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Abstract—We determine the capacity-optimal transmis-
sion strategy for a multiple-input-multiple-output (MIMO)
Gaussian channel under multiple power constraints,
namely joint sum power constraint (SPC), per group power
constraints (PGPC), and per antenna power constraints
(PAPC). First, we focus on cases where we can analytically
determine the optimal transmit strategy under Joint SPC-
PGPC-PAPC. We obtain results for the following cases: (1)
nt × 1 Multiple-Input-Single-Output (MISO), (2) MIMO
channel with full column rank and full rank optimal
covariance matrix, and (3) 2 × nr MIMO channel. These
results generalize some recent results for the special cases
of PAPC only and Joint SPC-PAPC. Then, we propose a
Projected Factored Gradient Descent (PFGD) algorithm
for the general MIMO Gaussian channel under Joint
SPC-PGPC-PAPC including the possibility of additional
rank constraints. This algorithm matches the solution of
standard convex optimization tools with lower complexity.
The algorithm also overcomes the limitations of existing
algorithms in terms accuracy and applicability to low rank
channels.

I. INTRODUCTION

THE capacity of multiple-input multiple-output

(MIMO) Gaussian channels under a sum-power

constraint (SPC) was obtained in [3]. Gaussian signalling

with a transmit covariance matrix determined using the

singular value decomposition (SVD) of the channel

matrix and a water-filling algorithm is optimal under the

SPC.

In general, a multi-antenna system may have multi-

ple simultaneous transmit power contraints. The SPC

limits the total power used by the transmitter. Such

a constraint is usually imposed by regulations and by

the need to limit the total energy consumption. Per-

antenna power contraints (PAPC) and per-group power

constraints (PGPC) may arise due to hardware limita-

tions in sharing the total available power across antennas.

In distributed antenna systems, the transmit antennas are

spread across multiple locations and are not driven by

the same power amplifier. In such a setting, the total
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power cannot be arbitrarily allocated across the differ-

ent geographically separated antennas. Such a situation

arises in cellular systems using coordinated multipoint

transmission (CoMP) [4] and in cell-free massive MIMO

[5]. If the multiple transmission points in CoMP are

single antenna transmitters, we get PAPC. If they are

multi-antenna transmission points, we get PGPC. PAPC

or PGPC also arise in the computation of the cutset

bound in network information theory, eg., [6, Appendix

B] and [7, Sec. III]. In the evaluation of the cutset

bound for a network, the information flow across any cut,

from the transmitters on one side to the receivers on the

other side, is usually upper bounded by the cooperative

MIMO capacity. However, when each node has its own

power constraint in the network, we get MIMO capacity

under PAPC or PGPC depending on whether the node

has single or multiple transmit antennas. Therefore,

it is useful to determine the optimal MIMO scheme

under multiple simultaneous power constraints, i.e., SPC,

PAPC and PGPC.

While Gaussian signaling is optimal even under mul-

tiple power constraints, there is no general analytical

solution for the optimal transmit covariance matrix and

the capacity as in the case of SPC. Exact analytical

solutions are limited to the MISO and some full rank

MIMO settings. The MISO case has been studied in

[8–12]. In [8], the capacity and optimal covariance

matrix are obtained in closed form for the multiple-

input single-output (MISO) case under PAPC. In [9, 10],

the MISO case under Joint SPC-PAPC has been solved.

PGPC has been considered for the more general MISO

broadcast channel in [11, 12], and numerical algorithms

based on uplink-downlink duality have been proposed for

transmitter optimization in this broadcast setting. In [13],

a closed-form solution for MIMO capacity under PAPC

is obtained when the channel matrix has full column rank

and the optimal covariance matrix is also full rank.

Capacity of MIMO Gaussian channels under PAPC

has been studied in [14, 15]. In [14], an iterative algo-

rithm is proposed to compute the capacity for single-

stream MIMO under PAPC and multi-stream MIMO

with per-stream PAPC. No closed form solutions are
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provided in [14]. In [15], an algorithm to compute the

MIMO capacity under PAPC is proposed for the case

when the channel matrix has full column rank or full

row rank. MIMO capacity under PGPC has been studied

in [16]. However, the closed form solution in [16] is

only an approximate solution and is exact only for the

case considered in [13]. In [17], an iterative algorithm

to determine MIMO capacity under Joint SPC-PAPC is

proposed based on the approximate solution under PGPC

in [16].

In this paper, we study MIMO capacity under multiple

simultaneous power constraints - SPC, PAPC and PGPC.

First, we focus on analytical solutions under Joint SPC-

PGPC-PAPC. We provide solutions for the (1) MISO

channel, (2) MIMO channel with full column rank when

the optimal covariance matrix is also full rank, and (3)

2× nr MIMO channel. For the MISO case, our results

generalize the results in [9, 10] to the case of Joint-

SPC-PGPC-PAPC. Then, for the general MIMO case,

we propose a projected factored gradient descent (PFGD)

algorithm to find the optimal transmission strategy under

Joint SPC-PGPC-PAPC. In this method, instead of solv-

ing for the covariance matrix, the algorithm determines

the precoding/beamforming matrix (i.e., square root of

the covariance matrix) directly. Numerical results show

that the solution from the PFGD algorithm matches with

the solution provided by standard convex optimization

packages like CVX [18, 19], but with lower complexity.

The solution also matches the solution in [15] for the

special case of PAPC for channel matrices with full

column rank or full row rank. While [16] and [17]

provide solutions for the PGPC and Joint SPC-PAPC

cases, respectively, the solutions are approximate and

do not match CVX. For the PFGD algorithm, we also

include the possibility of a rank constraint in addition to

Joint SPC-PGPC-PAPC. Such a constraint is motivated

by systems where the number of transmit antennas is

large but the number of spatial streams transmitted

is limited by the number of receive antennas or the

rank of the channel. The PFGD algorithm can take

advantage of low rank structure for a reduced complexity

solution. Both the Joint SPC-PGPC-PAPC and the rank-

constrained Joint SPC-PGPC-PAPC problems have not

been studied earlier in the literature.

The rest of the paper is organised as follows. In

Section II, we discuss the system model and the different

power and rank constraints. In Section III, we present

the results for MISO under Joint SPC-PGPC-PAPC.

In Section IV, we present the analytical results for

some special cases of the MIMO channel under Joint

SPC-PGPC-PAPC. In Section V, we propose the PFGD

algorithm to find the optimal transmission strategy for

the general MIMO case under Joint-SPC-PGPC-PAPC

and rank constraints. In Section VI, we present numerical

results, and summarize the work in Section VII.

II. SYSTEM MODEL

Consider a MIMO Gaussian channel with nt transmit-

ters and nr receivers. The channel output vector at the

receiver is given by the linear model

y = Hx+ z, (1)

where H ∈ Cnr×nt is the channel matrix which is

assumed to be perfectly known at both transmitter and

receiver, y ∈ Cnr is the received vector, x ∈ Cnt is

the transmit vector, and z ∈ Cnr is zero mean circularly

symmetric complex Gaussian noise with E[zzH ] = Inr
.

Let E[xxH ]
△
= Q = [Qij ] be the transmit covariance

matrix.

We consider MIMO capacity under three simultaneous

power constraints, namely SPC, PAPC and PGPC. These

constraints are briefly described here.

1) Sum Power Constraint (SPC): Under SPC, the

total average transmit power across the nt transmit

antennas is limited to Ptot. Mathematically, the set of

all feasible transmit covariance matrices Q that satisfy

SPC Ptot is given by Sspc := {Q � 0 : tr(Q) ≤ Ptot}.
2) Per-antenna Power Constraints (PAPC): Under

PAPC, the average transmit power of the ith transmit

antenna is limited to P̂i. The set of feasible transmit

covariance matrices Q that satisfy PAPC is Spapc :=
{Q � 0 : Qii ≤ P̂i, i = 1, 2, · · · , nt}.

