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Abstract

In Cognitive Radio Network (CRN), the secondary user (SU) opportunistically access the wireless

channels whenever they are free from the licensed / Primary User (PU). Even after occupying the

channel, the SU has to sense the channel intermittently to detect reappearance of PU, so that it can

stop its transmission and avoid interference to PU. Frequent channel sensing results in the degradation

of SU’s throughput whereas sparse sensing increases the interference experienced by the PU. Thus,

optimal sensing interval policy plays a vital role in CRN. In the literature, optimal channel sensing

strategy has been analyzed for the case when the ON-OFF time distributions of PU are exponential.

However, the analysis of recent spectrum measurement traces reveals that PU exhibits heavy-tailed

idle times which can be approximated well with Hyper-exponential distribution (HED). In our work,

we deduce the structure of optimal sensing interval policy for channels with HED OFF times through

Markov Decision Process (MDP). We then use dynamic programming framework to derive sub-optimal

sensing interval policies. A new Multishot sensing interval policy is proposed and it is compared with

existing policies for its performance in terms of number of channel sensing and interference to PU.
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I. INTRODUCTION

In recent years, usage of wireless devices such as smart phones, and laptops has grown

exponentially. A major concern over this growth is that a large number of wireless devices

are now trying to access limited wireless spectrum. Further spectrum measurement campaigns

have shown that the fixed spectrum assignment policy for wireless devices has resulted in under

utilization of the allotted bandwidth [1]. Hence, to solve this problem and to have better spectrum

utilization, researchers have proposed the technique of Cognitive Radio Network (CRN). In CRN,

the licensed bands are made available to unlicensed users, also called as Secondary Users (SUs)

whenever the licensed or Primary User (PU) are not using the spectrum. In CRN, the channel

sensing parameters of the SUs such as sensing time, sensing interval, and sensing accuracy have

an impact on the performance of both secondary and primary network. Many works in literature

[2], [3], [4], [5], [6], [7] and references therein have studied the effect of PHY and MAC layer

sensing parameters on the throughput of the secondary network. Most of these papers have

assumed the ON and OFF time distribution of channel occupancy of the PU to be exponential.

However, an in-depth analysis of spectrum measurement traces reveals that the idle times

of ISM and GSM bands exhibit power law decay till some critical time after which it has

exponential decay [8], [9]. By power law decay, we mean that the log-log plot of probability

density function (p.d. f ) of channel idle times, given by fX(x) ∝ x−a, will be a straight line with

negative slope −a. The data sets with above behavior have been shown to be well modeled with

Hyper-exponential distribution (HED) [10], [11]. Similarly, Sharma et al. [12] have simulated

802.11 WLAN clients-server model in OPNET simulator and have observed that the channel

idle times can be modeled using HED distribution. The authors of [13] and [14] have proposed

an optimal SU sensing / transmission strategy to maximize the throughput of SU with constraint

on PU packet collision for generalized as well as hyper-exponential PU idle time distributions.

Many of the existing works have made the unrealistic assumption that SUs have full-duplex

capability. A full duplex SU can transmit signal and detect the reappearance of PU at the same

time. However, the design of full-duplex system with acceptable PU detection probability is

highly complex. Further, it increases the energy consumption of the SU. A promising use-case

scenario of secondary network is the wireless sensor network wherein it is not cost effective

to deploy full-duplex SU. Considering the practical difficulties in implementing full-duplex SU,
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we look at the design of opportunistic secondary network that has half-duplex capability. In

a full-duplex system the SU can stop its transmission as soon as the PU is detected. Thus the

interference to PU can be kept minimal (maximum of one PU packet as a result of packet header

corruption). However in the case of half-duplex system the interference of SU with PU is in

general more than that of full-duplex case and can be as large as the inter-sensing duration. Thus

the problem of finding optimal sensing strategy becomes even more crucial in the half-duplex

system.

The major contribution of our work which differs from the existing literature on channel

sensing strategies [7], [13], [14] in CRN are as follows: In contrast to [7], we model PU OFF

times as HED which is more realistic. Secondly, we have designed an optimal channel sensing

interval framework considering half-duplex SUs whereas [13], [14] have assumed full-duplex

SUs. Finally, we frame optimization problem that tries to minimise both the cost for number of

channel sensing and the cost of interference to PU by choosing optimal channel sensing intervals.

