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Abstract

It is known that the solutions of pure classical 5D gravity with AdS 5

asymptotics can describe strongly coupled large N dynamics in a universal

sector of 4D conformal gauge theories. We show that when the boundary

metric is flat we can uniquely specify the solution by the boundary stress

tensor. We also show that in the Fefferman-Graham coordinates all these so-

lutions have an integer Taylor series expansion in the radial coordinate (i.e.

no log terms). Specifying an arbitrary stress tensor can lead to two types

of pathologies, it can either destroy the asymptotic AdS boundary condi-

tion or it can produce naked singularities. We show that when solutions

have no net angular momentum, all hydrodynamic stress tensors preserve

the asymptotic AdS boundary condition, though they may produce naked

singularities. We construct solutions corresponding to arbitrary hydrody-

namic stress tensors in Fefferman-Graham coordinates using a derivative

expansion. In contrast to Eddington-Finkelstein coordinates here the con-

straint equations simplify and at each order it is manifestly Lorentz covari-

ant. The regularity analysis, becomes more elaborate, but we can show that

there is a unique hydrodynamic stress tensor which gives us solutions free

of naked singularities. In the process we write down explicit first order solu-

tions in both Fefferman-Graham and Eddington-Finkelstein coordinates for

hydrodynamic stress tensors with arbitrary η/s. Our solutions can describe

arbitrary (slowly varying) velocity configurations. We point out some field-

theoretic implications of our general results.

1 Introduction

In one of the major developments of late 20-th century physics, it has been shown

that many strongly coupled conformal 4D gauge theories at large N can be solved
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by using a classical theory of gravity in ten dimensional spacetime with AdS 5 ×X

asymptotics [1–3]. X is a compact Sasaki-Einstein manifold and is related to the R

symmetry of the theory if the gauge theory is supersymmetric. In the classical the-

ory of gravity the dynamics of the metric will be described by Einstein’s equation

sourced by a matter energy-momentum tensor. The matter content of the theory

of gravity will depend on the presumed dual gauge theory. By the gauge/gravity

duality any smooth solution of the equations of motion of the classical theory of

gravity is dual to an on-shell state in the conformal gauge theory and encodes all

the dynamics of the strongly coupled CFT state in a precise way [2, 9].

There is, however, always a sector of the theory where the dynamics is uni-

versal. This is because any two-derivative theory of classical gravity which has

AdS 5 × X as a solution always admits a consistent truncation to five dimensional

Einstein’s equation with a negative cosmological constant. For instance, we can

set all scalar fields arising from Kaluza Klein excitations on X and other sources

to values that minimise the potential and turn off all other matter fields.

Using AdS/CFT correspondence, now we can define the universal sector of all

strongly coupled (large N) conformal field theories with gravity duals as follows.

This sector by definition is the dual of pure 5-dimensional gravity with asymp-

totic AdS boundary condition. A state in this universal sector will be dual to a

smooth solution of Einstein’s equation with negative cosmological constant. At

finite temperature also, this correspondence works, but now the solutions of pure

classical gravity are required to be free of naked singularities.1

In the first part of the paper we will argue that all solutions of pure classical

gravity in the universal sector with AdS 5 asymptotics are uniquely determined by

the boundary stress tensor when the boundary metric is flat. The AdS 5 asymp-

totics always requires a choice of a boundary conformal structure which means

that the induced metric on the surface at infinity has a double pole in the radial

coordinate and its residue can only be fixed upto conformal transformations in the

boundary coordinates. We say that the boundary metric is flat when we choose

the boundary conformal structure to be that of flat space. In the gauge/gravity

dictionary it translates into the dual CFT living in flat space. So our result im-

1This universal sector is different from what in the context of calculating the tachyon vacuum

in string field theory is also called the universal sector of 2D CFTs. In the latter case, it is defined

to be the set of states generated by the action of Virasoro generators on the vacuum [8]. However

these states cannot be uniquely specified just by the vev of stress tensor alone whereas all solutions

of pure gravity can be uniquely specified by the boundary stress tensor. So even for 2D CFTs our

universal sector (which can be defined to be the dual of pure 3D gravity with negative cosmological

constant) is different from the other definition.
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plies that in the universal sector the strongly coupled dynamics of the CFT state at

large N is specified once the conservation of the expectation value of the traceless

stress tensor is satisfied. From the field-theoretic point of view, this is a surprising

simplification of the dynamics.

