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1. INTRODUCTION

With increase in air-traffic and unknown factors contribut-
ing to aircraft loss-of-control and subsequent accidents, it
has become mandatory to train pilots for the unwarranted
flight scenarios. Developing control strategies for entry into
and recovery from inadvertent flight conditions, thereby,
becomes crucial. In order to develop these strategies within
the available control authority, both, open-loop control
schedules useful for piloted and remote piloted aircraft,
and closed-loop control algorithms for aircraft with on-
board flight control systems or autonomous systems, are
necessary. A special issue dedicated to “Aircraft Loss of
Control” published by JGCD (Issue 4, April 2017) calls for
a holistic approach to the problem of detecting, preventing,
and safely recovering an aircraft either maneuvered into a
loss of control scenario or inadvertently trespassing into
flight regimes unknown to the pilot (Belcastro et al., 2017;
McDonough and Kolmanovsky, 2016; Akametalu et al.,
2018; Richards et al., 2016; Kim et al., 2016). Reconstruc-
tion of loss of control maneuver for pilot training and
devising strategies for recovery both are equally impor-
tant. In order to design recovery control sequence for air-
craft loss-of-control handling, several approaches for fast
computation of recoverable sets defined by initial states
from which aircraft can be recovered within the control
authority available have been presented in (McDonough
and Kolmanovsky, 2016). Combining cruise-land phase
optimal feedback controller, Akametalu et al. (2018) de-
signed a recovery control sequence for emergency landing
of unmanned aerial systems. Richards et al. (2016) pro-
posed an upset recovery-based architecture for designing
recovery control sequence for both piloted and unmanned

aircraft. A reinforcement learning based control algorithm
has been proposed in (Kim et al., 2016) for recovery of
UAVs from undesired conditions. Pilot-Assisted Recovery
Systems (PARS) (Paranjape et al., 2017) were recently
proposed for energy optimal recovery of aircraft from un-
desired flight conditions characterized by large flight path
angles. While there have been several attempts towards
designing closed-loop control algorithms-based recovery
strategies (Raghavendra et al., 2005; Sinha and Rao, 2010;
Snell et al., 1992), design of open-loop control recovery
schedules is inconspicuous.

Open-loop pilot control is intuitive and desired in a nor-
mal flight condition. For example, a pilot noticing that
aircraft is pitching-up from a cruise flight condition will
instinctively apply elevator down or push the stick away
to pitch-down the aircraft. While he may get away with
undesired development of pitch in this manner, controlling
a single degree-of-freedom in motion, in order to counter a
simultaneous change in speed from cruise flight condition,
he may have to operate both elevator and throttle controls
together. Thereby, even in a purely longitudinal flight
condition characterized by three degrees of freedom mo-
tion, coordination of throttle and elevator or scheduling of
throttle and elevator becomes mandatory in order to main-
tain a particular flight condition in flight. Such open-loop
control interconnect schedules can be easily computed by
using the constrained bifurcation and continuation proce-
dure first proposed by Ananthkrishnan and Sinha (2001).
Using the procedure, design of aileron-rudder-interconnect
(ARI) laws for jump prevention in roll maneuver was
demonstrated in (Sinha and Ananthkrishnan, 2003). These
open-loop control interconnect laws are based on utiliz-
ing dynamical system topology to provide a unique way
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of charting out a control recovery sequence. Lowenberg
(1998) used this route to control spin behavior of a high
angle of aircraft model. Scheduling of control parameters
based on explicit constraints on states (defining particular
flight conditions) and implicit constraints on stability be-
havior (gain scheduling) exhibit enormous potential of the
bifurcation and continuation based techniques (Vora and
Sinha, 2017).

Hyper-dimensional topology of a six degree-of-freedom
multi-parameter nonlinear aircraft model may provide nu-
merous ways of constructing recovery control sequence.
Among the numerous ways, one may find simple, as well
as, optimal (energy optimal, time optimal, etc.) control
sequences. In this work, usefulness of dynamical system
topology is shown in designing control recovery laws for
a nonlinear aircraft model. The adopted methodology is
based on a constrained continuation procedure outlined in
(Vora and Sinha, 2017). In a first, a new formulation of
constraints is implemented via aircraft navigational vari-
ables in order to compute open-loop control interconnect
schedules using the constrained continuation procedure
for spin recovery of F-18/HARV model, as an example.
Further, numerical time simulation is carried out utiliz-
ing the control interconnect schedules to demonstrate the
recovery.