We have used dynamic programming to derive the optimal channel sensing interval policy in

our work. Interest readers can look into [15], [16] on applying dynamic programming to other

optimization problems in CRN.

The important insight of our work is that the constant periodic sensing policy is not an optimal

solution for non-exponential PU OFF times. We have proved the above point by deducing the

structure of optimal solution using Markov Decision Process (MDP). We further suggest a new

sub-optimal policy called ”Multishot sensing interval policy” which outperforms existing sub-

optimal channel sensing policies in the literature [17].

The rest of the paper is organized as follows: A brief overview of system model is given in

section II. In section III, we formulate the optimization problem which balances the number of

SU channel sensing and interference to PU. The structure of optimal solution is derived using

MDP in section IV. In section V, the different sub-optimal channel sensing interval policies are

proposed . Section VI compares the performance of sub-optimal policies under various channel

traffic conditions through simulation. Section VII studies the effect channel sensing parameters.

Finally, we conclude the paper in section VIII.
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II. SYSTEM MODEL

We consider CRN having half-duplex SUs. Following the studies on spectrum measurement

traces, we model the OFF time distribution of PU to be heavy tailed. As mentioned earlier, the

heavy-tailed idle times (OFF times) of PU are well-modeled as K-phase HED distribution,

fX(x) =
K

∑
i=1

piλie−λix. (1)

where pi’s are the phase probabilities such that ∑
K
i=1 pi = 1, and λi’s are the rates of mixture of

exponential distribution [8]. 1 The realistic spectrum measurement traces can be used to estimate

the parameters pi’s and λi’s of HED as shown in [8]. Suppose the SU sense the channel to be

free from the primary user and occupies it. Let T0 be the time at which SU occupies the channel.

In order to avoid interference to PU, the half-duplex SU has to limit its transmission duration and

intermittently sense the channel for the reappearance of PU. Let the sensing instants of SU fall at

time instants T1, T2,...,TN where the index N denotes the sensing instant at which SU detects the

presence of PU. We denote the channel sensing intervals (T1−T0), (T2−T1),..., (TN−TN−1) by

I1, I2,..., IN , respectively as indicated in Fig. 1. Our formulation of the optimal sensing interval

policy minimizes the number of sensing as well as the cost involved in the interference to PU.

We assume that SU immediately access the channel when PU goes from ON state to OFF

state. We have also studied the effect of delayed occupancy of the channel in section VII. The

residual PU OFF time at jth sensing instant, X j, also has HED distribution with same (λi)
K
i=1

but with different pi’s. For example, the phase probabilities of residual PU OFF time X1 at first

sensing instant T1, denoted by p1
1, p1

2,..., p1
K , can be calculated as follows:

Pr(X1 > x) = Pr(X > I1 + x|X > I1) =

K
∑

i=1
pie−λi(I1+x)

K
∑

k=1
pke−λkI1

=
K

∑
i=1

p1
i e−λix, (2)

where p1
i is given as

p1
i =

pie−λiI1

K
∑

k=1
pke−λkI1

, i = 1,2, ...,K. (3)

1 The random variable X is said to follow HED if X is, with probability pi, exponentially distributed with parameter λi for

i = 1,2...,K.
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In general, the phase probabilities at jth sensing instant Tj are given by

p j
i =

pie−λi(I1+I2+...+I j)

K
∑

k=1
pke−λk(I1+I2+...+I j)

, i = 1,2, ...,K.

which can be rewritten as

p j
i =

p j−1
i e−λiI j

K
∑

k=1
p j−1

k e−λkI j

, i = 1,2, ...,K. (4)

Let CS denote the cost per channel sensing. Let CI denote the cost which is a measure of the inter-

ference to PU per unit time. The costs CS and CI can be a measure of channel sensing/switching

energy and SU retransmission energy, respectively. Alternatively, they can represent the time

for channel sensing/switching and the time for SU retransmission. We now define an indicator

random variable 1Inter f , j to represent the SU’s interference to PU in ( j+ 1)th sensing interval

as follows:

1Inter f , j =

1, X j ≤ I j+1

0, otherwise.
(5)

Then, the average amount of interference to PU in ( j+1)th sensing interval, denoted as E[(I j+1−

X j)1Inter f , j], is calculated as

E[(I j+1−X j)1Inter f , j] =
∫ I j+1

x j=0
(I j+1− x j)

K

∑
i=1

p j
i λie−λix jdx j = I j+1−

K

∑
i=1

p j
i
1− e−λiI j+1

λi
.