3) Per-group Power Constraints (PGPC): The nt

transmit antennas are partitioned into g disjoint groups of

antennas with nk antennas in the kth group. Let I(k) be

the set of indices of the antennas in kth group. Under

PGPC, the kth group of antennas has an average sum

transmit power constraint P̃k. The feasible set for Q in

this case is Spgpc := {Q � 0 :
∑

j∈I(k)

Qjj ≤ P̃k; k =

1, 2, · · · , g}.
In summary, we solve the following Joint SPC-PGPC-

PAPC problem.

max
Q

log |Inr
+HQHH |

s.t. Q ∈ SJ
△
= Sspc ∩ Spgpc ∩ Spapc.

(2)

We denote the optimal transmit covariance matrix for

this problem as Q(J).

In Section V, we also consider the possibility of a

rank constraint on the transmit covariance matrix, i.e.,

rank(Q) ≤ r, in addition to power constraints. If we

choose a large enough r, for example r = min{nt, nr},
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then the rank constrained problem is equivalent to prob-

lem without rank constraint in (2). The rank constraint is

motivated by applications where the number of transmit

antennas are large, but the number of spatial streams

is limited by the number of receivers or by the chan-

nel rank. The rank-constrained Joint SPC-PGPC-PAPC

problem is:

max
Q

log |Inr
+HQHH |

s.t. Q ∈ Sspc ∩ Spgpc ∩ Spapc, rank(Q) ≤ r.
(3)

For this problem, we denote the constraint set SR and

the optimal transmit covariance matrix Q(R).

III. MISO UNDER JOINT SPC-PGPC-PAPC

In this section, we solve the Joint SPC-PGPC-PAPC

problem in (2) for a MISO channel. The channel matrix

for the MISO channel is H = [h1, h2, · · · , hnt
]. We

will denote this H as hT . The MISO problem can be

written as:

max
Q∈SJ

hTQh∗, (4)

where h∗ denotes the conjugate of h. First, we note that

it is sufficient to consider the case where Ptot ≤
g∑

i=1

P̃i

and P̃i ≤
∑

j∈I(i)

P̂j , ∀i = 1, 2, · · · , g. If Ptot >
g∑

i=1

P̃i,

then the SPC is redundant and we can set the sum power

constraint Ptot =
g∑

i=1

P̃i without any loss in capacity.

Similarly for any i, if P̃i >
∑

j∈I(i)

P̂j , we can set P̃i =

∑
j∈I(i)

P̂j without any loss in capacity.

First, we observe in Proposition 1 that the optimal

solution uses the full available power Ptot.

Proposition 1. For Joint SPC-PGPC-PAPC, with Ptot ≤∑g
k=1 P̃k, and P̃i ≤

∑
j∈I(i)

P̂j , ∀i = 1, 2, · · · , g, the

optimal strategy Q(J) uses all the sum power, i.e.,

tr(Q(J)) = Ptot.

Proof. See Appendix A. This proof relies on the ob-

servation that if Q1 − Q2 is positive definite, the rate

achieved with Q1 is larger than the rate achieved with

Q2.

For the MISO channel, it is already known that

beamforming, i.e., rank-one transmission, is optimal for

under SPC alone [3], under PAPC alone [8] and under

Joint SPC-PAPC [9]. In the following proposition, we

show the optimality of rank-one transmission for general

Joint SPC-PGPC-PAPC problem. The main assumption,

without loss of generality, is that hi 6= 0 for each

i. In case any hi = 0, we can always remove the

corresponding antenna from the model and consider the

other antennas alone.

Proposition 2. (Optimality of beamforming) For a MISO

channel h ∈ Cnt×1 with hi 6= 0, ∀i ∈ {1, 2, · · · , nt},
under Joint SPC-PGPC-PAPC, beamforming is the op-

timal transmission strategy, i.e., rank(Q(J)) = 1.

Proof. See Appendix B. We argue that the rank of the

optimal transmission scheme is upper bounded by the

rank of the channel, which is 1 in the MISO case.

Now, given Proposition 2, let q(J) be the optimal

beamforming vector corresponding to optimal Q(J), i.e.,

Q(J) = q(J)q(J)H . The next Lemma follows directly

from [9, Lemma 1].

Lemma 1. (Phase of the entries of the optimal beam-

former) The phase of the jth element q
(J)
j of q(J) is

equal to negative of the phase of hj , j = 1, 2, · · · , nt,

i.e.,

q(J) ∈ QJ :=

{
q : q =

[√
P1h

∗
1

|h1|
,

√
P2h

∗
2

|h2|
, · · · ,

√
Pnt

h∗
nt

|hnt
|

]
,qqH ∈ SJ

}
.

Here Pj denotes the transmit power of the jth an-

tenna.

Proof. The proof in [9] is written for problem under

Joint SPC-PAPC. However, the same steps apply for the

Joint SPC-PGPC-PAPC problem.

From Proposition 2 and Lemma 1, the problem of

finding the optimal covariance matrix Q(J) now re-

duces to finding the optimal power allocation for each

antenna. We will denote this optimal power allocation

P
(J)
1 , P

(J)
2 , . . . , P

(J)
nt . While solving for this optimal

power allocation, we will consider two relaxations of the

Joint SPC-PGPC-PAPC problem, namely the Joint SPC-

PGPC problem and the SPC problem, in the intermediate

steps. We will denote the solution to the Joint SPC-PGPC

problem by P
(1)
1 , P

(1)
2 , . . . , P

(1)
nt and the solution to the

SPC problem by P
(2)
1 , P

(2)
2 , . . . , P

(2)
nt .

The optimal solution P
(J)
1 , P

(J)
2 , . . . , P

(J)
nt , for the

Joint SPC-PGPC-PAPC problem is determined as shown

in the flow chart in Fig. 1. The channel H and the power

constraints are the inputs. First, we compute the optimal

powers for the Joint SPC-PGPC problem as derived

in Theorem 1 in this section. Then, we check if this

solution P
(1)
1 , P

(1)
2 , . . . , P

(1)
nt satisfies PAPC. If PAPC is

3
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Input:

G = {1, · · · , g}, I(k), k ∈ G,

I = {1, 2, · · · , nt}, H = h,

PGPC: P̃j , j ∈ G;

PAPC: P̂i, i ∈ I , SPC: Ptot

Compute optimal powers

P
(1)
i , i ∈ I , under Joint SPC-

PGPC with P̃j , ∀j ∈ G, Ptot

Is PAPC violated?

Check if for any

i ∈ I;P
(1)
i > P̂i

Set Pk = {j ∈ I(k) :

P
(1)
j > P̂j}, k ∈ G

Output:

Optimal

powers

P
(J)
j , ∀j =
{1, · · · , nt}

Set antenna powers P
(J)
i ←

P̂i, ∀i ∈ Pk, k ∈ G

Formulate Joint SPC-PGPC

problem for remaining

antennas: Set h = [hi]
T
{i∈Z},

where Z = I\{Pk, k ∈ G},
P̃k ← P̃k −

∑
i∈Pk

P̂i, k ∈ G,

Ptot ← Ptot −
∑
k∈G

∑
i∈Pk

P̂i,

I(k) ← I(k)\Pk, k ∈ G

no

yes

Fig. 1: Flow chart to find optimal powers for MISO under

Joint-SPC-PGPC-PAPC

satisfied, then we have the optimal Joint SPC-PGPC-

PAPC solution to be the same as the Joint SPC-PGPC

solution. If PAPC is violated for some antennas, then we

can show that these antennas are allocated the maximum

power allowed by PAPC in the final Joint SPC-PGPC-

PAPC solution. The justification for this step is based on

the following Lemma similar to [9, Lemma 2].

Lemma 2. Let C ⊆ I , {1, 2, · · · , nt}, and S(C) :=
{Q � 0, tr(Q) ≤ Ptot,

∑
j∈I(k)

Qjj ≤ P̃k, k ∈ G,Qii ≤

P̂i, i ∈ C}. Let P
(S(C))
i be the optimal power allocation

under the power constraint set S(C). Let D := {i ∈
I\C : P

(S(C))
i > P̂i} and C ′ = C ∪D. If D 6= φ, then

P
(S(C′))
i = P̂i, ∀i ∈ D.