The paper is organized as follows. Details of the mathe-
matical model used in this work are presented in Section
2. Section 3 provides adequate description of computation
using numerical continuation and the dynamical results for
a high angle of attack model of F-18/HARV. Formulation
of recovery strategy as a constrained dynamics problem
and control interconnect schedules for spin recovery are
presented in Section 4. Recovery control sequence and
simulation results are presented in Section 5. Conclusions
and future directions of work are presented in Section 6.

2. MATHEMATICAL MODEL OF AIRCRAFT

The following set of nonlinear ordinary differential equa-
tions governing six degree-of-freedom motion of rigid air-
craft are used in this work [9].

V̇ =
1

m
[ηTmcosαcosβ − q̄S(CDcosβ − CY sinβ)−mgsinγ]

α̇ = q −
1

cosβ
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g
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+
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(1)
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1
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(3)

The first set of three equations, Eq. (1), governs the trans-
lational motions of a point mass rigid aircraft, the next set
of three equations, Eq. (2), governs the angular motions,
and Eq. (3) are kinematic equations in windfixed coor-
dinates. The three sets of equations are strongly coupled
in a complex six degree-of-freedom motion. Presence of
direct nonlinear terms and coupling of various types, viz.,
aerodynamics, kinematic, geometric, etc. make an aircraft
model highly nonlinear (Goman and Khramtsovsky, 1998).
The aerodynamic model described by the six coefficients
(CL, CD, CY , Cl, Cm, Cn) in the model are dependent on
state and control variables of aircraft; the dependencies
for the F-18/HARV model used in this work is as given in
(Raghavendra et al., 2005).

3. HIGH ANGLE-OF-ATTACK SPIN DYNAMICS OF
F-18/HARV

In order to investigate global dynamics of a given aircraft
model, bifurcation method based techniques can be effi-
ciently utilized. A bifurcation theoretic approach is based
on computing steady states of a system of nonlinear ordi-
nary differential equations

ẋ = f(x, U) (4)

as function of a varying parameter using a numerical
continuation algorithm. For the aircraft model in Eq.
(1-3), x = [V, α, β, p, q, r, µ, γ]

′

is the vector of state

variables of aircraft, U = [η, δe, δa, δr]
′

is the vector of
control parameters, and f is the nonlinear vector field
governing aircraft dynamics. Given a starting equilibrium
state satisfying

ẋ = f(x, U) = 0, (5)
a numerical continuation algorithm solves for connected
branches of other equilibrium solutions as function of
a varying parameter. Simultaneous computation of local
stability of equilibrium states (based on the eigenvalues
of Jacobian matrix evaluated at each equilibrium state)
and bifurcations (followed by loss of stability at critical
equilibrium, marked by one or more eigenvalues lying
on the imaginary axis) are unique features of advanced
continuation algorithms (Doedel et al., 2007; Dhooge et al.,
2003). Further, computation of oscillatory limiting states,
their stability, and bifurcations from oscillatory limiting
states helps in characterizing global dynamic behavior of
a nonlinear aircraft model (Goman and Khramtsovsky,
1998). In order to compute high angle-of-attack spin
solutions of the F-18/HARV model, equilibrium solutions
of equations of aircraft dynamics (Eq. (1-3)), complete in
all respects, are solved as function of elevator deflection,
keeping other controls at fixed values. This amounts to
solving a set of simultaneous nonlinear algebraic equations
(Eq. (1-3) set to zero)

ẋ = f(x, δe, η = fixed, δa = 0, δr = 0) = 0, (6)
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Fig. 1. High angle-of-attack dynamics of F-18/HARV
model (Solid lines: stable equilibrium, dashed lines:
unstable equilibrium, solid squares: Hopf bifurcations.
solid circles: stable oscillatory states).