Let ω and ωc = 1−ω be the weights (importance) that we assign to balance the number of

channel sensing by SU and Interference to PU. Thus, the average cost incurred by SU at jth

channel sensing instant for choosing next sensing interval as I j+1 is given by

C j(I j+1) = ωCS +ω
cE[(I j+1−X j)1Inter f , j]CI. (6)

III. FORMULATION OF OPTIMIZATION PROBLEM

We formulate the problem of optimal channel sensing interval mechanism in this section. Let

N be the sensing instant at which SU detects the presence of PU. N is given by N = min{n :

(∑n
j=1 I j) > X}. Note that the sensing interval I j+1 is chosen by the SU at jth sensing instant.

5



Fig. 1: Channel sensing strategy followed by SU to detect the presence of PU

Let γ j(I j+1) denote the probability that the residual OFF time X j is greater than I j+1. It is given

by

γ j(I j+1) = Pr(X j > I j+1) =
K

∑
i=1

p j
i e−λiI j+1.

By using the average cost function per sensing instant given by (6), the average total cost CTotal

incurred by the SU during OFF time of the PU can be calculated as

CTotal =C0(I1)+ γ0(I1){C1(I2)+ γ1(I2){C2(I3)+ γ2(I3){.....CN−1(IN)}}}, (7)

The total cost function CTotal can be rewritten as

CTotal(I1, I2, ..., IN) =C0(I1)+ γ0(I1)C1(I2)+ γ0(I1)γ1(I1)C2(I3)+ ...+(
N−2

∏
i=0

γi(Ii+1))CN−1(IN),

=C0(I1)+ γ0(I1)C1(I2)+ γ0(I1 + I2)C2(I3)+ ...+ γ0(
N−2

∑
i=0

Ii+1)CN−1(IN),

(8)

where we use the fact that ∏
k
i=0 γi(Ii+1) = γ0(∑

k
i=0 Ii+1) to get the second equality. By observing

the SU channel sensing activity in Fig. 1, we can also write total cost function, CTotal as

CTotal(I1, I2, ..., IN) = ωE[N]CS +ω
cE[(I1 + I2 + ...+ IN)−X ]CI (9)

We now formally state our optimization problem as follows. Our objective is to find the

optimal channel sensing intervals {I∗j }N
j=1 such that CTotal is minimized, i.e.,

{I∗1 , I∗2 , ..., I∗N}= arg min
{I1,I2,...,IN}

CTotal(I1, I2, ..., IN) (10)

Note that the variables in above optimization problem {I j} take values from R+ and the sensing

index N is a function of {I j} and X .
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IV. DYNAMIC PROGRAMMING FRAMEWORK

A deep look into the system model and the objective function (Equations (8) and (9)) suggests

that the SU at each sensing instant Tj has to select the next optimal sensing interval I j+1

considering the past sensing intervals to minimize the over-all cost of this sensing process.

This observation suggests Stochastic Dynamic Programming (SDP) as a tool to solve the above

optimization problem [18]. SDP is a generic method to solve very complex problems by breaking

them into subproblems. In order to solve the optimization problem using SDP, the optimal

solution should be decomposable into sub-problems. The total cost function CTotal defined in (8)

clearly has a decomposable optimal structure and hence we can use SDP to arrive at the optimal

solution. We formulate the SDP as

V ∗j (Tj) = min
I j+1≥0

{C j(I j+1)+ γ j(I j+1)V ∗j+1(Tj+1)}, (11)

where V ∗j (Tj) is the minimum cost at time Tj. If the value of V ∗N(TN) = 0, the minimal cost

V ∗0 (T0) will be same as optimal total cost C∗Total through recursion of (11).

A. Structure of Markov Decision Process

We model the above optimization problem as a Markov Decision Process (MDP) with the

state space as the set of all possible probability vectors P = [p1, p2, ..., pK] such that ∑
K
i=1 pi = 1

and pi ≥ 0. The action space of MDP be the whole non-negative real line R+. At jth sensing

instant, the probability vector P j is given as P j = [p j
1, p j

2, ..., p j
K] with phase probabilities {p j

i }K
i=1

of residual OFF time. The probability vector at zeroth sensing instant, P0 = [p1, p2, ..., pK], be

the initial state of MDP. The SU choose an action I1 from R+ at state P0 which will cost C0(I1).