Proof. The proof by contradiction uses an argument

similar to the proof of Lemma 2 in [9] and is skipped.

It is shown that if P
(S(C′))
i < P̂i, for any i ∈ D,

then P
(S(C))
i could not have been the optimal power

allocation under the power constraint set S(C). This

mainly relies on the fact that each PAPC constraint is

on a different power variable.

Therefore, once we check PAPC for the Joint SPC-

PGPC solution, we know the optimal power under Joint

SPC-PGPC-PAPC for at least one antenna. Now, we

can remove the antennas whose optimal power have

been determined and formulate a new Joint SPC-PGPC

problem by modifying P̃k, Ptot and I(k) as described

in Fig. 1. Repeating the above steps, we determine the

optimal Joint SPC-PGPC-PAPC solution in at most nt

steps.

As mentioned above, the optimal solution for the Joint

SPC-PGPC problem is given in the following Theorem.

Theorem 1. (Closed form solution for Joint SPC-PGPC

problem) Suppose that we order groups such that
∑

j∈I(1)

|hj |2

P̃1

≥

∑
j∈I(2)

|hj |2

P̃2

≥ · · · ≥

∑
j∈I(g)

|hj |2

P̃g

(5)

is satisfied. Let antenna j belong to group i,

i.e., j ∈ I(i). Then, the optimal powers P
(1)
j ,

j = {1, 2, · · · , nt} are given by

P
(1)
j =





(
P̃i

∑

r∈I(i)

|hr|2

)
|hj |2 if i = 1, 2, · · · , k




Ptot−
k
∑

j=1
P̃j

∑

r∈I(i),

∀i≥k+1

|hr|2


 |hj |2 if i = k + 1, · · · , g

,

where k is the number of active PGPC constraints and

is determined by the least solution of

Ptot −
k∑

j=1

P̃j

∑
j∈I(i),

∀i≥k+1

|hj |2
≤ P̃k+1∑

j∈I(k+1)

|hj |2
. (6)

Proof. See Appendix C.

We end this section with the following remarks.

• The above Joint SPC-PGPC result in Theorem 1

generalizes the closed form solution in [10] from

the Joint SPC-PAPC to the Joint SPC-PGPC case.

• In the proof of Theorem 1, we explicitly show how

the closed form solution is obtained by first ordering

the groups and solving a sequence of SPC problems.

One of the important steps here is to identify the

criteria for ordering in (5).

• For the case where each group has just one antenna,

i.e., Joint SPC-PAPC, this shows how the closed

form result in [10] can be obtained by ordering the

antennas and then using the procedure in [9].

• We have also shown how the Joint SPC-PGPC

solution can be used to solve the more general Joint

SPC-PGPC-PAPC problem.

IV. SPECIAL CASES OF MIMO CHANNELS

A. MIMO with full column rank and full rank optimal

Q under Joint-SPC-PGPC-PAPC

In this section, we consider the MIMO channel where

the nr × nt channel matrix H has full column rank and

the optimal covariance matrix Q also has full rank. Such

4
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a MIMO channel has been considered under PAPC in

[13], and is generally useful in high SNR settings. For

the more general case, we propose an algorithm later in

Section V. In this section, we find the optimal transmit

covariance matrix under Joint SPC-PGPC-PAPC.

Let H = UhDVH
h be the SVD of H. The optimiza-

tion problem (2) can now be rewritten as

max
Q

log |Inr
+DVH

h QVhD|

s.t. tr(Q) ≤ Ptot,
∑

j∈I(i)

Qjj ≤ P̃i, i = 1, 2, · · · , g,

Qjj ≤ P̂i, j = 1, 2, · · · , nt,Q � 0.
(7)

As in Section III, we consider the case where Ptot ≤
g∑

i=1

P̃i and P̃i ≤
∑

j∈I(i)

P̂j , ∀i = 1, . . . , g. We define the

following notation:

(HHH)−1 , A , [Aij ],
∑

j∈I(i)

(HHH)−1
jj , ai. (8)

The Lagrangian for the above problem is

L(Q,K, {γk} , {λk} , λ) = log |Inr
+DVH

h QVhD|+

tr(KQ−ΓQ)+

nt∑

i=1

γiP̂i−tr(ΛQ)+

g∑

i=1

λiP̃i−λ(tr(Q)),

where K, γi, i = 1, 2, · · · , nt, λi, i = 1, 2, · · · , g, λ
are Lagrange multipliers for the positive semidefinite

constraints PAPC, PGPC, and SPC, respectively.

Λ =




λ1In1
0 · · · 0

0 λ2In2
· · · 0

· · · · · · · · · · · ·
0 0 · · · λgIng


 (9)

and Γ is a diagonal matrix with diagonal entries γ1, γ2,

. . ., γnt
. At the optimal Q(J), we have ∂L

∂Q(J) = 0, i.e.,

Vh(D
−2+VH

h Q(J)Vh)
−1VH

h −Γ−Λ−λI+K = 0.
(10)

If Q(J) is full rank, then K = 0. Therefore, from (10),

we have

Vh(D
−2 +VH

h Q(J)Vh)
−1VH

h = Γ+Λ+ λI, (11)

i.e., Q(J) = (Γ+Λ+ λI)−1 −VhD
−2VH

h

= (Γ+Λ+ λI)−1 − (HHH)−1, (12)

and log |Inr
+ DVH

h QVhD| = log |HHH(Γ + Λ +
λI)−1|. Since, Γ+Λ+λI is a diagonal matrix, the only

unknowns in Q(J) are its diagonal entries.

Let the diagonal values of D2 or the eigen values of

HHH be d2i , i = 1, 2, · · · , nt. Then, log |HHH(Γ+Λ+

λI)−1| = log

(
nt∏
j=1

[(Qjj +Ajj)d
2
j ]

)
. The optimization

problem is now

max
Q

log




nt∏

j=1

[(Qjj +Ajj)d
2
j ]




s.t.

nt∑

i=1

Qjj ≤ Ptot,
∑

j∈I(i)

Qjj ≤ P̃i, i = 1, 2, · · · , g,

Qjj ≤ P̂i, j = 1, 2, · · · , nt,Q � 0.
(13)

The optimal entries Q
(J)
jj , j = 1, 2, · · · , nt, or

P
(J)
1 , P

(J)
2 , . . . , P

(J)
nt , for the Joint SPC-PGPC-PAPC

problem are now determined using similar steps as in

the flow chart in Fig. 1 except for a change in the

formulation of the reduced Joint SPC-PGPC problem.

The matrix A and the power constraints are the inputs.

First, we compute the optimal powers for the Joint SPC-

PGPC problem as derived in Theorem 2 in this section.

Then, we check if this solution P
(1)
1 , P

(1)
2 , . . . , P

(1)
nt

satisfies PAPC. If PAPC is satisfied, then we have the

optimal Joint SPC-PGPC-PAPC solution to be the same

as the Joint SPC-PGPC solution. If PAPC is violated for

some antennas, then we can show that these antennas are

allocated the maximum power allowed by PAPC in the

final Joint SPC-PGPC-PAPC solution. The justification

for this step is again based on Lemma 2. Therefore,

once we check PAPC for the Joint SPC-PGPC solution,

we know the optimal power under Joint SPC-PGPC-

PAPC for at least one antenna. Now, we can remove the

antennas whose optimal power have been determined and

formulate a new Joint SPC-PGPC problem by modifying

A, P̃k, Ptot and I(k) as follows: A = [Aij ]{i,j∈Z},

where Z = I\{Pk, k ∈ G}, where Pk is the set

of antennas violating PAPC in group k, and make

P̃k ← P̃k−
∑

i∈Pk

P̂i, ∀k ∈ G, Ptot ← Ptot−
∑
k∈G

∑
i∈Pk

P̂i,

I(k) ← I(k)\Pk, k ∈ G. Unlike the MISO case, note

that the reduced problem here is obtained by modifying

A and not H. Repeating the above steps, we determine

the optimal Joint SPC-PGPC-PAPC solution in at most

nt steps.