To establish our claim we will use a theorem due to Fefferman and Graham [4],

which states that for any solution of Einstein’s equations with AdS asymptotics

we can always use a certain coordinate system within a finite distance from the

boundary. Skenderis and others [5, 9] have shown that this Fefferman-Graham

coordinate system also captures the physics of the CFT nicely, in particular, one

can read off the expectation values of various operators in the dual CFT state and

also the Weyl anomaly directly from the metric in this coordinate system. We

will use some characteristics of the CFT to argue that when the boundary metric

is flat the metric in Fefferman-Graham coordinates should have a simple integer

Taylor series expansion in the radial coordinate. In fact our argument remains

valid whenever the Weyl anomaly of the dual CFT vanishes. The result has been

proved in generality for even dimensional AdS by Fefferman and Graham for any

choice of boundary metric. Since the Weyl anomaly for any CFT in odd number

of dimensions vanish, this is a special case of our result. We will use our power

series ansatz for the metric in Fefferman-Graham coordinates to show that the

boundary stress tensor expectation value uniquely fixes all the coefficients in the

power series thus specifying the solution uniquely. Given the CFT argument for

the consistency of the power series ansatz we will be able to establish that the

metric is uniquely determined locally by the stress tensor.

It is clear, however, that any arbitrary traceless and conserved stress tensor

will not correspond to a CFT state. For AdS 5 asymptotics we can say something

more about gravity solutions with such boundary stress tensors. Even in these

cases, we will prove rigorously that the power series solution with no log terms

in the radial coordinate exists when the boundary metric is flat. However in such

gravity solutions either of two distinct pathologies can occur. For stress tensors

with pathology of the first kind the reverse question of finding the corresponding

gravity solution will be ill-posed. For such stress tensors, the formal power series

solution of the metric in Fefferman-Graham coordinates will exist but this power

series will have zero radius of convergence in the radial coordinate. These patho-

logical stress tensors will be of the “asymptotic boundary condition destroying”,

or, in short, of “abcd” type. The other distinct set of pathological stress tensors

will produce naked singularities in the bulk.

We will argue that “abcd” type of stress tensors can be avoided by doing a

perturbation around a stationary late-time solution. We will further specialise to

3



solutions with no net asymptotic angular momentum and these solutions at late

times will always settle down to a static black brane. 2 Multi blackbrane static

solutions will not occur if there are no p-form gauge fields as is the case in pure

gravity. We will set up a perturbation expansion in the Fefferman-Graham coordi-

nates and show that all hydrodynamic stress tensors preserve the asymptotic AdS

boundary condition. This result, we will argue, should also have some measure of

validity for solutions carrying net angular momentum.

The perturbation expansion will be similar in spirit to that described in [10,11],

but we will use Fefferman-Graham coordinates instead of Eddington-Finkelstein

coordinates. A single black brane preserves the SO(3) rotation symmetries and

the R3,1 translation symmetries of the full SO(4,2) isometries of AdS 5. Among

the isometries which are broken only two can at most commute with each other

and there is a four parameter family of choice of these two isometries. Since

they parametrise the mutually commuting set of broken symmetries of the vac-

uum, which is the static black brane, we will call these “maximally commuting

Goldstone parameters”. We will choose them to be the scale transformation with

one scaling parameter and an arbitrary boost parametrised by the three spatial

components of a velocity. We can use them to generate a four parameter fam-

ily of so-called boosted black brane solutions. This choice is natural because the

boundary stress tensor of these boosted black brane solutions will be that of a ho-

mogenous perfect conformal fluid parameterised by its velocity and temperature.

The velocity of the fluid will be the same velocity which parametrises the boost

and the temperature will be the parameter of the scale transformation if the un-

boosted black brane had temperature unity (in units where the radius of AdS is

set to unity). Now we will make the velocity and temperature arbitrary functions

of the field theory coordinates (i.e all coordinates except the radial one) and find

a correction to the metric which is first order in derivatives of the field theory co-

ordinates. The boundary stress tensor is also corrected as a result and Einstein’s

equation implies it is conserved and traceless. This perturbation being an order

by order derivative expansion should be thought of as the holographic dual of the

usual low energy expansion (E/T) in an effective field theory, T being the temper-

2This late time equilibriation, is of course expected only if the boundary stretches indefinitely

in time, i.e. if the solution is free of “abcd” type of pathology. One may see this explicitly by

studying an example, in which the boundary stress tensor is that of two fluids eternally moving

past each other at different but constant velocities and temperatures without equilibriating. Our

results imply that a solution with AdS asymptotics will exist even for such a boundary stress

tensor. One of the authors (AM) is investigating this solution to check if it indeed has “abcd” type

of pathology.
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ature. This is therefore a derivative expansion.