as function of δe . High angle-of-attack bifurcation results
for F-18/HARV model have been presented in various
contexts in literature (Raghavendra et al., 2005; Sinha
and Rao, 2010; Snell et al., 1992). Nonetheless, for ready
reference and for sake of completeness, they are reproduced
in Fig. 1 and Fig. 2. Continuation, from a given level flight
trim condition (computed otherwise), with elevator deflec-
tion varying as continuation parameter computes other
connecting branches of equilibrium solutions along with
local stability information on the solutions. Reading Fig.
1 from right to left, one can observe that, as elevator up
(negative) deflection increases, angle-of-attack increases
in a conventional manner. Sideslip angle, roll angle, and
rates are zero for up to elevator deflection of about -0.175
rad, indicating, up to this value of elevator deflection, all
nominal equilibrium solutions are longitudinal trims. Off-
nominal solutions (branching off from nominal solution
branch at loss of stability) at low angles of attack resulting
from onset of bifurcations and slow departure at moder-
ate to high angles of attack indicate coupled motions in
longitudinal and lateral-directional variables.

Post-stall behavior of the F-18/HARV beyond angle-of-
attack approximately 0.7 rad corresponding to elevator
deflection of about -0.175 rad is dominated by coupled
nonlinear motions. The branch of equilibrium solutions
of our interest, is corresponding to oscillatory spin states
characterized by significantly high yaw rates, and very
high angles-of-attack at approximately 1.26 rad (Sinha
and Rao, 2010; Rao and Sinha, 2013). Non-zero values
of lateral-directional states on this branch indicate that
this motion is coupled. Flight path angle on this branch
of equilibrium solutions is approximately -1.57 rad charac-
terizing the spin to be ‘flat’and indicating that aircraft is
heading directly vertically down. High negative values of
wind-fixed roll angle deg µ ≈ 1.4 rad indicate a left spin.

It is quite intuitive to understand that a large number
of similar two-dimensional curves, for different settings of
fixed throttle values and zero aileron and rudder deflec-
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Fig. 2. High angle-of-attack dynamics of F-18/HARV
model (Solid lines: stable equilibrium, dashed lines:
unstable equilibrium, solid squares: Hopf bifurcations.

tions, can be generated as functions of elevator deflection.
Put side-by-side, these curves of equilibrium solutions will
constitute a surface for each of the states of aircraft. It
becomes not only computationally intensive and time con-
suming to construct such surfaces that may exhibit folding
and unfolding of solution branches, but, it is also difficult
to meaningfully visualize these surfaces. Including varia-
tions of aileron and rudder deflections, a 4-dimensional
topology of each state as function of elevator deflection
may emerge, making it further difficult to visualize and
analyze the dynamics. Instead, meaningful construction of
bifurcation curves utilizing scheduling of control parame-
ters may be more useful in practice. In the following, one
such application based control scheduling for spin recovery
is presented.

4. COMPUTATION OF CONTROL INTERCONNECT
SCHEDULES FOR SPIN RECOVERY

There has been a lot of work on designing closed-loop
control laws for aircraft recovery from spin, extremely
important for autonomous aircraft and aircraft with on-
board control systems. Prominent among them being spin
recovery control design using sliding mode and nonlinear
dynamic inversion based control techniques (Raghavendra
et al., 2005; Sinha and Rao, 2010; Snell et al., 1992)
and, more recently, one based on reinforced learning based
control (Kim et al., 2016). However, there has not been any
visible attempt towards designing recovery laws for pilot
operated aircraft. A method based on constrained contin-
uation procedure (Lowenberg, 1998) is adopted here to
compute open-loop control interconnect schedule for spin
recovery. In a constrained continuation, computation of
steady state solutions of Eq. (1) augmented with equality
constraint equations