In the first channel sensing instant, the state of the system will be in P1. The SU choose an

action I2 which move the system to state P2. Similarly, for the jth channel sensing instant, the

state of the system will be in P j which depends only on the previous state P j−1 and the action I j

( satisfies Markovian property). The cost for choosing an action I j+1 at P j state will be C j(I j+1)

given by (6).

1) Countable state space: Note that when a SU starts from state P0, there is a countable set

of states that SU can reach in future [17]. Since the state space is a countable set, we restrict to

MDP policies that choose non-randomized action I j at each state and the action depends only

on current state [19].
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2) Compact action space: The action space of the above MDP can be restricted to the compact

set [0, I] without loss of optimality. The I is the upper bound on channel sensing intervals {I j}

that the SU can choose from R+ and is given as (Lemma III.4 in [17])

I = (
1

ωc ){v+1+
1

(min j λ j)
},

where v is the upper bound on the total expected cost when SU always take channel sensing

interval of unit length, v := ωc +ω(1+1/min j λ j)CI.

We have shown that the MDP structure of our optimization problem has countable state space,

compact action space and a non-negative cost function. From the above discussion, we conclude

that the optimal policies for MDP can be restricted to non-randomized decision policies and the

action space is restricted to [0, I]. Thus, the minimum total cost function can be achieved by the

minimal solution of the following SDP [20]:

V (P) = min
I≥0
{ωCS +ω

cE[(I−X)1X≤I]CI +Pr(X > I)V (P1)}, (12)

where the random variable X follows HED with parameters {λ j}K
j=1 and phase-probabilities P,

the probability vector P1 is a function of P and action I. The optimal channel sensing interval

I∗ for a given P is the one that minimizes the above equation.

B. Periodic sensing interval for exponential OFF times

We now demonstrate the correctness of MDP framework by deriving the optimal sensing

interval policy for the well-known case of channels with exponential OFF times. The exponential

distribution can be considered as a special case of HED with number of phases K = 1 with p1 = 1

and λ1 = λ . Thus the above MDP framework can be used to derive the optimal sensing interval

policy for exponential PU OFF time distribution. In this case, the residual OFF time at every

sensing instant has same exponential distribution and thus results in one-state MDP problem,

i.e. P1 = P. The optimal sensing interval is found by minimizing the total cost function of SDP

given below:

V (P) = min
I≥0
{ωCS +ω

cE[(I−X)1X≤I]CI +Pr(X > I)V (P)}. (13)

By substituting Pr(X > I) = e−λ I and E[(I−X)1X≤I] = I− 1−e−λ I

λ
in the above equation and

re-arranging,

V (P) =
ωCS +ωcCI

{
I− 1−e−λ I

λ

}
1− e−λ I

(14)
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The second derivative of above function is given as

V
′′
=

ωcCIλe−λ I

(1− e−λ I)3

{
(1+ e−λ I)(2+

λωCS

ωcCI
+λ I)−4

}
,

where (1+ e−λ I)(2+ λωCS
ωcCI

+λ I) > 4 for I ≥ 0. Thus, V
′′
> 0 for I ∈ [0, I] and hence the total

cost function V (P) of SDP is a convex function. On differentiating Eq. (14) w.r.t I and equating

to zero, we get

V
′
= ω

cCI

{
1− e−λ I∗(1+ λωCS

ωcCI
+λ I∗)

(1− e−λ I∗)2

}
= 0

=> 1 = e−λ I∗(1+
λωCS

ωcCI
+λ I∗)

Multiplying both sides of above equation by −e−1− λωCS
ωcCI , we get

− e−1− λωCS
ωcCI = e−1− λωCS

ωcCI
−λ I∗

(−1− λωCS

ωcCI
−λ I∗)

which can be written in the form z = xex, where x = (−1− λωCS
ωcCI
−λ I∗) and z = −e−1− λωCS

ωcCI .

The solution x of the above form z = xex is Lambert-W function [21] at point z, i.e,

−1− λωCS

ωcCI
−λ I∗ =W−1

(
− e−1− λωCS

ωcCI

)
,

where W−1 denotes the branch of the Lambert-W function that is real-valued on the interval

[−e−1,0] with values below -1. From the above equation, we will get the optimal sensing interval

I∗ which is used by SU at all sensing instants (i.e. periodic sensing interval I∗) as

I∗ =− 1
λ
− (ω/ω

c)
CS

CI
−W−1(−e−1−λ (ω/ωc)∗(CS/CI))

λ
. (15)

Thus, we have shown that (15) is equivalent to the results derived in [7]. We have also proven

that the optimal sensing policy for exponential OFF time distribution is periodic sensing with

sensing interval I∗.