The derivative expansion in the Fefferman-Graham has some advantages over

the same expansion in Eddington-Finkelstein coordinates [10, 11]. In the Feffer-

man Graham coordinate system we can naturally view Einstein’s equation as evo-

lution of boundary metric in the radial direction. We will call those components of

Einstein’s equation which contain no more than one derivative of the radial coor-

dinate as constraint equations. The first advantage is that the constraint equations

become trivial except for the conservation and tracelessness of the boundary stress

tensor if the dissipative (i.e the non-equilibrium) part of the boundary stress ten-

sor t(dis)µν is chosen to satisfy uµt(dis)µν = 0. The latter is called the Landau gauge

condition and may be imposed without any loss of generality as by suitable redef-

initions of the four velocity and temperature we can always make the stress tensor

satisfy this property. 3 The second advantage over the perturbation in Eddington-

Finkelstein coordinates is that here the whole procedure will be Lorentz-covariant,

whereas in the Eddington-Finkelstein coordinates we had to decompose all terms

into tensors, vectors and scalars of SO(3). The third advantage is that we can

construct the metric for an arbitrary conformal hydrodynamic stress tensor. We

can also read off the stress tensor from our metric rather easily. Given this simpli-

fication of the constraints, in particular, one can think of the Fefferman-Graham

coordinate system as the “Coulomb gauge” in the context of finding out metrics

corresponding to arbitrary hydrodynamic stress tensors.

However, as we already know from the results of [10, 11], the solution corre-

sponding to a generic hydrodynamic stress tensor will contain a naked singularity.

In the Fefferman-Graham coordinates, however, we will find that the solution al-

ways has a singularity at the location of the unperturbed horizon. To see if the

singularity is just a coordinate singularity or a real one we will translate our solu-

tion to Eddington-Finkelstein coordinates, because in the Eddington-Finkelstein

coordinate system a real singularity will be manifest in terms of an actual blowup

of the metric. To do this we will solve the equations of transformation exactly to

each order in the derivative expansion. We will show that whether the singularity

in the metric in Fefferman-Graham coordinates is real or fake, the translation to

Eddington-Finkelstein coordinates can be achieved at every order. The metric in

the Eddington-Finkelstein coordinates will make the singularity manifest and also

easily reveal for which choice of the coefficients in the stress tensor would the

3The Landau gauge is simply a convenient set of definitions of the velocity and temperature

variables of the fluid and has nothing to do with gauge fixing of Einstein’s equations. The physical

meaning of these deifinitions is that uµ is the local four-velocity of energy transport.
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solution be free of naked singularities. At every order in the derivative expansion,

there will be a unique choice of coefficients of the terms in the stress tensor for

which the solution will be free of naked singularities.

Though we will establish the general results stated above, we will give explicit

computations only upto first order in derivatives. In particular we will find the so-

lution (exact upto first order in derivatives) in Fefferman-Graham coordinates for

a conformal hydrodynamic stress tensor with arbitrary η/s. We will be able to find

the solution for an arbitrary velocity configuration of the boundary fluid. A special

case of our result will be the solution corresponding to the Bjorken flow found by

Janik [13, 14]. With our method we will be able to find the solutions for arbitrary

slowly varying velocity configurations at each order in the derivative expansion.

It should also be kept in mind that the pathologies pointed out in [13, 14, 17],

associated with the methods of finding solutions in Fefferman-Graham coordi-

nates in [13, 14, 17], do not occur in our case because we never take a late time

scaling limit in which we are zooming closer to the horizon, where in fact the

metric always develops a coordinate singularity. In fact our method is as good

and of equal reach as the derivative expansion in Eddington-Finkelstein coordi-

nates. It has several comparative advantages which have been pointed out earlier,

the comparative disadvantage being a slightly more elaborate regularity analysis.