ẋ = f(x, U); g(x, U) = 0 (7)

is carried out. The steady state solution thus computed
are not ordinary but the ones that satisfy the constraints,

g(x, U) = 0. (8)
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The control schedules (variations of control parameters
p ∈ U as function of continuation parameter) required to
satisfy the constraints are also computed in this manner.
Several examples of this increased functionality of contin-
uation techniques have been presented in (Spetzler and
Narang-Siddarth, 2016) and more recently in (Vora and
Sinha, 2017). The examples show unique capabilities of a
numerical continuation algorithm in solving n coupled non-
linear algebraic equations in n +1 unknowns, where one
of the unknowns is the varying continuation parameter.
Extending the work, here, a new formulation is presented
for the constraint equations so as to define a recovery
procedure from an auto-rotational spin condition. Except
for the procedure outlined in flight manuals (ICAO, 2014)
which was used to design a trial and error based recovery
procedure for F-18 from spin in (Rao and Sinha, 2013),
there exists no proper procedure to directly compute
control interconnect schedules for airplane recovery from
undesired flight conditions. Autorotational spin solutions
computed in Fig. 1 corresponds to fixed value of throttle,
and neutral aileron and rudder deflections, which are pure
consequence of high angle-of-attack aerodynamics. Nulli-
fying the aerodynamic effects using elevator alone to bring
back the angle-of-attack to a pre-stall stable cruise flight
condition may appear intuitive, but the ensuing motion in
a spin is a coupled nonlinear motion and, thereby, requires
appropriate use of non-longitudinal control inputs as well.
Closed-loop spin recovery presented in (Kim et al., 2016;
Raghavendra et al., 2005; Sinha and Rao, 2010) suggests
use of all available control inputs simultaneously. While
throttle input is also auto-computed as closed-loop control
along with elevator, rudder, aileron deflections in (Kim
et al., 2016), in (Raghavendra et al., 2005; Sinha and Rao,
2010), throttle is used in open-loop as first order input.
In the following open-loop control interconnect schedule
computation, all available control inputs are computed
together as function of elevator deflection.

The novel approach is based on using triplet of angles
(γ, β, µ) as representative of any current (un-desired) and
intended (desired) flight conditions. For example, in au-
torotational spin condition one can read the values of these
angles from Fig. 1 as (γ ≈ −1.57rad, β ≈ 0.028rad, µ ≈

−1.4rad). The intended state, a cruise flight condition, in
terms of values of these angles is given by (γ ≈ 0rad, β ≈

0rad, µ ≈ 0rad). In addition, the intended flight condition
(to which aircraft needs to recover) has to be stable. This
is a deviation from the desired state defined in term of
exact values of (γ, β, µ) representing a unique cruise flight
condition used in (Rao and Sinha, 2013) for computing the
spin recovery controls. Constraints are formulated now as
curves joining the two states in the following manner:

γ − g1(δe) = 0;β − g2(δe) = 0;µ− g3(δe) = 0 (9)

owing to the requirement that remaining control inputs
are to be scheduled as function of the elevator deflection,
which is to be used as the continuation parameter. It must
be obvious that there are infinitely many ways in which
the functions g1, g2 and g3 can be generated, the other
concern being that these functions must be smooth. The
smoothness criterion required for continuation demands
that functions must be continuous and differentiable (Go-
man and Khramtsovsky, 1998). While a rigorous presen-
tation covering all aspects of this approach may be much
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Fig. 3. γ, µ and β profiles
for spin recovery.

desired, the primary objective of this work is to showcase
usefulness of this approach. In the following, these func-
tions are selected as shown in Fig. 3. g1, g3 are selected as
quadratic functions and, g2 chosen to be a linear function
of δe .

The constraints in Eq. (9) are coupled with the available
controls, throttle, rudder and aileron, respectively, and are,
therefore, achievable (Ananthkrishnan and Sinha, 2001).
Therefore, these controls are left free to vary in a continu-
ation in order to account for the additional three constraint
Eq. (9) added to original eight equations of aircraft motion
(Eq. (1-3)). Solving simultaneous 11 equations (Eqs. (1-
3) set to zero and Eq. (9)) for aircraft equilibrium states
satisfying the constraints results in schedules of the freed
controls as function of the varying control parameter,
elevator deflection. Simultaneous computation of stability
of the constrained equilibrium states are automated using
the procedure outlined in (Lowenberg, 1998).
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Fig. 4. Bifurcation plot of constrained variables and control
interconnect schedules as functions of δe (Solid lines:
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Continuation results of this computation are presented
in Fig. 4. Top row plots in Fig. 4 shows variation of
the constrained variables as functions of the elevator
deflection, which are same as the desired variations (shown
in Fig. 3), but with stability and bifurcations marked
on them. These results indicate that not all intermediate
equilibrium states are stable. Also shown along in Fig. 4
(bottom row plots) are the computed control interconnect
schedules required to achieve the constraints on (γ, β, µ) as
per the constraints, which will be later used for designing
recovery sequence. For aerodynamic benefits, the control
inputs are required to be within the limits as prescribed in
Raghavendra et al. (2005). Throttle fraction in excess of
maximum ‘1’ can be avoided. Figure 4 shows variation of
other states as function of elevator deflection δe as simple
curves projected in 2-dimesion.