V. SUB-OPTIMAL POLICIES

The Hyper-exponential distribution given in (1) is a convex combination of exponential distri-

butions. Using the concepts of reliability theory, we can show that HED has Decreasing Failure

Rate, i.e. the probability γ j(I j+1) = Pr(X j > I j+1) is increasing with increase in ’j’ [15]. As a

result, the optimal policy for (11) should account for infinite number of optimal actions/sensing
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intervals I∗j
N
j=1

for N→ ∞. Moreover, the formulated MDP problem has continuous state space

and action space. Thus the derivation of optimal sensing intervals (i.e actions) for HED OFF

time is computationally complex and we are going for suboptimal policies. First, we adapt some

of the existing sub-optimal policies [17] for our cost function given in (16). We then suggest

a new policy called ”Multishot sensing interval policy” which outperforms existing sub-optimal

policies in many scenarios.

A. Exponential sensing interval policy

In exponential channel sensing interval policy, the secondary user at each sensing instant selects

the next sensing interval which is a realization of exponential random variable with parameter

λe. At every sensing instant (state), the SU’s sensing interval (action) is an exponential random

variable with parameter λe. The optimal exponential parameter λ ∗e is derived as follows: The

total cost function, CTotal for the exponential sensing interval policy is calculated as:

CTotal(I1, I2, ..., IN) = ωCSE[N]+ω
cE[(I1 + I2 + ...+ IN)−X ]CI, (16)

where E[X ], E[N] & E[I1 + I2 + ...+ IN ] are

E[X ] =
K

∑
j=1

p j/λ j,

E[N] = λeE[X ]+1,

E[I1 + I2 + ...+ IN ] =
1
λe

E[N] = E[X ]+
1
λe

.

Substituting the above values in (16), we will get CTotal for exponential sensing interval policy

as

CTotal,Exp = ωCsλeE(X)+ωCs +
ωc

λe
CI (17)

Taking the first and second order derivative of CTotal,Exp with respect to λe, we get

λ
∗
e =

√
ωcCI

ωCsE[X ]
, (18)

and the minimal total cost as

C∗Total,Exp = ωCs +2
√

ωωcCsE[X ]CI. (19)

10



Thus, the SU at each sensing instant will take value from exponential distribution with parameter

λ ∗e as the next channel sensing interval. We plot the optimal parameter λ ∗e given in (18) against

weight ω in Fig. 2 using numerical computation in C++. In our simulation, we vary the channel

load by only varying the HED OFF times as in [8]. Thus the average PU OFF time E(X)

decreases with increase in channel load. We can observe from Fig. 2 that the mean optimal

sensing interval I∗e = 1/λ ∗e decreases with increase in channel load condition. Further, we can

also notice that SU sense the channel frequently when more importance is given to reduce

interference to PU, i.e. ω ∼ 0.
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Fig. 2: Optimal exponential parameter I∗e for different weightage ω with costs Cs = 10 and CI = 5 for HED

parameters in [8].

B. One-stage sensing interval policy

One-stage sensing interval policy is a policy improvement over first stage (zeroth sensing

instant) of existing exponential sensing interval policy. In one-stage sensing policy, the SU uses

the SDP formulation given in (11) to select only the first sensing interval I1. Thereafter, the SU

follows exponential sensing interval policy by replacing random variable X with X1 following

residual HED OFF time distribution with phase probabilities P1. The value of V ∗1 (T1) in (11)

will be C∗Total,Exp(X1) , as given in (19).
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The optimal parameters I∗1 and λ ∗1e for one-stage sensing interval policy are derived as follows:

(i) Evaluate the upper bound on sensing interval, i.e. I using (12).

(ii) Vary the values of I1 from zero to I in steps of ∆ (In our simulation, we set ∆ = 1e−4 based

on analysis of E(X) )

(iii) For each values of I1, calculate the cost C0(I1) and probability vector P1 using (6) & (4),

respectively. For the remaining stages, the exponential sensing interval policy is used.

(iv) For each value of I1, the parameter λ ∗1e of exponential sensing interval policy is calculated

using (18) by replacing E(X) with E(X1) = ∑
K
i=1 p1

i λi. Similarly, the C∗Exp is calculated using

(19) with E(X1).

