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Abstract

Indium-tin-oxide (ITO) thin films were prepared  by reactive magnetron sputtering, their optical constants and thickness were determined by 

spectral reflectometry (SR) in the wavelength range from 400 nm to 800 nm and spectroscopic ellipsometry (SE) in the wavelength range from 

191 nm to 1690 nm. A comparative evaluation of the measured data from SR and SE has been made using the same single layer optical model  

based on the Cauchy dispersion relation. The introduction a surface roughness layer into the optical model considerably improved the fit quality 

during evaluation of SE data. Vertical inhomogeneity of the ITO thin films was assessed using a multilayer optical model describing porosity 
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gradient and the three-layer optical model suggested by Jung (Y.S. Jung, Thin Solid Films, 467, 36 (2004)) from the SE data.
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1. Introduction

Thin films of tin doped indium oxide (ITO) have been subjected to intensive investigation by several workers, mainly because of the 

varied and versatile applications of these thin films.1-27 These ITO thin films are quite complex and the properties are very sensitive to oxygen 

vacancies. The physical properties, in specific, the optical and electrical properties, of these thin films depend upon: (i) the thickness, (ii) the 

technique of preparation and (iii) on the growth parameters even in the same technique. With the advent of applications6,28-33 demanding the 

preparation (manufacture) of these ITO films at relatively low temperature or preferably at room temperature (300 K) (mainly for the touch  

panel displays on plastics and top electrode for solar cells and electrochromic devices on flexible plastic substrates), our laboratory has reported  

the physical properties (including photocatalytic properties) of ITO thin films (as a function of thickness) prepared at room temperature (300 K)  

by reactive DC magnetron sputtering technique.27

The aim of the present communication is mainly (i) to report the optical constants of  room temperature (300 K) magnetron sputtered ITO 

thin  films  and (ii)  to  compare  the  optical  constants  of  these  ITO thin  films  by spectral  reflectometry  (SR)  (fast  and cost  effective)  and  
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spectroscopic ellipsometry (SE) (time consuming, demand expertise for analyses). Characteristic optical properties of thin film structures can be 

derived from spectroscopic SE measurement,  which is known to be a high-precision optical characterization technique.34-38  Variable Angle 

Spectroscopic Ellipsometry (VASE) allows measurements at multiple angles of incidence. A new angle will change the length of the light 

penetrating through the materials. This can be advantageous in case of multilayers, as different path lengths usually deliver new information 

about the structure. Multiple angles are helpful to improve the confidence limits of the results yielded by the data evaluation. To the best of  

available knowledge with the authors, the optical constants of room temperature sputtered ITO are not reported in the literature.

Among the several reports on the optical constants of ITO thin films evaluated by spectroscopic ellipsometry,2-4,10,11,14,16,25,35 the recent 

work by Jung14 is most comprehensive. Jung investigated ITO thin films prepared under various DC magnetron sputtering conditions14 using 

VASE. He analyzed the SE data using a model combining Drude and Lorentz oscillator terms. The three-layer optical model consists of a bottom 

layer just above the substrate (responsible for nucleation), the middle layer and the top layer with surface roughness. Although the technique and 

the growth parameters used in the present work are similar to those used by Jung, certain conditions are different: (i) in Jung’s experiment the 

target was sintered ITO, in the present case the target was metallic, (ii) Jung applied DC sputtering technique, in the present case reactive DC 

sputtering was used, (iii) Jung selected single crystalline silicon for substrate, in the present experiment soda lime glass substrates were used, 

finally (iv) in Jung's experiment the thickness of the films was about 150 nm, in the present study the thickness values ranged from 165 to 1175 

nm.

2. Experimental
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 All the details of the preparation of ITO thin films are given in reference.27 Briefly, all the ITO thin films  were deposited on cleaned 

soda lime glass substrates (2.5 cm x 2.5 cm) at room temperature (300 K) by reactive DC magnetron sputtering using a commercial sputtering 

system (ANELVA, model SPC-530H).  The targets are metallic (In:Sn-90:10) with size: rectangular (38 cm x 13 cm). The target is powered to 

0.2 W/cm2 by a Magnetron power supply (M/s Advanced Energy Model:  MDX-10kW). The  flow rates of argon (sputter  gas)  and oxygen 

(reactive gas) were controlled through independent mass flow controllers (MKS model-1179A) keeping the ratio to 0.21 such that the chamber 

pressure is maintained at Pw = 3 mbar. The average deposition rate is ~ 19 nm/min. Before each deposition, the target was pre-sputtered with argon 

gas for 2 minutes in order to remove the surface oxide layer and to ensure the near virgin state of the target.