The optimal powers for Joint SPC-PGPC problem are

found in the following Theorem. Here again, we identify

a criteria for ordering the groups, and then obtain the

solution using a sequence of SPC problems.

Theorem 2. Assume Ptot ≤
∑g

k=1 P̃k. If the groups of

A are arranged such that

a1 + P̃1

n1
≤ a2 + P̃2

n2
≤ · · · ≤ ag + P̃g

ng

. (14)
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is satisfied, and if (Λ+ λI)−1 −A ≻ 0, where Λ is as

defined in (9) and Λ + λI is found using

(λ+λi)
−1 =





P̃i+ai

ni
for i = 1, 2, · · · , k

Ptot+
∑

j>k

aj−
k
∑

j=1
P̃j

∑

j>k

nj
for i = k + 1, · · · , g

(15)

where k is the smallest value in {0, 1, . . . , g} for which

P̃k+1 + ak+1

nk+1
≥

Ptot +
∑
j>k

aj −
k∑

j=1

P̃j

∑
j>k

nj

, (16)

then the optimal solution for Joint-SPC-PGPC is Q(1) =
(Λ+ λI)−1 −A.

Proof. See Appendix D.

Now, we make some observations about the Joint-

SPC-PGPC solution in Theorem 2.

1) Note that the optimal Q under SPC (for full rank

Q) is

Q
(2)
jj =

1

λ
−Ajj

where λ−1 = Ptot+tr(A)
nt

.

2) k is the least solution of (16). We can find the

optimal k by starting from k = 0 and sequentially

checking upto k = g if (16) is satisfied.

3) For k = 0, (16) reduces to

P̃1 + a1
n1

≥
Ptot +

∑
j≥1

aj

∑
j≥1

nj

. This condition can

be rewritten as follows:

P̃1 ≥ n1



Ptot +

∑
j≥1

aj

∑
j≥1

nj


− a1

=⇒ P̃1 ≥
∑

j∈I(1)

Q
(2)
jj .

This is the same as checking if the SPC solution sat-

isfies the group power constraint for the first group.

If this is true, the other group power constraints

are also satisfied by the SPC solution because of

ordering and the SPC solution becomes the optimal

solution for the Joint-SPC-PGPC problem.

4) For k = i − 1, (16) reduces to

P̃i + ai
ni

≥
Ptot +

∑
j≥i

aj −
i−1∑
j=1

P̃j

∑
j≥i

nj

. This condition

can be rewritten as follows:

P̃i ≥ ni




(
Ptot −

i−1∑
j=1

P̃j

)
+
∑
j≥i

aj

∑
j≥i

nj



− ai

=⇒ P̃i ≥
∑

j∈I(1)

Q
(2)mod
jj .

This is the same as checking if the SPC solution

of a modified problem (denoted by the superscript

mod above) – with only groups i to g, sum power

constraint

(
Ptot −

i−1∑
j=1

P̃j

)
, and channel parame-

ters Aj as defined in (8) based on the original

H – satisfies the group power constraint for the

ith group. If this is true, the other group power

constraints are also satisfied by this SPC solution

for the reduced problem. For groups 1 to i− 1, full

group power should be used.

In summary, groups i = 1 to k use full available group

power, and optimal powers for other groups i > k are

found by solving a modified SPC problem.

B. 2× nr MIMO

Note that for nt = 2, the only possible PGPC

constraints are the SPC and PAPC constraints. Therefore,

the Joint SPC-PGPC-PAPC problem is the same as the

Joint-SPC-PAPC problem. We consider the case when

Ptot ≤ P̂1 + P̂2. Optimal powers P
(J)
1 and P

(J)
2 can

be determined as follows. First, we observe that all the

available transmit power is used in the optimal solution,

i.e., P
(J)
1 +P

(J)
2 = Ptot. For calculating P

(J)
1 , P

(J)
2 , we

first find the optimal P
(2)
1 , P

(2)
2 for the SPC problem.

Since Ptot ≤ P̂1 + P̂2, the PAPC constraints will be

violated for only one i, either i = 1 or i = 2. For that i,

set P
(J)
i = P̂i and calculate the power for the other value

of i using P
(J)
1 +P

(J)
2 = Ptot. Let HHH be

[
k1 k2
k∗2 k3

]

(here k′is are known).

Theorem 3. The optimal Q(J) is as follows:

If rank(H) = 2 and the channel matrix H satisfies

P
(J)
1 P

(J)
2 > |k2|

2

k1k3−|k2|2
, then

Q(J) =

[
P

(J)
1

k2

k1k3−|k2|2

k∗
2

k1k3−|k2|2
P

(J)
2

]
,
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else

Q(J) =


 P

(J)
1

√
P

(J)
1 P

(J)
2

k2

|k2|√
P

(J)
1 P

(J)
2

k∗
2

|k2|
P

(J)
2


 .

Proof. The problem can be rewritten as

max k∗2Q12 + k2Q
∗
12 + (k1k3 − |k2|2)(P (4)

1 P
(4)
2 − |Q12|2)

s.t P
(J)
1 P

(J)
2 ≥ |Q12|2.

Now, we will solve this problem separately for each

possible rank of H, i.e., rank(H) = 1 and rank(H) = 2.

Case (a): rank(H) = 1: If rank(H)=1, then k1k3 =
|k2|2 . Therefore, we have to solve

max (k∗2Q12 + k2Q
∗
12), s.t. P

(J)
1 P

(J)
2 ≥ |Q12|2,

or, equivalently, solve max |k2|.|Q12|. cos θ s.t.

P
(J)
1 P

(J)
2 ≥ |Q12|2, where θ is the angle between k2

and Q12. The maximum of |k2|.|Q12|. cos θ occurs when

|Q12| =
√
P

(J)
1 P

(J)
2 and cos θ = 1, i.e., Q12 should be

in the direction of k2. Thus, we obtain optimal value of

Q12 as Q12 =

√
P

(J)
1 P

(J)
2

k2

|k2|
. Note that the rank of

the optimal Q(J) is always 1 when rank(H)=1.

Case (b): rank(H) = 2: In this case, rank of Q(J)

can be either one or two. Suppose its rank is 1, then

the solution is the same as the case when rank(H) =
1. Suppose that rank of Q(J) is 2, then the solution is

already found in Theorem 2 and the optimal transmit

covariance matrix is Q(J) =

[
P

(J)
1

k2

k1k3−|k2|2

k∗
2

k1k3−|k2|2
P

(J)
2

]

.

V. RANK-CONSTRAINED MIMO CAPACITY UNDER

JOINT SPC-PGPC-PAPC

In this section, we propose a Projected Factored

Gradient Descent algorithm (PFGD) algorithm to find

the optimal transmission scheme to maximize MIMO

capacity under Joint SPC-PGPC-PAPC constraints and

an additional rank constraint on Q as defined in (3). As

in Section III, we will consider the case Ptot ≤
g∑

i=1

P̃i

and P̃i ≤
∑

j∈I(i)

P̂j , ∀i = 1, 2, · · · , g. If r is chosen to be

large enough, e.g., r = min{nt, nr}, then the problem

is equivalent to problem under Joint SPC-PGPC-PAPC

in (2).

In projected gradient descent, after each gradient de-

scent update the constraints are enforced by a projection

onto the constraint set. In the PFGD algorithm, we use

the fact that Q � 0 iff ∃ a matrix U such that Q

can be factored as Q = UUH . Then, the problem is

reformulated in terms of the factor U. We choose the

PFGD approach because:

• The matrix U is the optimal precoder for multi-

antenna transmission that is actually needed to

achieve a transmit covariance matrix Q = UUH ,

and we can directly solve for U without finding Q.

• The Q � 0 constraint is easily enforced by the

factorization Q = UUH .