However if we go beyond the hydrodynamic sector to describe multi black brane

solutions (if they exist), the Fefferman-Graham coordinate system (being tied to

the AdS asymptotics) can always be employed efficiently, whereas it is not clear

if the Eddington-Finkelstein coordinates will be equally useful.

The organisation of the paper is as follows. In section 2, we establish that the

boundary stress tensor uniquely specifies a solution of pure classical gravity with

AdS asymptotics when the boundary metric is flat. In section 3, we confirm our

claims about the metric in Fefferman-Graham coordinates by translating a known

solution in Eddington-Finkelstein coordinates which is exact upto first order in

derivatives and free of naked singularities (we will call this solution as the hy-

drodynamic solution and has been found in [10]). In section 4, we will set up

and elucidate the derivative expansion in the Fefferman-Graham coordinates and

establish that all hydrodynamic stress tensors preserve asymptotic AdS boundary

condition. In section 5, we will do the regularity analysis of our solutions. Finally

we will end with some discussion on the field-theoretic implications of our results.
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2 How the boundary stress tensor fixes the solution

In this section we will restrict our attention mainly to a five dimensional asymptot-

ically AdS space with flat boundary metric, though we will indicate in the end that

our results may be sufficiently generalised. We will soon explain what is meant

by the boundary metric for asymptotically AdS spaces.

The Einstein-Hilbert action on 5-dim manifold M, with an appropriate coun-

terterm to have a well defined variational principle with Dirichlet boundary con-

dition is

S =
1

16πGN

[−
∫

M

d5x
√

G(R +
12

l2
) −
∫

∂M

d4x
√
γ2K] (1)

where K is the extrinsic curvature and γ is the induced metric on the boundary. We

are using the convention of [5] in which the cosmological constant Λ of AdS d+1

is normalized to be −d(d−1)

2l2
, hence for AdS 5 we have Λ = − 6

l2
.

We want to solve Einstein’s equation

RMN −
1

2
RGMN =

6

l2
GMN (2)

subject to the condition that the solution is asymptotically AdS with a given con-

formal structure at the boundary. Fefferman and Graham have shown that for such

solutions we can use a specific coordinate system called the Fefferman-Graham

coordinate system near the boundary. In this coordinate system, the metric takes

the following form:

ds2 = GMNdxMdxN =
l2

ρ2
[dρ2 + gµν(ρ, z)dzµdzν] (3)

In the expression above the indices (M,N) run over all AdS coordinates and the

indices (µ, ν) run over the four field theory coordinates. The boundary metric g(0)µν

is defined as

g(0)µν(z) = lim
ρ→0

gµν(z, ρ) (4)

Let this boundary metric have a conformal structure. Then it can be shown that any

conformal transformation of the boundary coordinates (z) can be lifted to a bulk

diffeomorphism of the Fefferman-Graham coordinates which preserves the form

of the metric (3) [6, 7]. Under this bulk diffeomorphism, the boundary metric

undergoes the same conformal transformation. The simplest case for instance

will be a scale transformation, z → λz, of the boundary coordinates for which the

corresponding bulk diffeomorphism will be ρ → λρ (note that in the case of the
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bulk diffeomorphism, the field theory coordinates z do not transform at all so that

the boundary metric g(0)µν scales like g(0)µν(z)→ λ−2g(0)µν(z)).

In the Fefferman-Graham coordinate system the various components of Ein-

stein’s equation reads as [5]: 4

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ − Ric(g) − 1

2ρ
Tr(g−1g′)g = 0 (5)

∇µTr(g−1g′) − ∇νg′µν = 0

Tr[g−1g′′] − 1

ρ
Tr[g−1g′] − 1

2
Tr[g−1g′g−1g′] = 0

Here “(′)” denotes a derivative with respect to ρ and ∇µ is the covariant derivative

constructed from the metric gµν. Also in the above equations we have set our units

such that l, the radius of AdS is set to unity.

When the boundary metric is flat, we will argue that we can expand gµν(z, ρ)

in a simple integer power Taylor series of ρ with coefficients which are functions

of z. Since we have chosen the boundary metric to be flat, the leading term has to

be ηµν. Our power series ansatz will be:

gµν(z, ρ) = ηµν + Σ
∞
n=2g(2n)µν(z)ρ2n (6)

We have written down only even powers of ρ in the above expansion because it

follows from a result due to Fefferman and Graham [4] that the power series (6)

should be an even function of ρ. 5 The only even term which is absent is g(2)µν(z)

which follows as an easy consequence of the equations of motion (5).