The ITO films are prepared with different thicknesses: they are labeled as S1-S6, S1 corresponding to a deposition time of 10 minutes 

(thickness ts1 =165 nm) and S6 (ts6 =1175 nm), corresponding to a deposition time of 60 minutes. The thickness (t), refractive index (n) and 

extinction coefficient (k) in the wavelength range 400 – 800 nm is measured by reflectometry (Filmetrics - F20).39 Ellipsometric measurements 

have been done using a  rotating  compensator  spectroscopic  ellipsometer  (Model  M-2000DI produced by J.A.  Woollam Co.,  Inc.)  in  the 

wavelength range of 191 -1690 nm with angles of incidence: of 55o, 60o, 65o, 70o and 75o; the measured data are analyzed using WVASE32 

software.40 

For the SE measurements, the rear face of the glass substrates was roughened to avoid disturbing reflection. The calculated spectra were 

fitted  to the measured ones using a regression algorithm. The measure of the fit  quality is  the mean squared  error  (MSE). The unknown 
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parameters are allowed to vary until the minimum of MSE is reached. In order to avoid the “local” minimum” in the regression algorithm, a 

careful global search procedure has been applied in case of complex multilayer structures (involving a wide range of initial parameter values). 

The optical constants of the substrates (soda lime glass) have been evaluated from SE measurements using a three-phase optical model 

consisting of the ambient (air), a surface roughness layer and the substrate. The roughness layer was taken into account on the basis of effective 

medium approximation;34,41 the roughness layer consists of 50% of glass and 50% of void (a most valid assumption). The Cauchy dispersion 

relation was employed to describe the refractive index and the extinction coefficient of the glass. The five parameters of the Cauchy dispersion 

relation and the thickness of the roughness layer were considered as free variables. 

The data analysis (191 – 1690 nm wavelength range) shows a surface roughness on the glass substrates to be 3.8 ± 0.5 nm. The fitted values of  

the five parameters of the Cauchy dispersion relation were built in into the optical models of the ITO-glass structure. 

3. Results and discussion

For the sake of clarity, this section is divided into four parts:

First  part  describes  the  comparison  between  reflectometry  and  spectroscopic  ellipsometry.  Second  part  analyzes  the  spectroscopic 

ellipsometric data using four optical models and detailed analyses has been given including the depth profile. The third part analyzes the SE data  

following the optical model proposed by Jung. The fourth part of the work presents the optical analysis of sample S1 in the wavelength range  

230-1690 nm.
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A. Comparison of reflectometry and spectroscopic ellipsometry techniques: 

One of the objectives  of  our investigation  is  to  evaluate  the precision of  thickness  and refractive  index obtained by reflectometry 

compared to those obtained from the Ellipsometric measurements: this objective is addressed in the first part of this section. 

The  refractive  index  (Fig.1)  and  extinction  coefficient  (Fig.2)  data  for  the  six  samples  obtained  by  reflectometry  technique  are 

reproduced for the sake of comparison.27 Reflectometry gives the thickness and wavelength dependent refractive index and extinction coefficient 

of the thin film provided the base data on the refractive index of the substrate is fed to the program.39 Reflectometry basically uses the well-

known Cauchy dispersion relations:39 this analysis is labeled as Model-1.

Model-1: 

During the first evaluation of the measured SE data six free parameters were involved in the computation (Model-1): the thickness of 

the ITO layer and the other five  are the  parameters of the Cauchy dispersion relation. The thickness values obtained by evaluation of data 

measured by reflectometry together with thickness and MSE values obtained by evaluation of data measured by SE. Results are presented in 

Table 1. There is a considerable deviation between the measured and generated ellipsometric angles. The thicknesses and the MSE values are 

displayed in Table 1. The MSE values for the six samples from 97 to 227 are rather large; they indicate an inferior fit quality.

B. Analyses of SE data using four optical models (400-800 nm):
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The SE data are analyzed using four other optical models:

Model-2: surface roughness, Cauchy dispersion relation

Model-3: surface roughness, Drude + Lorentz

Model-4: surface roughness, Drude + Lorentz + porosity grading (400 – 800 nm)

Model-5: surface roughness, Drude + Lorentz + porosity grading (400- 1690nm)

All the results are given in Table 1 for clear comparison.