• A rank constraint of r on Q can be easily enforced

by simply choosing the size of U to be nt×r. Such

a rank constraint would be very difficult to enforce

in an iterative algorithm to directly determine Q.

• Recently, in [20], the PFGD approach has been

shown to be a good low complexity approach for

solving convex covariance optimization problems

even though the problem is non-convex in terms

of the factor U.

The effectiveness of our approach will be presented later

in this section and by comparing with standard convex

optimization using CVX and other approaches to the

MIMO capacity problem in [15–17].

The transformed non-convex optimization problem is

max
U

log |Inr
+HU(HU)H |

s.t
∑

l∈I(k)

(UUH)ll ≤ P̃k, ∀k = 1, . . . , g,

nt∑

l=1

(UUH)ll ≤ Ptot, (UUH)ii ≤ P̂i, ∀i = 1, . . . , nt.

The constraint
∑

l∈I(k)

(UUH)ll ≤ P̃k can be rewritten as

∑
l∈I(k)

‖ul‖2 ≤ P̃k, which is a norm ball, and where ul

denotes the lth row of matrix U. The ability to easily

incorporate the rank constraint is useful when (1) the

channel is sparse, and (2) when the number of spatially

multiplexed streams is limited by the number of receive

antennas.

The proposed PFGD algorithm is given below. Here,

f(Q) = log |Inr
+HQHH |.

1. Initialization: Start with initial point U0.

2. Projected Gradient Descent: Compute the gradient

∇Uk
f(UkU

H
k ) = 2HH(Inr

+HUk(HUk)
H)−1HUk.

Then, Uk+1 = Πe(Uk + η ∇Uk
f(UkU

H
k )),

where Πe(V) is the projection of V

onto the constraint set C(J) = {U :∑nt

l=1(UUH)ll ≤ Ptot,
∑

l∈I(k)

(UUH)ll ≤ P̃k, k =

1, 2, · · · , g, (UUH)ii ≤ P̂i, ∀i = 1, 2, · · · , nt},
and η is a step size parameter.
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3. Stopping condition: Stop when ‖Uk+1−Uk‖F < ǫ.
4. Solution: Optimal Q(R) = Uk+1U

H
k+1 and C =

log |Inr
+HUk+1(HUk+1)

H |.

Note that ∇Uf(Q) where Q = UUH is derivative

with respect to U and∇Qf(Q) is derivative with respect

to Q and ∇Uf(Q) =2 ∇Qf(Q)U.

Now, we will describe how to compute the projection

of a matrix V onto the Joint SPC-PGPC-PAPC constraint

set C(J), i.e., to find Πe(V).

A. Projection onto Joint SPC-PGPC-PAPC constraint

set

The projection is obtained as follows. First, we find

the projection onto the Joint SPC-PGPC constraint set

C(1) and then check if any row i violates PAPC. If

it does, we scale that row i such that its norm is

equal to the PAPC constraint P̂i. This is justified by

the same reasoning as in Lemma 2 but with C ⊆ G,

S(C) := {tr((UUH)) ≤ Ptot,
∑

i∈I(k)

(UUH)ii ≤

P̃k, k ∈ {1, 2, · · · , g}, (UUH)ii ≤ P̂i, i ∈ C}, and

D := {k ∈ {1, 2, · · · , nt}\C : ‖ui‖2(S(C)) > P̂i}. Then,

we remove these rows that have already been scaled

and solve a reduced size problem. The number of steps

required will be less than or equal to nt.

The projection onto Joint SPC-PGPC constraint set

C(1) is derived in the following theorem. We note here

that each row of a matrix after projection is just a scaled

version of the row before projection.

Theorem 4. (Projection onto Joint SPC-PGPC con-

straint set with respect to Frobenius norm) Let U(∗) be

the projection of V onto C(1) = {U :
∑nt

l=1(UUH)ll ≤
Ptot,

∑
l∈I(k)

(UUH)ll ≤ P̃k, k = 1, 2, · · · g}, i.e.,

Πe(V) = U(∗). We arrange groups (indexed by k) in

ascending order of P̃k
∑

l∈I(k)

‖vl‖2 , and place them in an

ordered set R. Let R(j), j ∈ {1, 2, · · · , g} denote the

jth element of R. Then, each row u
(∗)
l is a scaled version

of original row vl, i.e., u
(∗)
l = ξl.vl, where

ξl =





√
P̃i

∑

l∈I(i)

‖vl‖2 , l ∈ I(i), i ∈ {R(1), · · · , R(k)}
√√√√√√

Ptot−
R(k)
∑

i=R(1)

P̃i

R(g)
∑

i=R(k+1)

(

∑

l∈I(i)

‖vl‖2

) , else

,

where k is the least element in {0, 1, 2, · · · , g}, such that

P̃R(k+1)∑
l∈I(R(k+1))

‖vl‖2
≥

Ptot −
R(k)∑

i=R(1)

P̃i

R(g)∑
i=R(k+1)

(
∑

l∈I(i)

‖vl‖2
) . (17)

Proof. See Appendix E.

B. Initialization and Convergence

Initialization of U is done as suggested in [20].

Let X0 = 1
‖∇Qf(0)−∇Qf(e1e

H
1 )‖F

Π+(∇Qf(0)), where

Π+(R) is the projection of R onto the set of pos-

itive semi-definite (PSD) matrices. In our setting,

Π+(∇Qf(0)) = HHH. Compute Ũ0 such that X0 =

Ũ0Ũ
H
0 , and find the initial point by projecting Ũ0 onto

the power constraint region, i.e., U0 = Πe(Ũ0).
Comments on Convergence: In [20, Theorem 3.1],

the local convergence of the PFGD algorithm is proved

under the following assumptions: (i) function f is

restricted strongly convex and smooth, (ii) constraint

set C is convex, compact and faithful, (iii) projection

operation is an entry-wise scaling, i.e., Πe(V) = V

if V ∈ C, and Πe(V) = ξ.V if V /∈ C, where

ξ ≥ 0.78 and step size ηk at kth iteration η satisfying

η ≤ 1
128(L‖Qk‖2+‖∇Qf(Qk)‖2)

, where L = ‖∇Qf(0) −
∇Qf(e1e

H
1 )‖F .

For our problem, the function f is log |Inr
+HQHH |

and the constraint set is C(J). It can be shown that

conditions (i) and (ii) are satisfied. As determined earlier,

the projection step in our problem is a row-wise scaling,

i.e., Πe(V) = Ξ.V, where Ξ is a diagonal matrix

with diagonal entries Ξii = ξi, i = 1, 2, · · · , nt. It

satisfies (iii) if all the row-wise scaling constants are

equal. One case where this is true is the problem under

SPC only. Following steps similar to the proof of [20,

Theorem 3.1], we can prove the local convergence for

the more general row-wise scaling case if min{ξi, i =
1, 2, · · · , nt} , ξmin ≥ 0.78 and step size ηk at kth

iteration satisfying η ≤ 1
128(L‖Qk‖2+‖∇Qf(Qk)‖2)

, where

L = ‖∇Qf(0) − ∇Qf(e1e
H
1 )‖F . We skip the detailed

proof since it is only a minor modification of the proof

in [20, Theorem 3.1].

In our numerical simulations, we observed good con-

vergence for the PFGD algorithm. In Figure 2, we

show the average error (averaged over 10000 channel

realizations) vs iteration number for different choices

of step sizes. In Figure 2a, we plot the average error

vs iteration number for Joint-SPC-PGPC problem. In

Figure 2b, we plot the average error vs iteration number

for Joint-SPC-PGPC-PAPC problem. For both plots, we

8

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TWC.2019.2912158

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



consider nt = nr = 16 channels and we assume there

are two groups of antennas 1-8, 9-16. We use the power

constraints, P̂i = 2, i = 1, 2, · · · , 16, P̃j = 4
1.1 , j =

1, 2, Ptot = 8
(1.1)2 . We observe that the convergence

behaviour is good even though the theoretical guarantee

is only a local convergence guarantee.
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Fig. 2: Convergence of PFGD

Complexity of PFGD algorithm: In every iteration

of the PFGD algorithm, we have to find the gradi-

ent and do a projection step. The dominant compu-

tation is the gradient computation since the project is

mainly a scaling operation. Gradient, ∇Uk
f(UkU

H
k ) =

2HH(Inr
+HUk(HUk)

H)−1HUk can be rewritten as

∇Uk
f(UkU

H
k ) = 2(HHH)Uk(Ir+UH

k (HHH)Uk)
−1

using matrix inversion lemma to reduce complexity.

