibrations are suppressed by both
the DI and LQR controllers. Compared to LQR, which has
very little vibrations at the end. The velocity norm in Fig. 7
also shows that both the controlled systems damped out much
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where [Kψψ ]
∗ is net effective stiffness matrix of the system after

applying the control variables. The system of equations with the
control forces is of the form,

[M]ψ̈ +[Kψψ ]
∗ψ =

N

∑
i=1

Biφi (31)

where Bi is the force vector corresponding to ith actuator input.
In the eigenspace, the B consists of the modal participation
factors for each mode and actuator.

2.5 Optimization of Patch Location

An optimal position method of piezoelectric sensors and actu-
ators for the plate system to attain the defined shape is given
according to the maximum modal participation factor of the
sensors and actuators. Based on the sizes of sensors and ac-
tuators, an optimal location is derived for collocated sensors
and actuators. The cost function is a squared sum of the modal
participation factors of an actuator with its arbitrary position for
different modes. The cost function is defined as,

J(xa,ya) = 1/2∗B(xa,ya)
T B(xa,ya) (32)

where (xa,ya) is the centre coordinate of the piezoelectric patch.
The width of the patches are fixed in the model itself. The
cost function in 32 is nonlinear and is used to find the optimal
locations for the centre of actuator-sensor couple for different
modes as well as combination of modes. The cost function gives
the effectiveness of actuator for various positions. The number
of local maxima of the function provides the minimum number
of actuators to be provided to achieve a shape. The hierarchy of
importance of actuators can be determined by the value of the
cost function at different maxima.

3. NUMERICAL SIMULATION

3.1 Location Optimization

the simulation studies of optimal placement of piezoelectric
actuator-sensor couples are carried out. A unit square plate
is considered to determine the optimal locations for various
modes. The size of piezoelectric patch is taken as 25% area
of the plate. Fig. 2 and Fig. 3 show 1st four modes and
corresponding optimal positions of patches respectively. Using
the optimal position coordinates, the piezoelectric patches are
modelled along with the plate.
For the simulation of simply supported thin plate for vibration
control and shape morphing, a combined mode shape consisting
of modes 1, 2 & 3 is taken as reference displacement profile as
shown in Fig. 4. Based on the cost function of first four modes,
four locations of maximum performance is considered to attach
piezoelectric patches.

3.2 Morphing and Vibration Control

A thin simply supported plate is considered fo numerical sim-
ulations. The dimensions of the plate are 200× 200× 0.1mm.
The material and piezoelectric properties are given in the table
1. Based on the optimal placement locations obtained from Fig.
4, four piezoelecrtic patches of size 5×5mm is attached to the
base plate in bi-morph configuration. Damping is not consid-
ered for the current system in order to study the characteristics
of the control scheme. The controller for the plate system is
designed from the equations and are applied. The control volt-
ages are applied to the actuators depending on the position and

(a) Mode 1.

(b) Mode 2.

(c) Mode 4.

Fig. 2. Mode shapes of unit square plate.

the difference in the cuurent and reference configurations. The
bottom patches act as sensors for feedback.

Table 1. Material Properties
Description Parameter Value

Young’s Modulus (alum) Ealum 69GPa
Young’s Modulus (piezo) Epiezo 69GPa

Poisson’s ratio ν(alum, piezo) 0.3
Density (alum) ρalum 2700kg/m3

Density (piezo) ρpiezo 7500kg/m3

Piezo Dielectric ζ S 1.6×10−8

Piezoelectric strain e −12.5
Capacitance C 6.3×10−7

4. DISCUSSIONS

The time evolution of the states is obtained by solving the equa-
tions. The time histories of the displacement, velocity and dis-
placement error norms with and without controllers are shown
in Fig. 6, Fig. 7 and Fig. ?? respectively. The reference shape
is chosen as a combination of modes 2 & 3 in order to verify
working of the controller. The optimal placement method can
be extensively used to obtain the patch locations.
The displacement norms time history in Fig. 6 shows effective-
ness of DI controller. The vibrations are suppressed by both
the DI and LQR controllers. Compared to LQR, which has
very little vibrations at the end. The velocity norm in Fig. 7
also shows that both the controlled systems damped out much
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(a) Cost function J for Mode 1.

(b) Cost function J for Mode 2.

(c) Cost function J for Mode 4.

Fig. 3. Cost functions J for different modes.

(a) Combined modes 1, 2 & 3.

(b) Cost function J for combined modes 1, 2 & 3.

Fig. 4. Combined mode and its cost function.

quickly than the uncontrolled system. The controller inputs for
each actuator

(a) Reference Configuration

(b) Morphed Configuration

Fig. 5. Reference and morphed configurations.

Fig. 6. Displacement Norm of the plate.

Fig. 7. Velocity Norm of the plate.

The target shape is achieved with very minimal error by both
controllers which is evident from the difference betwwen the
target displacement norm (dash-dot line) and the displacement
norm at any time instant of both controllers. Since the piezo-
electric actuators and sensors are placed at optimal locations,
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Fig. 8. DI controller input.

Fig. 9. LQR controller input.

the patches are able to morph the plate with minimum possible
error. If the number of patches are reduced from its optimum
required number, the controller will not be able to morph to
the reference profile without errors. The same configuration of
patches cannot be used for more than four modes because it
may lead to controllability and observability issues.
The advantage of using the DI controller is that by back calcu-
lating the control parameters, the system can be made to behave
like a first order dynamical system. Also, this controller is very
simple to implement for both linear and nonlinear systems.

5. CONCLUSION

In this present paper, the thin plate system is modelled us-
ing projection method. By constructing a cost function from
the state space matrices, the optimal location of piezoelectric
patches for various mode shapes are obtained. A reference con-
figuration is considered for morphing and optimum number of
piezoelectric patches and their locations are determined. The ar-
ray of piezoelectric patches are attached to the plate in bimorph
configuration and are used as sensors and actuators to morph the
thin plate and suppress the vibrations due to the application of
control inputs. The stiffness and mass of the system consist both
the plate and piezoelectric sensors and actuators. The control
inputs are obtained by dynamic inversion technique. A brief
description and derivation of the technique for the problem are
carried out. For comparison, linear quadratic regulator control
scheme is also used.
The control inputs are derived such that it dictates the plate to
attain prescribed configuration. The controller is designed at
first and the whole system is approximated to solve to reduce
spillover issues. The simulation results reveal that the controller
is effective in suppressing the vibrations and also to achieve the
given configurations. This methodology plays important role

help in developing technologies like morphing structures using
a thin plate or shell like structures.
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