Model-2 to Model-5: 

During the  second  evaluation  (Model-2)  of  the measured SE data  a  two-layer  optical  model  was chosen.  In  the  optical  model  a  surface 

roughness layer was considered on the top of the ITO film. The surface roughness layer means that the ITO material was mixed with 50% void 

on the basis of the effective medium approximation.34,41 The only free parameter is the thickness of the surface roughness layer. Altogether seven 

free parameters were involved in the computation: two of them are thickness-related parameters (thickness of the surface roughness layer and 

the thickness of the  ITO layer); the other five ones are the parameters of the Cauchy dispersion relation.  In the case of two-layer (surface 

roughness layer plus ITO layer) or multilayer optical models (surface roughness layer plus ITO layer with porosity grading) the “Thickness” is  

the sum of the thickness of the ITO layer and half of the thickness of the surface roughness layer.

The  evaluation  yielded MSE values  from 15 to 41 for the six samples  as one can see in  Table 1. These values show a considerable 
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decrease if we compare to the previous case (Model-1). This means that the agreement between the measured and computed spectra improved 

substantially. This reflects that ellipsometry is very sensitive to the top surface condition, i.e. the insertion of the surface roughness layer into 

the optical model. 

During the third evaluation (Model-3) of the measured SE data eight free parameters were involved in the computation: two of them 

are thickness-related parameters (thickness of the surface roughness layer and the thickness of the  ITO layer), the other six ones are in 

connection with the Lorentz oscillator and the Drude oscillator. Traditionally, the wavelength dependence of the complex refractive index 

of ITO material have been described by use of Lorentz and Drude oscillators.2,25 The evaluation yielded MSE values from 14 to 23 for the 

six samples as one can see in Table 1. This means that the agreement between the measured and computed spectra is satisfactory. Fig. 3 

shows the wavelength dependence of the refractive index for the six ITO films using Model-3. Fig. 4 shows the wavelength dependence of 

the extinction coefficient for the six ITO films.

In the fourth evaluation (Model-4) an additional free parameter was introduced in the computation: it describes the volume fraction of 

void. The optical model consists of the surface roughness layer and 99 sublayers. The void gradient was implemented through 99 sublayers; each 

sublayer can be considered as a mixture of ITO material and void (according to the Bruggeman effective medium approximation.34,41

The ninth free parameter describes the void volume fraction of the first thin sublayer below the surface roughness layer. The void fraction of the  

last thin sublayer (this thin sublayer is adjacent to the glass substrate) is zero. In other words, the index grading in the ITO film was assumed to 

be linear with depth, and calculated by sub dividing the ITO layer into many thin slabs (laminae), each of constant refractive index.  The void 
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fraction of the sublayer  adjacent  to  the surface roughness layer  and the refractive index of the sublayer  adjacent  to the glass substrate  at 

wavelength of 474 nm is given for Model-4. 

Fig. 5  and Fig.  6 shows the measured and generated values of the ellipsometric angles Ψ and Δ for sample S4 for the case of the 

evaluation by Model-4. The agreement between the measured and the calculated (simulated) spectra reveals the quality of the fit. The void  

fraction of the sublayer adjacent to the surface roughness layer is given in Table 1 for the six samples. The introduction of the new free 

parameter (void volume fraction) led to the decrease in MSE for all the six samples in the evaluation compared to the MSE values obtained 

during the evaluation applying Model-3. The  fifth  evaluation was performed in the wavelength range of 400-1690 nm. The results are  also 

shown in  Table 1. The constant refractive index shown in Table 1 belongs to the sublayer adjacent to the glass substrate for Model-4 and 

Model-5.

Fig.7 depicts the refractive index and the extinction coefficient in function of the wavelength for the top and the bottom sublayers of 

the ITO film for sample S1. Fig. 8 shows the depth profile of the refractive index for the ITO film of sample S1. The refractive index at 474 

nm of the sublayer adjacent to the glass substrate is given for all six samples in Table 1. These refractive index values ranging from 2.14 to 

2.20 are close to the refractive index value of the bulk ITO (2.19) mentioned by Kim et al.20