(v) The total cost of one-stage policy, CTotal(I1,λ1e), is given as

CTotal,One−stage(I1,λ1e) =C0(I1)+Pr(X > I1)C∗Exp(I1,λ1e) (20)

The value of I1 which minimizes the CTotal,One−stage(I1,λ1e) is taken as the optimal first

sensing interval I∗1 and its corresponding exponential parameter is taken as λ ∗1e for one-stage

sensing interval policy.

C. Multishot sensing interval policy

We propose a new sub-optimal policy called “Multishot sensing interval policy” based on

the observation that the probability vector P j → [1,0, ...,0] as j→ ∞ when we rearrange HED

parameters such that λ1 < λ2 < .... < λK . At zeroth sensing instant, SU assumes idle time to

follow exponential random variable with parameter λK and uses periodic sensing interval policy

to derive the first sensing interval I1. If the channel is still idle at the first sensing instant, SU

assumes that idle time was generated by exponential random variable with parameter λK−1 and

uses periodic sensing interval policy to derive I2. SU keeps on changing parameter of exponential

RV till it reaches (K−1)th sensing instant where it uses λ1 to derive IK . If the channel is still

free from PU, the SU uses IK as the sensing interval for the remaining sensing instants. We

will prove through simulation that multishot policy outperforms existing sub-optimal policies in

most of the test-cases.
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D. Computational complexity of suboptimal policies

We now compare the computational complexity in obtaining the optimal parameters of one-

stage and multishot sub-optimal channel sensing policies. In case of exponential and multishot

policy, the expected number of times the sensing interval is computed is a bounded constant

and hence the order of complexity is O(1). For the case of one-stage sub-optimal policy, we

fix the appropriate time step ∆ and then evaluate Eq.(20) for Z = I
∆

number of times to get

the optimal parameters. We can observe that the order of complexity of one-stage sub-optimal

policy is O(Z).

In similar lines to that of one-stage sub-optimal policy, it is possible to derive Mth stage

suboptimal policy but the computational complexity will be of order O(ZM). As the number of

stages M increases, the suboptimal policy gets closer to the optimal solution. When M→∞, we

will get the optimal policy (based on the observation that the vector P j→ [1000] as j→ ∞ )

VI. SIMULATION RESULTS

We calculate the optimal parameters of different sub-optimal policies numerically using C++.

Then, we simulate the PU channel occupancy patterns where OFF times are generated with

HED distribution given in [8], [12]. When the channel become free from PU, the SU will access

the channel using one of the sub-optimal policies. We evaluate the performance of different

sub-optimal policies in terms of total cost CTotal through a simulator written in C++.

The optimal sensing intervals of multishot sub-optimal policy, {I∗1 , I∗2 , ..., I∗K}, are calculated

using (15) for parameters {λK,λK−1, ...,λ1}, respectively. From (K + 1)th sensing instant, the

SU always choose I∗K as the channel sensing interval.

In our simulation, we generated the channel occupancy model using two sets of HED param-

eters given in [8] and [12] (Light traffic – load < 0.1 and Medium traffic – load ∈ [0.3,0.5]).

Then, we evaluated the performance of different sub-optimal policies in terms of average number

of channel sensing E[N], average interference to PU (in time units) and C∗Total which are plotted

in Figs. 3 – 5, respectively. We observed that the interference to PU is less in case of multishot

policy as compared to other sub-optimal policies.

The performance of all sub-optimal policies for channels with cost functions CS = 5 and CI = 1

are tabulated in Table I. We can observe that multishot policy outperforms exponential sensing

interval policy in terms of total cost CTotal in all type of traffic conditions. The performance of

13
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Fig. 3: The average number of channel sensing E[N] for different sub-optimal policies against ω with costs Cs = 1

and CI = 1.
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Fig. 4: The average interference to PU (in time units) for different sub-optimal policies against ω with costs

Cs = 1 and CI = 1.

sub-optimal policies also depends on channel’s traffic conditions as well as costs CS and CI . For

example, we observe from Fig. 5(a) and Table I that the cross-over point of CTotal for multishot

and one-stage sub-optimal policies varies with change in costs.

In general, the proposed multishot policy outperforms one-stage sub-optimal policy when
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Fig. 5: The average total cost CTotal for different sub-optimal policies against ω with costs Cs = 1 and CI = 1.