Finding the gradient involves finding inverse of a r × r
matrix and multiplication of nt × nt, nt × r, r × r
matrices. Complexity of inverse operation for an n× n
matrix is 6(2n3) flops and multiplication of m × n
matrix, n × p matrix is 6(2mnp) flops [21]. Here, we

count every complex operation as 6 real flops. Therefore,

complexity of PFGD algorithm is 6(2r3+2ntr(nt+ r))
per iteration. Note that the complexity of the algorithm

in [15], for the case where nr > nt (complexity of

the algorithm for the case nr ≤ nt is greater than the

case of nr > nt, since it requires one extra inverse and

some more multiplications) is higher at 6(20n3
t ) flops per

iteration, since an eigenvalue decomposition of a nt×nt

matrix is required.

VI. NUMERICAL RESULTS

A. Joint SPC-PGPC-PAPC

First, we compare the accuracy and runtime of the

PFGD algorithm with CVX. In case of a MISO channel,

we also compare the PFGD algorithm with the analytical

solution derived in Section III. In Figure 3a, we compare

capacity results of PFGD with CVX under Joint SPC-

PGPC-PAPC for a randomly generated 4 × 4 channel

given in (18).

Figure 3b is for a randomly generated 4-transmit

antenna MISO channel with H = [0.3802 +
0.2254i, 1.2968−0.9247i,−1.5972−0.3066i, 0.6096+
0.2423i]. For both these figures, we consider two groups

with antennas 1-2, 3-4 in each group with same PAPC P̂

at all antennas, a PGPC of P̃ = 2P̂
1.1 for both the groups

and a SPC equal to 4P̂
1.12 . We plot capacities found using

PFGD, CVX and analytical results by varying PAPC P̂ ,

and find that they match well. Note that the analytical

solution for the 4× 4 MIMO channel in Fig. 3a is valid

only when the optimal covariance matrix has full rank

of 4. This is satisfied only when P̂ ≥ 1W.

Next, we compare the runtime (in MATLAB) of the

PFGD algorithm with the SeDuMi and MOSEK solvers

in CVX. In this experiment, we consider the Joint SPC-

PGPC problem with fixed number of receiver antennas

nr = 2 and vary number of transmit antennas nt. We

consider 2 groups of antennas with equal number of

antennas in each group, for example if nt = 4, antennas

1-2 are in first group and antennas 3-4 are in second

group. The PGPC constraint for each group P̃k is taken

as number of antennas in that group, and total power

constraint is taken as Ptot =
P̃1+P̃2

1.1 . Table I shows the

average run time of PFGD, SeDuMi and MOSEK over

1000 i.i.d channel realizations. It can be observed that

the proposed PFGD algorithm has much less runtime.

TABLE I: Average run time (in seconds)

nt = 4 nt = 8 nt = 16 nt = 32

PFGD 0.0018 0.0021 0.0026 0.0048

SeDuMi 0.3245 0.3537 0.5236 0.9415

MOSEK 0.1299 0.1404 0.1805 0.3335

Algorithms for some special cases of the Joint SPC-

PGPC-PAPC problem have been proposed in [15] (for

PAPC and full rank H), [16] (for PGPC) and [17] (for

Joint SPC-PAPC). In Figure 4, we compare the capacity
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H =




0.1964− 0.1395i −0.8928 + 0.8113i 0.9790− 0.4039i −0.7217− 0.7936i
0.4522 + 0.2868i 0.7852 + 0.4228i −0.0444 + 0.1513i −2.1729 + 0.2165i
−0.0573− 1.0036i −0.6997− 0.9060i 0.3174 + 0.6664i 0.4428− 0.8290i
0.3825− 0.5158i −1.2932− 1.5579i −0.2569 + 0.0663i −0.2027− 0.6795i


 (18)
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Fig. 3: Comparison of MIMO capacity under Joint-SPC-

PGPC-PAPC

calculated by the PFGD algorithm with CVX, [16], and

[15] under PAPC. We take a 4 × 4 channel with same

PAPC P̂ at all the antennas and plot for different values

of P̂ . Figure 4a, we use the same full rank channel as

used for generating Figure 3a and Figure 4b is for a

randomly generated rank 3 channel given in (19).

Note that our algorithm matches CVX for both sce-

narios. The algorithm in [15] cannot be used if H is not

full column rank or full row rank. The algorithm in [16]

is only approximate and does not match CVX.

In Figure 5, we compare the capacity calculated by

our PFGD algorithm with CVX and [17] under Joint-

SPC-PAPC. We take a 4 × 4 channel with same PAPC

P̂ for each antenna and SPC equal to 4P̂
1.1 . We plot the

capacities by varying PAPC P̂ . For Figure 5a, we use the

same channel as used for generating Figure 4a and for

Figure 5b, we use the same channel used for generating

Figure 4b. Note that our algorithm matches CVX in both

scenarios. The algorithm in [17] is approximate since it

uses the algorithm in [16].

B. Rank-constrained Joint SPC-PGPC-PAPC

Now, we present some simulation results for the

rank-constrained capacity Joint-SPC-PGPC-PAPC. We

consider two cases: one where the rank is constrained

because of the channel rank, and the other where the rank

is constrained because the number of transmit streams

required is small compared to the number of transmit

antennas.

Rank-constrained capacity for the low rank Ex-

tended Saleh-Valenzuela Channel Model: In this

model, the channel matrix is modelled as [22, 23]

H =
√

nrnt

L
.
∑L

l=1 αl.ar(φl).a
H
t (θl), where at(θl) and

ar(φl) are the antenna array steering vectors at trans-

mitter and receiver respectively, and αl ∼ CN (0, 1) is

the complex gain of lth path. We assume uniform linear

arrays (ULAs). We consider the following parameters:

60 GHz carrier frequency, nt = nr = 8, L = 4 with

typical inter antenna spacing, dr = dt =
λ
2 . The antennas

are grouped into 4 groups: antennas 1-2, 3-4, 5-6, and

7-8 . The result is averaged over 1000 realizations of

α, φl’s, and θl’s, where the φl and θl are taken to be

i.i.d. in a 1200 coverage area. Fig. 6 shows the rank-

constrained capacity versus P for various choices of

transmit rank constraint r. We use PAPC constraints

P̂i = P/8, i = 1, 2, · · · , 8, PGPC constraints for each

group P̃k = P̂1∗2
1.2 , k = 1, 2, 3, 4, total power constraint

Ptot =
4∑

i=1

P̃k

1.2 . Since the maximum channel rank in

this case is 4, we show the plots for r = 1, 2, 3, and 4.

The capacity increases as the rank constraint r increases.

Increasing r beyond 4 will not increase capacity since

the channel rank is 4.

Performance of cell-free massive MIMO: Here, we

compare the performance of cell-free massive MIMO

using conjugate beamforming to bounds computed using

rank-constrained capacity under PAPC and Joint-SPC-

PGPC. Cell-free massive MIMO [5] has a large number

of distributed access points (APs) which are connected

to a network controller (NC). Here, each user is served
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H =




−0.1926− 0.1199i 0.5327 + 1.3086i 1.3846− 0.6712i −1.0193 + 0.6724i
0.5653 + 0.5449i −0.5461− 0.1795i −0.1892 + 0.6320i 0.5356− 0.7318i
−0.9071 + 0.5386i 0.9302 + 0.5462i 0.9911− 1.1586i −0.1081 + 1.9809i
0.2396 + 0.3392i −1.3570− 0.1814i −0.6045 + 1.2950i 0.5442− 1.5730i


 . (19)
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Fig. 4: Comparison of MIMO capacity under PAPC

by all APs simultaneously. Usually, each AP has its own

power constraint. If each AP has a single antenna, we get

PAPC. If each AP has multiple antennas, we get PGPC.