C. Comparison with the model proposed by Jung: 14

The three-layer optical model constructed by Jung consists of a bottom layer just above the substrate (responsible for nucleation), a  

middle layer and the top layer representing the surface roughness.
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Similar evaluations were performed on the SE data measured by us involving 15 free parameters. Since Jung performed the evaluations 

in the wavelength range of 300 – 1000 nm, we have chosen the same range. The free parameter describing the thickness of the bottom ITO 

layer was allowed to change between 0 nm and 100 nm in the global search procedure. From Table 2 one can see that the fit results are in the 

range of 20 – 53 nm for this parameter (depending on the total thickness). Jung published a value of 30 nm for the thickness of the bottom ITO 

layer (the total thickness of the films was about 150 nm in his experiment).14 Fig. 9 displays the wavelength dependence of refractive index and 

extinction coefficient of the bottom layer obtained from evaluation of SE data measured on sample S1. Fig. 10 shows the refractive index and 

the extinction coefficient vs. wavelength for the top ITO layer for sample S1 using evaluation of SE data based on the Jung model. In addition 

we  evaluated the SE data using a two-layer optical model with the  combination of a Drude oscillator and a  Lorentz oscillator  and porosity 

grading also in the wavelength range of 300 – 1000 nm. It is remarkable that the MSE values are significantly lower for evaluations performed 

using the so called Jung model than in the case of the optical model constructed with a linear porosity grading.

ITO films usually grow with a graded microstructure which introduces grading or vertical inhomogeneity into the complex refractive index of 

the films 3,4,14,42 . Evaluation using a vertically homogeneous ITO layer in the optical model in the visible spectral range (from 400 nm to 800 nm) 

provides the approximate film thickness and refractive index (this model is what is being employed in Reflectometry measurements). To obtain 

more accurate values it is necessary to take into account the vertical  inhomogeneity in the optical model. The Jung model implements the 

vertical inhomogeneity by using two sublayers for the bulk ITO film, each sublayer described by free parameters concerning the thickness and  

the quantities belonging to the dispersion relation. During the evaluation in the step of the global minimum search 15 free parameters should be 
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varied within the carefully prescribed limits in order to find the global minimum for MSE in the case of Jung model. 

The Model-4 based on a void gradient implemented through 99 sublayers of equal thickness (linear porosity grading) for describing vertical  

inhomogeneity. Altogether 9 free parameters should be varied in order to find the global minimum for MSE. However, the computation time is 

considerable longer than in the case of the Jung model, because the treatment of the 100-layer structure (surface roughness layer + 99 sublayers)  

needs a lot of time. 

In Model-4 and Model-5 the bulk ITO film was divided into 99 sublayers of equal thickness, so the thickness of the sublayer changes from 

sample  to  sample.  The constant  refractive  index shown in  Table  1 belongs  to  the  sublayer  adjacent  to  the  glass  substrate.  The  sublayer  

thicknesses calculated in Model-4 and Model-5 are given in Table 1A. 

We have found that the MSE values are significantly lower for evaluations with Jung model than for evaluations performed with Model-4, with 

linear porosity grading.

D. Evaluation of optical constants of ITO in the wavelength range 230 – 1690 nm:

Results  on sample  S1 are  presented  here.  The analyses  being  similar,  the  data  for  other  samples  (S2-S6) is  not  presented  in  this  

communication. Fig. 11 and Fig. 12 show the measured and generated psi and delta values for the wavelength range of 230 - 1690 nm, the 

significant deviation disappeared from the generated psi spectra at the vicinity of the starting wavelength. The MSE=20.52.

The Fig. 13 and Fig. 14 are displaying the refractive index and the extinction coefficient versus wavelength for the bottom and top ITO layer for  
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sample S1 using evaluation of SE data in the wavelength range of 230 – 1690 nm based on the model proposed by Jung. 

4.  Conclusions

The optical constants: refractive index (n) and extinction coefficient (k) for different thicknesses of ITO thin films measured by spectral reflectometry 

(400 – 800 nm) and spectroscopic ellipsometry (230 – 1600 nm) are presented in this communication. The ITO thin films have been prepared by 

reactive DC magnetron sputtering at room temperature (300 K) on soda lime glass substrates employing a metal alloy target which quite likely 

introduces (due to unstable process)  a vertically inhomogeneous ITO layer. Results show that the optical constants measured by spectral reflectometry 

are comparable with those evaluated by SE. Detailed analyses of SE data have been executed using five optical models.  To analyze the graded 

structure  of  the  films,  optical  models  describing  porosity  gradient  were  used.  The  sublayer  thicknesses  are  calculated.  Most  significant 

improvement of the fit quality was obtained by introducing a surface roughness layer. The SE data are also analyzed using the optical model 

proposed by  Jung who suggested for  description  of  the  bulk ITO film two independent  layers.  We have found that  the MSE values  are 

significantly lower for evaluations with Jung model than for evaluations performed with linear porosity grading.