TABLE I: Average number of channel sensing, intereference to PU and the CTotal for costs

CS = 5 & CI = 1

HED Params Policy No.of.sensing, E[N] Interference Total cost, CTotal

ω = 0.1 0.3 0.5 0.7 ω = 0.1 0.3 0.5 0.7 ω = 0.1 0.3 0.5 0.7

Light Traffic [8]

Exponential 2.778 1.905 1.593 1.388 9.881x10−1 1.941 2.963 4.529 2.278 4.217 5.463 6.217

One-stage 2.420 1.604 1.346 1.193 9.371x10−1 1.814 2.651 3.812 2.054 3.675 4.691 5.320

Multishot 2.684 2.048 1.795 1.604 4.888x10−1 8.616x10−1 1.209 1.668 1.782 3.674 5.092 6.116

Medium Traffic [8]

Exponential 1.634 1.323 1.211 1.138 3.521x10−1 6.918x10−1 1.056 1.613 1.134 2.468 3.556 4.468

One-stage 1.381 1.137 1.072 1.038 3.017x10−1 5.594x10−1 7.708x10−1 1.022 9.622x10−1 2.098 3.065 3.941

Multishot 1.469 1.245 1.148 1.076 1.915x10−1 3.231x10−1 4.600x10−1 6.655x10−1 9.068x10−1 2.093 3.099 3.967

5-phase HED [12]

Exponential 2.912 1.973 1.637 1.417 1.065 2.093 3.196 4.880 2.415 4.425 5.691 6.424

One-stage 1.599 1.319 1.226 1.167 5.015x10−1 8.035x10−1 1.107 1.555 1.251 2.541 3.619 4.554

Multishot 1.498 1.250 1.176 1.129 5.065x10−1 6.318x10−1 9.506x10−1 1.476 1.205 2.317 3.416 4.395

more weightage is given to reduce interference to PU. One-stage policy outperforms multishot

policy if we give more importance to reduce the number of channel sensing 2. However, the

major advantage of using multishot sub-optimal policy is that the complexity in calculating the

parameters of one-stage policy is very high (O(Z)) as compared to multishot policy (O(1)).

2The cross-over point of CTotal for multishot and one-stage policy varies with respect to CS, CI and also HED parameters.
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VII. EFFECT OF SENSING PARAMETERS AND DELAYED OCCUPANCY

A. Effect of delayed occupancy

When the channel is busy due to transmission of PU, the SU has to periodically sense the

channel for spectrum opportunity following a busy-period channel sensing strategy. As a result

the SU cannot occupy the channel as soon as it is released by the PU resulting in the missed

spectrum opportunity. We now account for the effect of the delayed channel occupancy by the

SU on the sub-optimal channel sensing policies.

Let the random variable X denote the OFF time of the PU. Let the interval between the time

the channel becomes free until it is sensed and occupied by the SU be denoted the random

variable M. Let the p.d.f of M be denoted as fM(m). The residual channel idle time, after

subtracting the missed opportunity, from the PU’s OFF time still follows an HED distribution

but with different phase probabilities as derived below. Then, the p.d.f of residual channel idle

time, denoted as Xd , is calculated as

fXd(x) =
∫

∞

m=0
fX |M(m) fM(m)dm,

=
∫

∞

m=0

K

∑
i=1

{
pie−λim

∑
K
k=1 pke−λkm

λie−λix

}
fM(m)dm

=

K

∑
i=1

λie−λix
∫

∞

m=0

pie−λim

∑
K
k=1 pke−λkm

fM(m)dm

=

K

∑
i=1

λie−λix pd
i

Thus the remaining channel idle time due to delayed occupancy Xd follows HED, irrespective

of SU’s busy-period sensing interval mechanism, with same {λi}K
i=1 but with different phase

probabilities {pd
i }K

i=1. 3

For example, we have considered exponential sensing interval policy with parameter λ for

SU’s busy-period sensing. As a result of memory-less property of exponential distribution, the

missing opportunity due to delayed occupancy will also follows same exponential distribution,

3In multi-channel scenario, the validity of assumption depends on sensing duration, channel sensing order, channel switch

delay and transmit/receive mode switch delays (for half-duplex SU).
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i.e. fM(m) = λe−λx. We have plotted the normalized throughput of SU against ω for different

values of λ in Fig. 6. The normalized throughput decreases with decrease in weightage factor

for interference in total cost function. When the weightage for interference to PU decreases, we

will have larger optimal sensing intervals Ii and hence lesser throughput due to interference with

PU.
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Fig. 6: Normalized throughput of secondary network for delayed occupancy (Multishot policy) with CS = 5 and

CI = 1. HED parameters are given in [8].

