Header menu link for other important links
X
Optimal Control for Generalized Network-Flow Problems
, Modiano E.
Published in IEEE
2018
Volume: 26
   
Issue: 1
Pages: 506 - 519
Abstract
We consider the problem of throughput-optimal packet dissemination, in the presence of an arbitrary mix of unicast, broadcast, multicast, and anycast traffic, in an arbitrary wireless network. We propose an online dynamic policy, called Universal Max-Weight (UMW), which solves the problem efficiently. To the best of our knowledge, UMW is the first known throughput-optimal policy of such versatility in the context of generalized network flow problems. Conceptually, the UMW policy is derived by relaxing the precedence constraints associated with multi-hop routing and then solving a min-cost routing and max-weight scheduling problem on a virtual network of queues. When specialized to the unicast setting, the UMW policy yields a throughput-optimal cycle-free routing and link scheduling policy. This is in contrast with the well-known throughput-optimal back-pressure (BP) policy which allows for packet cycling, resulting in excessive latency. Extensive simulation results show that the proposed UMW policy incurs a substantially smaller delay as compared with the BP policy. The proof of throughput-optimality of the UMW policy combines ideas from the stochastic Lyapunov theory with a sample path argument from adversarial queueing theory and may be of independent theoretical interest. © 1993-2012 IEEE.
About the journal
JournalData powered by TypesetIEEE/ACM Transactions on Networking
PublisherData powered by TypesetIEEE
Open AccessNo