From the present study, it may be inferred that accurate estimate of the thickness and refractive index may be obtained if one follows the  

strategy: (i) first one may apply the Cauchy dispersion relation in the visible spectral range (approximately from 400 nm to 800 nm) for the  

determination of the approximate film thickness and refractive index; (ii) in the second step one may use the three-layer optical model (surface  

roughness layer and two sublayers) elaborated by Jung to handle the vertical inhomogeneity; (iii) the approximate film thickness and refractive  
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index values determined in the first evaluation step may serve to establish reasonable parameter limits for the global search procedure in the  

second step.
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Figure Captions:

Fig. 1. Refractive index (n) variation of ITO thin films for different thicknesses (S1-S6) in            the wavelength range of 400-800 nm 
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evaluated from reflectometry data.

Fig. 2. Extinction coefficient (k) variation of ITO thin films for different thicknesses (S1-S6) in the wavelength range of 400-800 nm 

evaluated from reflectometry data.

Fig.3. Refractive index (n) variation of ITO thin films for different thicknesses (S1-S6) in the wavelength range of 400-800 nm using a two-

layer optical model with the combination of a Drude oscillator and a Lorentz oscillator for evaluation of SE data.

Fig. 4. Extinction coefficient (k) variation of ITO thin films for different thicknesses  (S1-S6) in the wavelength range of 400-800 nm using a 

two-layer optical model with the combination of a Drude oscillator and a Lorentz oscillator for evaluation of SE data.

Fig. 5. Measured and generated  ellipsometric angle Ψ for sample S4 evaluated using a two-layer optical model with the  combination of a 

Drude oscillator and a Lorentz oscillator using porosity grading.

Fig. 6. Measured and generated ellipsometric angle Δ for sample S4 evaluated using a two-layer optical model with the combination of a 
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Drude oscillator and a Lorentz oscillator using porosity grading.

Fig.7. The refractive index and the extinction coefficient versus wavelength for the top and the bottom sublayer of the ITO film for sample S1.

Fig. 8. Depth profile of refractive index for the ITO film of sample S1 at a wavelength of 474 nm.

  

Fig. 9. The refractive index and the extinction coefficient versus wavelength for the bottom ITO layer for sample S1 using evaluation of SE 

data based on the Jung model.

Fig. 10. The refractive index and the extinction coefficient vs. wavelength for the top ITO layer for sample S1 using evaluation of SE data 

based on the Jung model.

Fig. 11. The measured and generated psi (Ψ) values for sample S1 in the wavelength range of 230 - 1690 nm based on the Jung model.

Fig. 12. The measured and generated delta (Δ) values for sample S1 in the wavelength range of 230- 1690 nm based on the Jung model.
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Fig. 13. The refractive index and the extinction coefficient versus wavelength for the bottom ITO layer for sample S1 using evaluation of SE 

data in the wavelength range of 230 – 1690 nm based on the Jung model.

Fig. 14. The refractive index and the extinction coefficient versus wavelength for the top ITO layer for sample S1 using evaluation of SE data 

in the wavelength range of 230 – 1690 nm based on the Jung model.

Table  Captions:

Table I. The thickness values obtained by evaluation of data measured by Filmetrics F20 along with thickness and MSE values obtained by 

evaluation of data measured by Spectroscopic Ellipsometry (Different models).

Table IA. The sublayer thicknesses calculated in Model 4 and Model 5 for the six samples.

Table II. The thickness values obtained by evaluation of data measured by Filmetrics F20 along with thickness and MSE values obtained by 

evaluation of data measured by Spectroscopic Ellipsometry. For the evaluation of SE data two different optical models were constructed. The 

so called Jung model is a three-layer optical model. In the case of Jung model (surface roughness layer plus ITO-upper and ITO- bottom layer)  

or multilayer model (surface roughness layer plus ITO layer with  porosity grading) the „Total thickness” is the sum of the thickness of the ITO 
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layers and the half of the thickness of the surface roughness layer. The void fraction of the sub-layer adjacent to the surface roughness layer is 

given for the model with porosity grading.

24



Table I.