B. Effect of sensing error and sensing duration

Two important parameters that affect the performance of channel sensing are (i) probability

of detection Pd and (ii) probability of false alarm Pf which are defined as,

Pd = Pr(CHsensed = Busy|CH = Busy)

Pf = Pr(CHsensed = Busy|CH = Idle)

The probability of false alarm Pf can be expressed in terms of Pd , channel sensing time Tsense

and signal-to-noise ratio (SNR) ζ of complex valued PU signal as [3]

Pf = Q(
√

2ζ +1Q−1(Pd)+
√

Tsense fsζ ) (21)

where Q(.) is the tail probability of standard normal distribution, fs is the sampling frequency.

The target probability of signal detection Pd is usually set by regulatory bodies to avoid inter-

ference to PU. For example, IEEE 802.22 WRAN working group sets the target Pd = 0.9 in the
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worst-case scenario of ζ =−20 dB. Thus with received SNR ζ and target Pd , we can calculate

false alarm Pf for different values of Tsense.

The channel sensing error can be included in the cost function V ∗j (Tj) give by equation 11 of

stochastic dynamic programming framework as

V ∗j (Tj) = min
I j+1≥0

{C j(I j+1)+ γ j(I j+1)(1−Pf )V ∗j+1(Tj+1)}, (22)

Note that the probability of detection Pd and other channel sensing parameters are indirectly

captured by Pf as shown in (21). We have evaluated the performance of our proposed multishot

policy for different values of Pf , i.e. for different channel sensing duration Tsense, for a fixed

Pd = 0.9, ζ =−20 dB, and fs = 20 MHz. Whenever the channel is sensed busy (either due to

PU reappearance or false alarm), SU follows busy-period sensing interval policy till the channel

is sensed idle and revert back to multishot policy (restarts from I∗1 ) after regaining the channel.

In our simulation, we have assumed exponential policy with parameter λ = 1/10ms as SU’s

busy-period sensing interval policy.

We have also incorporated channel sensing duration Tsense which is a function of Pf . The

normalized throughput of SU for varying channel load condition is plotted against Pf in Fig. 7(a)

for ω = 0.5. We can observe that the normalized throughput decreases with increase in Pf .

However, we didn’t observe much difference in normalized throughput with respect to different

channel loads. The reason being that the normalized throughput is measured as the fraction of

time SU uses the channel idle time for packet transmission. Similarly, the normalized throughput

is plotted against ω for a fixed Pf = 0.02 in Fig. 7(b).

We now discuss the effect of finite channel sensing duration on the total cost function of

various sub-optimal policies. Any optimal (even sub optimal) solution would choose sensing

interval Ii that are much larger than the sensing duration Tsense. Else the fraction of time spent

on sensing will be a large overhead. Under this condition, the sensing duration has minimal

impact on our total cost. Our total cost CTotal depends on the number of sensing made and

the interference to PU. Finite sensing duration adds a small constant to the successive sensing

interval chosen, and slowly drifts the sensing points as compared to the ideal case of “Zero

sensing duration”. If N is the expected number of sensing done in ideal case , with finite sensing

duration case it will be around ”N−1”. Therefore the error involved in total sensing cost is just

of the order CS.
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Fig. 7: Normalized throughput of secondary network (Multishot policy) with CS = 5 and CI = 1.

VIII. CONCLUSION

In this paper, we have considered optimal channel sensing policies for channels with heavy-

tailed idle time distribution, which are modeled as HED. We have shown that the periodic

sensing is not optimal when channel’s traffic deviates from the exponential distribution. The

optimization problem, with an objective to minimize the number of SU’s channel sensing and

SU’s interference to PU, is formulated. The structure of optimal solution is deduced through

the MDP and dynamic programming framework. By showing that the state and action space of

MDP are continuous, we proposes sub-optimal channel sensing interval policy called ‘Multishot

sensing interval policy’ that minimizes the cost for sensing and interference to PU. Finally, we

have compared the performance of our proposed Multishot sensing interval policy with other

existing sub-optimal policies in literature for various channel traffic conditions.
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