It is not obvious that this power series ansatz will indeed provide us a solution,

so we will give an intuitive argument why this works. By AdS/CFT correspon-

dence any solution of the bulk equations of motion would give us a state in the

CFT, so the coefficients of the Taylor series expansion in (6) should be functions

4The (minor) difference with the system of equations given in this reference will be that we

will use the original Fefferman-Graham radial coordinate ρ, whereas there the radial coordinate is

chosen to be the squareroot of ours. Also, the reference uses a definition of the Riemann tensor

such that the scalar curvature of AdS comes out to be positive.
5The existence of power series solution has been proved by Fefferman and Graham for all even

dimensional asymptotic AdS solutions and in case of odd dimensional asymptotic AdS solutions

they also argued that if the solution is a power series it should be even. The Fefferman Graham

coordinates are however unique only upto diffeomorphisms which are the lifts of the boundary

conformal transformations into the bulk. Although, it is not obvious, it can also be shown [4] that

the evenness of the series (6) is independent of the choice of any particular Fefferman-Graham

coordinate system.
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of the expectation values of the local operators in the dual CFT state. We will

explicitly see below that all these coefficients are just functions of the expectation

value of the stress tensor in the CFT state. It is possible to see the effect of space-

time independent scale transformation on the CFT operators from gµν(z, ρ). To do

this we have to lift the scale transformation to a bulk diffeomorphism so that the

form of the metric (3) remains the same and the boundary metric also remains flat.

This lift, as mentioned before, is achieved by ρ → λρ. In the most general case

it has been shown [9] that the form of the ansatz (6) should be modified by terms

like ρn(log(ρ))m with non-negative n and m. To illustrate our argument we will

consider just two such possible terms:

g(n)(z)ρn + h(n)(z)ρnlog(ρ)

Under the bulk scaling transformation ρ→ λρ,

g(n)(z)→ λn−2g(n)(z) − log(λ)λn−2h(n)(z) (7)

We find the above transformation by checking the new coefficient of ρn in gµν after

the scale transformation. In a CFT any local operator simply scales like a power

of λ, the power being given by the conformal dimension of the operator. A log(λ)

term is present only when the Weyl anomaly doesn’t vanish. In flat space the Weyl

anomaly vanishes and since we have chosen the boundary metric to be flat the log

term in (7) should not be present as g(n)µν is a function of the expectation values of

local operators. The absence of the log(λ) term in a scale transformation applies

not only to primary operators but also to their descendents. So we can argue that

terms like ρn(log(ρ))m should be absent and gµν should be given by a simple power

series of ρ.

However, our argument, of course, breaks down if the boundary stress tensor

does not correspond to any CFT state. In Appendix A, we have given the general

proof of the existence of the power series solution for AdS 5 asymptotics, so that

even for such cases we can state that the solution, is indeed, a power series. In

fact we will explicitly see, that for all hydrodynamic stress tensors, whether they

do or do not correspond to CFT states, the solutions are always power series.

Now we will substitute our ansatz (6) in the equations of motion (5) and solve

them order by order in powers of ρ. It is known from earlier work of Skenderis

et.al. [5] that the first term g(4)µν(z) is just the expectation value of the stress tensor.

Briefly this is how it comes about to be so. Upto this order the first equation

(the tensor equation) identically vanishes while the second and third equation of
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motion give:

Tr(g(4)) = 0 (8)

∂µg(4)µν = 0

Since the equations of motion by themselves cannot specify g(4) we need a data

from the CFT to specify it subject to the above constraints. Most naturally g(4) is

the traceless conserved stress tensor of the CFT. However we can also explicitly

check this. An explicit calculation shows that g(4) is indeed the Balasubramanian-

Kraus stress tensor [15] which could be defined for any asymptotically AdS space.

Hence we may write:

g(4)µν = tµν (9)

With our ansatz (6) it turns out that all the other coefficients g(2n) (n > 2) are

fixed uniquely by the equations of motion in terms of g(4) and its derivatives (or in

other words the stress tensor and its derivatives). We observe that the first and the

third of the equations of motion (5) (i.e. the tensor and the scalar equations) are

sufficient to solve for g(n). All the higher powers of the second of the equations

of motion (5) (i.e the vector equation) identically vanishes on imposing the con-

straints (8) i.e. by imposing the tracelessness and the conservation of the stress

tensor. It is not difficult to argue that this should be the case because it can be

shown [5] that the second (i.e the vector) equation of motion simply implies the

conservation of the Brown-York stress tensor (which when regulated becomes the

Balasubramanian-Kraus stress tensor) for an arbitrary constant ρ hypersurface.