We assume a cell-free massive MIMO downlink with

the following parameters. There are M = 50 APs

serving a single user (K = 1) with 2 receive antennas.

The channel coefficient between AP m and antenna k
is taken as hkm =

√
βkmh′

km, where βkm is the large

scale fading coefficient which changes very slowly and

hence can be accurately estimated. Also, it is assumed

that NC knows coefficients βkm. h′
km ∼ N (0, 1) is

the small scale fading coefficient. These h′
km are i.i.d

random variables which stay constant during a coher-

ent interval and are independent in different coherent

intervals. Using pilot signals, APs estimate h′
km. We

assume that APs estimate h′
km accurately. For Figs.

7a ,7b, we considered M randomly placed APs and
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Fig. 5: Comparison of MIMO capacity under Joint-SPC-

PAPC

randomly placed user in 2× 2 km2 area. For large scale

fading coefficients, COST Hata model is used as in [5],

i.e., 10 log 10(βmk) = −136 − 35 log 10(dmk) + Xmk,
where dmk is the distance between AP m and antenna

k of the user in kilometers, Xmk ∼ N (0, σ2
shad) with

σshad = 8dB, and noise variance at the receiver antennas

is σ2
w = 290 × κ × B × NF , where κ, B, NF are

the Boltzmann constant, bandwidth (20MHz), and noise

figure (90 dB), respectively.

In Figs. 7a and 7b, we compare the CDF of rates

achieved under PAPC and Joint-SPC-PGPC, respec-

tively, for the following schemes: (1) Conjugate beam-

forming (CB) [5] to one of the two receive antennas

randomly, (2) CB to the best receive antenna, and (3)

rank-constrained capacity with rank r = 1. The rank-

constrained capacity provides a useful upperbound on the
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Fig. 6: Rank constrained capacity (bits/channel-use) ver-

sus P for the extended Saleh-Valenzuela model

performance of the CB-based cell-free massive MIMO

system. For PAPC, we use a power constraint of 200 mW

for each antenna, and for Joint-SPC-PGPC we assume

2 antennas in each group, a SPC of 8W, and PGPC of

400 mW for each group. Note that rank-constrained ca-

pacity assumes that the receiver also knows the channel

coefficients hkm unlike the CB scheme. Despite this, we

observe that the CB scheme is not much worse than the

best possible scheme with rank one.

VII. SUMMARY

In this paper, we obtained the optimal transmission

scheme for MIMO under multiple simltaneous power

constraints, namely sum, per-group, and per antenna

power constraints. The solution was derived analytically

for the MISO case and some special cases of MIMO.

Since analytical solutions are not possible for the general

MIMO case, we propose a projected factored gradient

descent (PFGD) algorithm for the general case. This al-

gorithm can also incorporate rank constraints in addition

to Joint SPC-PGPC-PAPC and is, therefore, very general.

The PFGD algorithm directly updates the beamform-

ing/precoding matrix instead of the covariance matrix.

From the numerical results, we observe that the proposed

PFGD algorithm (1) provides accurate results that match

with the CVX solution and analytical results for the

cases where they are available, (2) has good convergence

properties, and (3) has lower complexity than standard

CVX solvers, especially for low-rank transmission.

APPENDIX

A. Proof of Proposition 1

We can prove this by contradiction. Let f(Q) =
log |I+HQHH |. We say A ≻ B if A−B is positive

definite. f(Q) is monotonic with respect to Q, i.e,

f(Q1) > f(Q2) if Q1 ≻ Q2. Suppose all the available
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Fig. 7: CDFs of rate achieved using CB (bits/channel-

use) and rank-constrained capacity (bits/channel-use)

using PFGD algorithm

power is not used in Q(J). Then, we can find a Q

that uses the full power such that Q ≻ Q(J), i.e.,

f(Q) > f(Q(J)). This is a contradiction.

B. Proof of Proposition 2

Let λk ≥ 0, k = 1, · · · , g, λ ≥ 0, and γi ≥ 0, i =
1, · · · , nt be the lagrange multipliers for PGPC, SPC,

and PAPC, respectively. Let K � 0 be the lagrange

multiplier for the positive semi-definiteness constraint of

the covariance matrix, Λ be as defined in (9), and Γ be

a diagonal matrix with diagonal entries γ1, γ2, . . ., γnt
.

The lagrangian for problem (4) is

L = hTQh∗ + tr(KQ)− [λ(tr(Q)− Ptot)]−


g∑

k=1

λk



∑

j∈I(k)

Qjj − P̃k




−

[
nt∑

i=1

γi(Qii − P̂i)

]

= hTQh∗ + tr(KQ)− [λ(tr(Q)− Ptot)]− [tr(ΛQ)

−
g∑

k=1

λkP̃k]− [tr(ΓQ)−
nt∑

i=1

γiP̂i].
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The optimal Q(J) satisfies ∂L
∂Q(J) = 0, i.e., h∗hT +

K − Λ − Γ − λI = 0, or h∗hT = W − K, where

W = Λ+Γ+ λI . This implies h∗hTQ(J) = WQ(J),

since KQ(J) = 0 at optimal Q(J), due to the com-

plementary slackness condition. W is a diagonal matrix

which implies h∗hT +K is diagonal. Since the diagonal

entries of h∗hT are > 0 (since each hi 6= 0), and the

diagonal entries of K are ≥ 0 (since K � 0), W has

full rank. Therefore, rank(h∗hTQ(J)) = rank(WQ(J))

= rank(Q(J)). But, rank(h∗hTQ(J)) ≤ rank(h∗hT ).

Therefore, we have rank(Q(J)) ≤ rank(h∗hT ) = 1,

which means beamforming is the optimal strategy.

C. Proof of Theorem 1

First, we obtain the power allocation for each group by

solving a sequence of SPC problems. Then, we derive the

power allocation within a group given the group power

allocation in Lemma 3. Combining these results, we get

the solution in Theorem 1.

Suppose that we order groups such that
∑

j∈I(1)

|hj |2

P̃1

≥

∑
j∈I(2)

|hj |2

P̃2

≥ · · · ≥

∑
j∈I(g)

|hj |2

P̃g

.

Then,

∑

j∈I(i)

|hj |
2

|h|2 ≤ P̃i

Ptot
for some group i implies

∑

j∈I(s)

|hj |
2

|h|2 ≤ P̃s

Ptot
for all groups s > i. For proving

Theorem 1, first find optimal power for the first (ordered)

group with only sum power constraints
∑

j∈I(1)

P
(2)
j . From

the ordering of groups, if
∑

j∈I(1)

P
(2)
j =

∑

j∈I(1)

|hj |
2

|h|2 Ptot ≤

P̃1, then none of the groups would violate PGPC, and the

optimal powers under Joint SPC-PGPC P
(1)
j = P

(2)
j . If

∑

j∈I(1)

|hj |
2

|h|2 Ptot > P̃1, then
∑

j∈I(1)

P
(1)
j = P̃1, and the other

group powers can be found by solving a reduced problem

after removing the first group and modifying the sum

power constraint to Ptot − P̃1. The justification for this

step is similar to Lemma 2 using C ⊆ G, and S(C) :=
{Q � 0, tr(Q) ≤ Ptot,

∑
j∈I(k)

Qjj ≤ P̃k, k ∈ C}

and D := {k ∈ G\C :
∑

i∈I(k)

P
(S(C))
i > P̃k}. Therefore,

once we check PGPC for the SPC solution, we know the

optimal power under Joint SPC-PGPC for at least one

group. In the next step, if

∑

j∈I(2)

|hj |
2

∑

j∈I(i),

i≥2

|hj |2
(Ptot − P̃1) ≤ P̃2,

then none of the remaining groups will violate PGPC

and we know the optimal powers. Otherwise, we remove

the second group and again consider a reduced problem.