5. RESULTS AND DISCUSSIONS

Figure 4 (bottom row) presents unique plots that can be
used to design control inputs in numerous ways to recover
the aircraft from spin. The pilot control inputs thus can
be organized appropriately providing the desired recovery
strategy. The constraints curves for (γ, β, µ) connect the
spin solution to level flight condition (γ ≈ 0rad, β ≈

0rad, µ ≈ 0rad) at the right top corner in Fig. 4, which
is the desired state and is stable. Corresponding values
for other states defining the level flight equilibrium state
can be read from Fig. 5. Intermediate equilibrium states
can be utilized for hopping between the states while
satisfying the rate and position constraints on the control
inputs. This procedure allows various profiles of control
recovery commands, which may, for example, be based on
handling and flight qualities of aircraft and/or accounting
for spatial disorientation that pilots may be undergoing in
this complex motion.

In order to show the efficacy of this approach, time his-
tories of control inputs are defined arbitrarily as shown
in Fig. 6. The control schedules computed in Fig. 4 cor-
respond to steady states; in-between time histories of
other control inputs can be directly defined as following
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elevator input time history as per schedules, or, they
can be independently defined between their steady state
values as per Fig. 4. In the simulation, we chose throttle,
aileron, and rudder control commands to follow elevator
input command history as shown in Fig. 6. In Fig.7, spin
recovery simulation results are presented for control inputs
in Fig. 6. The recovery control sequence is activated at 40
seconds when the aircraft is in fully developed oscillatory
spin state. Recovery from spin to level flight condition at a
low angle-of-attack equilibrium state can be observed from
Fig. 7. Interestingly, these results are very similar to the
results for closed-loop spin recovery presented earlier in
(Raghavendra et al., 2005; Khatri et al., 2012), thus, es-
tablishing the role of continuation based dynamic analysis
and usefulness of dynamical system topology for recovery
control design. The altitude drop during the recovery is
also in the same range as presented in previous works. For
aircraft not equipped with on-board flight control systems,
open loop recovery strategies are very useful. Moreover,
most of the conventional autopilot systems are designed
for nominal conditions which disengage if situation goes



5458 Rohith G.  et al. / IFAC PapersOnLine 53-2 (2020) 5453–5458

erratic, and in such scenarios, initiating open-loop recovery
may be the only option available.

6. CONCLUSIONS

In this work, a new formulation based on constraints on
navigation variables has been presented for computing
control interconnect schedules to construct recovery ma-
neuver for aircraft. For illustration, spin recovery control
sequence is generated for the F-18/HARV model from
the control interconnect schedules computed using the
bifurcation and continuation technique. Computation of
such schedules based on constraints on navigational vari-
ables provides a unique way of designing control recovery
sequence within the available control limits. This approach
can be employed for better equipping/training pilots to
address loss of control scenarios in real-life situations. It
is interesting to note that, there are many ways in which
the constraint functions can be formulated. How to select
the constraint functions so as to design control recovery
sequence with optimality requirements could be a possible
future direction of this work.
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NOMENCLATURE

M Mach Number
α Angle of attack
β Sideslip angle
p, q, r Body axis roll,pitch and yaw rates, respectively
µ, γ Bank angle and flight path angle, respectively
X, Y , Z Position coordinates
T Thrust
Tm Maximum thrust
η Thrust as a fraction of max. available thrust
δe Elevator deflection,
δa Aileron deflection,
δr Rudder deflection,
CL, CD Lift and drag coefficients, respectively
Cm Aerodynamic pitching moment coefficient
Cl, Cn Aerodynamic rolling moment coefficient
Cl, Cn Aerodynamic yawing moment coefficient
CY Coefficient of sideforce