Now the conservation of the Brown-York stress tensor at a given hypersurface is

not independent of the same requirement for another hypersurface, because in the

ADM-like formulation of the Einstein’s equations if we satisfy our constraints at a

given hypersurface in which our initial conditions are given the evolution (here in

the radial coordinate ρ) automatically satisfies the constraints. The conservation

of the Brown-York stress tensor at the boundary is already forced at leading order

in ρ of the vector equation of motion through (8). Hence we should expect that the

vector equation should not impose any new constraints on the stress tensor given

that the tensor and scalar equations specify all the coefficients uniquely and this is

exactly what is borne out. In our proof in Appendix A, we show how the tensor,

vector and scalar equations of motion turn out to be consistent with each other

when we employ the power series ansatz.

Below we give the a few of the the coefficients g(n)µν

g(6)µν = −
1

12
�tµν
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g(8)µν =
1

2
t ρµ tρν −

1

24
ηµν(t

αβtαβ) +
1

384
�

2tµν

g(10)µν = −
1

24
(t αµ �tαν + t αν �tαµ)

+
1

180
ηµνt

αβ
�tαβ +

1

360
tαβ∂µ∂νtαβ

− 1

120
tαβ(∂µ∂αtβν + ∂ν∂αtβµ)

+
1

60
tαβ∂α∂βtµν −

1

180
∂µt
αβ∂νtαβ

+
1

720
ηµν∂αt

βγ∂αtβγ

+
1

120
(∂µt

αβ∂αtβν + ∂νt
αβ∂αtβµ)

− 1

60
∂αt
β
µ∂βt

α
ν −

1

23040
�

3tµν

g(12)µν =
1

6
t αµ t βα tβν −

1

72
tµν(t

αβtαβ) + ........ (10)

Here, as before in (5) the boundary indices are raised and lowered by ηµν and � is

the Laplacian in flat space. Let us observe and explain certain simple features of

the results above. The first observation is that every term in the RHS of the above

equations contain only even number of derivatives. This is so because the terms

containing derivatives originate only from Ric(g) in the first of the equations of

(5). The second observation is that the terms independent of the derivatives appear

only for g(4n). This is so because if we omit Ric(g) in the first of the equations of

(5), then the solution is a power series in ρ4n as the first non-trivial term in the

series is g(4). So for a solution where the stress tensor is uniform (like in the case

of a static black brane solution), g has an expansion containing only ρ4n terms.

With our argument that the ansatz (6) should give us a consistent solution, it

is obvious that the stress tensor, which appears as g(4) in g uniquely specifies the

solution because all the higher coefficients are fixed uniquely in terms of g(4) with

no new constraints like (8) appearing for g(4). This completes the argument that

when the boundary metric is flat we should have a solution uniquely specified

locally by the stress tensor alone. This statement readily generalizes to other

dimensions in the case of a flat boundary metric and most likely also generalizes

when the boundary metric is not flat. The general validity could be argued for on

11



the basis of the equations of motion (5) which are second order (specifically in

derivatives of ρ). Intuitively the boundary metric and the stress tensor specifies all

the initial data we need for a unique solution, however a concrete demonstration

of this would probably require methods beyond what we have employed here.

Our power series ansatz (6) should work even if the Einstein-Hilbert action

with negative cosmological constant receives higher derivative corrections pro-

vided the boundary stress tensor corresponds to a state in the dual theory. Our

argument as to why it works is independent of the equation of motion and like-

wise also independent of say, the value of t’hooft coupling of the dual theory. We

have just used the fact that a conformal transformation in the boundary should

have an appropriate lift to a bulk diffeomorphism consistent with the transforma-

tion of CFT operators. The transformation of the CFT operators under conformal

transformations, as well, is independent of the value of the coupling. In fact one

can readily check that exact static black hole solutions of Gauss-Bonnet gravity

which are asymptotically AdS (given in [19]) have power series expansion when

written in Fefferman-Graham coordinates.