This continues until

∑

j∈I(k+1)

|hj |
2

∑

j∈I(i),

i≥k+1

|hj |2
(Ptot −

k∑
j=1

P̃j) ≤ P̃k+1

for some k. This k is the total number of active PGPC

constraints in the optimal solution, and can be obtained

as the least solution of (6).

Once we know k, the first k groups use full group

power and we get P
(1)
j for all j belonging to the first k

groups using the following Lemma.

Lemma 3. (Allocation of power within a group) For the

Joint-SPC-PGPC problem, let power P ′
k be assigned to

group k in the optimal solution. Then, the optimal power

P
(1)
l for each antenna l ∈ I(k) is given by

P
(1)
l =

|hl|2∑
j∈I(k)

|hj |2
P ′
k. (20)

Proof. Let f l
k be the fraction of the group power P ′

k

assigned to antenna l, i.e., Pl = P ′
kf

l
k, where l ∈ I(k).

Let S1 be the feasible set of covariance matrices for the

Joint SPC-PGPC problem. Using Lemma 1, we have

argmax
Q∈S1

hTQh∗ = argmax
q∈Q1

(
nt∑

l=1

|hl|
√

Pl

)2

= argmax
q∈Q1

(
nt∑

l=1

|hl|
√
Pl

)
.

where

Q1 :=

{
q : q =

[√
P1h

∗
1

|h1|
, · · · ,

√
Pnt

h∗
nt

|hnt
|

]
,qqH ∈ S1

}
.

Now, we have

max
q∈Q1

g∑

k=1

∑

l∈I(k)

|hl|
√
Pl = max

{f l
k
}

g∑

k=1

∑

l∈I(k)

|hl|
√
P ′
kf

l
k

=

g∑

k=1

max
{f l

k
}



∑

l∈I(k)

|hl|
√
P ′
kf

l
k


 .

Each
∑

l∈I(k)

|hl|
√
P ′
kf

l
k is maximized subject to

∑
l∈I(k)

f l
k = 1 by f l

k = |hl|
2

∑

j∈I(k)

|hj |2
. Thus, we have

(20).

For the groups k+1 to g, the optimal power is found

using only SPC Ptot −
k∑

j=1

P̃j .
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D. Proof of Theorem 2

From (12), since we do not have PAPC constraints,

we have

Q(1) = (Λ+ λI)−1 − (HHH)−1. (21)

The left hand side of (11) is invertible. Therefore, we

have

λ+ λi > 0, ∀i = 1, 2, · · · , g, (22)

Now, we find λ + λi, i = 1, 2, · · · , g, to complete the

solution. We consider two cases.

(i) λi > 0 for group i: If λi > 0 for group i then,∑
j∈I(i)

Qjj = P̃i since λi(
∑

j∈I(i)

Qjj − P̃i) = 0.

∑

j∈I(i)

1

λ+ λi

− ai = P̃i =⇒ 1

λ+ λi

=
P̃i + ai

ni

(23)

Thus, we have the expression in the first case in

(15). Since λi > 0, 1
λ+λi

< 1
λ

. Therefore, note that

we have

P̃i + ai
ni

<
1

λ
, ∀i such that λi > 0. (24)

(ii) λi = 0 for group i: λi = 0 for atleast one i implies

λ > 0 (from (22)). The group power constraint for

group i implies

P̃i + ai
ni

≥ 1

λ
, ∀i such that λi = 0. (25)

Because of our ordering of groups, (24) and (25), all

groups for which λi > 0 will come first followed by

groups with λi = 0. Let k be the number of groups

where λi > 0. From Proposition 1, Q(1) uses full

available sum power. Therefore,

Ptot = tr(Q) =
k∑

i=1

P̃i +
∑

i>k

ni

λ
−
∑

i>k

ai

=⇒ 1

λ
=

Ptot +
∑
i>k

ai −
k∑

i=1

P̃i

∑
i>k

ni

. (26)

Thus, we have the expression in the second case in (15).

Now, we will find k. Because of our ordering k is the

solution of following inequalities :

P̃k + ak
nk

<

Ptot +
∑
j>k

aj −
k∑

j=1

P̃j

∑
j>k

nj

(27)

P̃k+1 + ak+1

nk+1
≥

Ptot +
∑
j>k

aj −
k∑

j=1

P̃j

∑
j>k

nj

. (28)

Because of the ordering of groups P̃i+ai

ni
is non-

decreasing in i. k is the least i for which (28) is satisfied.

Since (28) is satisfied for k = g − 1, there exists atleast

one solution for k in {0, 1, · · · , g − 1}. Finally, from k,

(23), and (26), we can find Q(1). Q(1) is full rank when

(Λ+ λI)−1 − (HHH)−1 ≻ 0.

E. Proof of Theorem 4

To find Πe(V), we find the matrix U which is nearest

to V in the constraint set, i.e, solve

min
U

nt∑

l=1

‖ul − vl‖2

s.t.

nt∑

l=1

‖ul‖2 ≤ Ptot,
∑

l∈I(i)

‖ul‖2 ≤ P̃i, ∀i.
(29)

The Lagrangian for the above problem is:

L(U, λ, {λi}) =
nt∑

l=1

‖ul − vl‖2 + λ

(
nt∑

l=1

‖ul‖2 − Ptot

)

+

g∑

i=1

λi



∑

l∈I(i)

‖ul‖2 − P̃i


 .

At optimal U, ∂L

∂u
(∗)
l

= 0, i.e., u
(∗)
l (1+λ+λi) = vl, l ∈

I(i). Since (1 + λ+ λi) 6= 0

u
(∗)
l =

vl

(1 + λ+ λi)
, l ∈ I(i). (30)

Now, we find (1+λ+λi), i = 1, 2, · · · , g, to complete

the solution. We consider two cases.

(i) λi > 0 for group i: From KKT conditions

λi(
∑

l∈I(i)

‖u(∗)
l ‖2 − P̃i) = 0, which implies

1

(1 + λ+ λi)2
=

P̃i∑
l∈I(i)

‖vl‖2
. (31)

Also, since λi > 0

P̃i∑
l∈I(i)

‖vl‖2
<

1

(1 + λ)2
, ∀i s.t. λi > 0. (32)

(ii) λi = 0 for group i: Here u
(∗)
l = vl

(1+λ) .

From the per-group power constraints, we have

P̃i∑
l∈I(i)

‖vl‖2
≥ 1

(1 + λ)2
, ∀i s.t. λi = 0. (33)
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Let k number of groups satisfy λi > 0. The rest of the

groups satisfy λi = 0. Given the arrangement of groups

as in the ordered set R, groups corresponding to first k
elements in R will satisfy λi > 0. Furthermore, since

Ptot ≤
g∑
P̃i

i=1

, the full available sum power Ptot is used

in the optimal U. Therefore, we have

R(g)∑

i=R(k+1)



∑

l∈I(i)

‖vl‖2
(1 + λ)2


 = Ptot −

R(k)∑

i=R(1)

P̃i

=⇒ 1

(1 + λ)2
=

Ptot −
R(k)∑

i=R(1)

P̃i

R(g)∑
i=R(k+1)

(
∑

l∈I(i)

‖vl‖2
) . (34)

Because of our ordering in set R, k is the solution of

the inequalities (17) and

P̃R(k)∑
l∈I(R(k))

‖vl‖2
<

Ptot −
R(k)∑

i=R(1)

P̃i

R(g)∑
i=R(k+1)

(
∑

l∈I(i)

‖vl‖2
) . (35)

Because of the ordering of groups
P̃R(i)
∑

l∈I(R(i))

‖vl‖2 is non-

decreasing in i. k is the least i for which (17) is satisfied.

Since (17) is satisfied for k = g − 1, there exists atleast

one solution for k in {0, 1, · · · , g − 1}.
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