Sample number S1 S2 S3 S4 S5 S6
FilmetricsF20
(eval.:400-800nm) 
Cauchy dispersion relation

Thickness [nm] 165±5 380±5 545±5 732±5 950±5 1175±5

SE, model 1
(eval.:400-800nm) 
Cauchydispersion relation

Thickness [nm] 141.9±0.4 397±1 412.3±0.8 721±2 944±4 964±4

MSE 145.7 185.4 97.1 122.9 227.4 142.4

SE, model 2
(eval.:400-800nm) 
surface roughness, 
Cauchydispersion relation

Thickness [nm] 159.5±0.1 396.9±0.3 416.7±0.3 719.5±0.3 924.0±0.8 953.0±0.3

MSE 16.2 32 18.3 21.4 41 15.3

SE, model 3
(eval.:400-800nm)  
surface  roughness, Drude + 
Lorentz

Thickness [nm] 158.9±0.2 397.2±0.3 416.2±0.2 715.5±0.3 915.4±0.5 946.8±0.5

MSE 17.5 36 14.1 18 22.6 20.4

SE, model 4
(eval.:400-800nm)  
surface  roughness, Drude + 
Lorentz + porosity grading

Thickness [nm] 154.8±0.3 393.4±0.3 409.9±0.3 706.5±0.5 909.2±0.3 942.8±0.5

Void fraction [%]
6.9±0.5 7.5±0.1 4.9±0.2 4.2±0.2 5.06±0.09 2.7±0.1

n(474nm) 2.18 2.14 2.20 2.19 2.14 2.18
MSE 15.6 11.2 12.5 16.6 11.1 17.9

SE, model 5
(eval.:400- 1690nm)
surface roughness, Drude + 
Lorentz +
porosity grading

Thickness [nm] 157.2±0.2 394.5±0.6 409.8±0.4 704.8±0.3 908.2±0.4 927±1

Void fraction [%] 3.1±0.1 9.8±0.3 4.2±0.2 4.3±0.1 5.8±0.1 6.9±0.3

n(474nm) 2.13 2.15 2.20 2.20 2.15 2.24
MSE 11.5 71.6 25.9 19.1 18.6 27.9
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Table IA. 

Sample 
number

Sublayer thickness (nm)
Model 4 Model 5

S1 1.48 1.49 
S2 3.90 3.92
S3 4.11 4.11
S4 7.10 7.08
S5 9.09 9.08
S6 9.47 9.31
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Table II.

Sample number S1 S2 S3 S4 S5 S6
FilmetricsF20,
(eval.:400-800nm)
(Cauchy dispersion
 relation)

Thickness[nm] 165±5 380±5 545±5 732±5 950±5 1175±5

SE, 
Jung model
(eval.:300-
1000nm)
Three-layer optical 
model, Drude + 
Lorentz

Surface roughnes sthickness 
[nm] 18.4±0.3 11.50±0.07 5.61±0.06 6.90±0.05 17.57±0.04 9.97±0.08

Upper-ITO [nm] 104.8±0.7 349.2±0.4 352.4±0.4 657.8±0.6 860.4±0.6 869.2±0.8

Bottom-ITO [nm] 20±1 30.9±0.5 47.2±0.8 36.5±0.7 35.6±0.7 52.8±0.8

Total thickness [nm] 134±2 385.6±0.9 402±1 698±1 905±1 927±2

MSE 12.5 20.7 16.8 19.8 15.7 37.3

SE, 
Multi layer 
model
(eval.:300-1000nm)
Surface roughness,
Drude + Lorentz + 
porosity grading

Surface roughness thickness 
[nm] 19.03±0.08 14.11±0.07 6.1±0.1 8.59±0.07 18.90±0.06 11.39±0.06

ITO [nm] 144.1±0.1 381.6±0.3 398.8±0.8 684±2 883±1 911±2

Total thickness [nm]
153.6±0.2 388.7±0.3 401.9±0.9 688±2 893±1 917±2

MSE 28.8 45.6 48.3 55.1 37.3 46.7
Voidfraction [%]

5.8±0.2 12.3±0.2 11.8±0.5 13.2±0.5 12.2±0.3 12.2±0.5
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Figure 1.

28



Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.
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Figure 9.
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Figure 10.
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Figure 11.
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Figure 12.
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Figure 13.
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Figure 14.
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	The ninth free parameter describes the void volume fraction of the first thin sublayer below the surface roughness layer. The void fraction of the last thin sublayer (this thin sublayer is adjacent to the glass substrate) is zero. In other words, the index grading in the ITO film was assumed to be linear with depth, and calculated by sub dividing the ITO layer into many thin slabs (laminae), each of constant refractive index. The void fraction of the sublayer adjacent to the surface roughness layer and the refractive index of the sublayer adjacent to the glass substrate at wavelength of 474 nm is given for Model-4. 