The argument we have given above, however, cannot be reversed to argue

that a solution with asymptotic AdS 5 boundary conditions exists for any arbitrary

stress tensor. The reason that we can’t reverse the argument is that the series (6)

for gµν exists only formally. The coefficients g(n) may not be well behaved at large

n, for an arbitrary stress tensor. We will give a simple example to show what

can go wrong. For a specific choice of stress tensor, we may find that g(n)µν =

f (n)sµν plus other terms. Here sµν is a specific term in the stress tensor. If, for

instance, the series Σn f (n)ρn has zero radius of convergence, gµν will not be a

meaningful series of ρ as it will also have zero radius of convergence in ρ. Such

boundary stress tensors, for which gµν has zero radius of convergence in ρ, could

be appropriately called, “asymptotic boundary condition destroying” stress tensor

or in short “abcd” stress tensor. We will have more to say about such stress tensors

in section 4.6

6Interestingly, Fefferman and Graham have shown in [4] that for even dimensional asymptotic

AdS solutions, gµν always has a finite radius of convergence in ρ. However their argument does

not readily generalize to the odd dimensional case.
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3 Mutual translation between Eddington-Finkelstein

and Fefferman-Graham coordinates

In the previous section, we have seen that, the Fefferman-Graham coordinate sys-

tem is good for finding a solution to Einstein’s equation with a negative cosmolog-

ical constant when the corresponding boundary stress tensor is specified. How-

ever the solutions are usually found in other coordinate systems. For instance, the

static black brane solution is usually described in the Schwarzchild-like coordi-

nate system and the hydrodynamic metric of [10] has been found in the Eddington-

Finkelstein coordinate system. It would be useful to see how we can rewrite these

solutions in the Fefferman-Graham coordinate system asymptotically. We will

demonstrate a novel technique towards this end for the boosted black brane and

the hydrodynamic metrics. In both cases we will see that we can achieve a mu-

tual translation between Eddington-Finkelstein coordinate system and Fefferman-

Graham coordinate system by using a power series ansatz similar to (6) and we

can solve this ansatz algebraically order by order. We expect this method to work

for all solutions in which the boundary metric is flat, or more generally when the

Weyl anomaly vanishes.

The general procedure is as follows. In the Eddington-Finkelstein coordinates

(xµ, r) the metric takes the form:

ds2 = −2uµ(x)dxµdr +Gµν(x, r)dxµdxν (11)

Here we are using ingoing Eddington-Finkelstein coordinate system, so that uµ is a

four-velocity (hence uµuνη
µν = −1) such that it is directed forward in time. We will

express the general structure of coordinate transformation from the Eddington-

Finkelstein coordinates (xµ, r) to Fefferman-Graham coordinates (zµ, ρ) as below:

dρ = pµ(r, x)dxµ + q(r, x)dr (12)

dzµ = mµν(r, x)dxν + nµ(r, x)dr (13)

We substitute the above in the Fefferman-Graham form of the metric (3) to get:

ds2 =
1

ρ2
[(pµpν + gηξ(ρ, z)mηµm

ξ

ν
)dxµdxν + 2(pµq + gξσ(ρ, z)m

ξ

µ
nσ)dxµdr

+ (q2 + gµν(ρ, z)nµnν)dr2]

(14)

Comparing the above with the Eddington-Finkelstein form of the metric (11), we

13



get the following set of equations:

(q(x, r))2 + gµν(ρ, z)nµ(x, r)nν(x, r) = 0 (15)

2pµ(x, r)q(x, r) + gαβ(ρ, z)(mαµ(x, r)nβ(x, r) + m
β

µ
(x, r)nα(x, r))

= −2uµ(x)(ρ(x, r))2

pµ(x, r)pν(x, r) + gαβ(ρ, z)mαµ(x, r)m
β

ν
(x, r) = Gµν(x, r)(ρ(x, r))2

So we have a scalar, a vector and a tensor equation and three unknowns to solve

for. The unknowns are a scalar ρ(x, r), a vector zµ(x, r) and the tensor gµν(z, ρ)

which appear in the Fefferman-Graham metric (3). It is clear from the definitions

(12) of q, etc. that they are just various partial derivates of (ρ, z), for instance q =

∂rρ, etc. We will make the following general ansatz to solve the above equations.

The ansatz for ρ and zµ will be that they will be an integer power series of the

inverse of the Eddington-Finkelstein radial coordinate r.

ρ =
1

r
+
ρ2(x)

r2
+
ρ3(x)

r3
+ ......... (16)

zµ = xµ +
z
µ

1
(x)

r
+

z
µ

2
(x)

r2
+ .....

To solve the equations of transformation (15), the above should be supplemented

with the ansatz (6) for the gµν(z, ρ) in the Fefferman Graham metric. The expres-

sions for the partial derivatives like q, etc. then turn out to be as below:

q = ∂rρ = −
1

r2
− 2ρ2

r3
− 3ρ3

r4
− .... (17)

pµ = ∂µρ =
∂µρ2

r2
+
∂µρ3

r3
+ .....

nµ = ∂rz
µ = −

z
µ

1

r2
−

2z
µ

2

r3
− ....

mµν = ∂νz
µ = δµν +

∂νz
µ

1

r
+
∂νz
µ

2

r2
+ ....

One thing to be kept in mind is that when we substitute our ansatz (16) to solve

the equations of transformation (15), gµν(ρ, z) should be re-expressed as functions

of (x,r). Below, we just give the first three terms which appear after it is rewritten

as functions of (x,r).

gµν = ηµν +
tµν(x)

r4
+

(4ρ2tµν + (z1.∂)tµν)(x)

r5
+ .... (18)
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We now consider a boosted black brane metric in Eddington-Finkelstein coordi-

nate

ds2 = −2uµdxµdr − r2 f (br)uµuνdxµdxν + r2Pµνdxµdxν (19)

where

f (r) = 1 − 1

r4
(20)

u0 =
1

√

1 − β2
i

(21)

ui =
βi

√

1 − β2
i

(22)

and the temperature is T = 1
πb

and the three-velocity βi are all constants, and

Pµν = uµuν + ηµν (23)

is the projector onto the spatial hypersurface orthogonal to the four velocity uµ.

This metric can be obtained by applying a boost parameterised by the three-

velocity βi and a scaling by b to the usual AdS black hole with unit temperature

where the time coordinate t is itself a Killing vector. In this case actually the ex-

act transformation from Eddington-Finkelstein to Fefferman-Graham coordinate

system can be exactly worked out easily and it is given by:

ρ =

√
2b

√

b2r2 +
√

b4r4 − 1

(24)

zµ = xµ + uµbk(br),

k(y) =
1

4
(log(

y + 1

y − 1
) − 2arctan(y) + π)

The solution for gµν in the Fefferman-Graham metric (3) for the boosted black

brane is given by:

gµν(z, ρ) = (1 +
ρ4

4b4
)ηµν +

4ρ4

4b4 + ρ4
uµuν (25)

The boundary stress tensor could be easily read off by looking at the coefficient

of ρ4 after Taylor expanding the RHS of the above expression. The stress tensor

turns out to be that of an ideal conformal fluid (like that of a gas of photons)

t0µν = g(4)µν =
1

4b4
[4uµuν + ηµν] (26)
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where the temperature is T = 1
πb

. The horizon in the Fefferman-Graham coor-

dinates is at ρ =
√

2b and at the horizon gµν given by (25) is not invertible as

gµν(ρ =
√

2b, z) = 2Pµν. So clearly the Fefferman-Graham coordinate system has

a coordinate singularity at the horizon. Also it is easy to check from (24) that the

change of coordinates also becomes singular at the horizon.

Now we turn to the hydrodynamic metric found in [10] which is a solution to

Einstein’s equation upto first order in the derivative expansion and has a regular

horizon. Here the “maximally commuting Goldstone parameters” of the boosted

black brane solution, the velocities βi and the temperature T are functions of the

field theory coordinates (x). The Gµν in the Eddington-Finkelstein form of the

metric (11) is:

Gµν = r2Pµν + (−r2 +
1

b4r2
)uµuν + 2r2bF(br)σµν − r((u.∂)uµuν −

2

3
uµuν(∂.u)) (27)

with

F(x) =
1

4
(log(

(x + 1)2(x2 + 1)

x4
) − 2arctan(x) + π) (28)

In this case we will solve the set of equation (15) by putting in our anstaz (16). We

solve order by order for each power n in r−n. At each order we have to solve alge-

braic equations and remarkably the equations can be consistently solved at each

order. It is important to throw away all the terms which have two x-derivatives or

more and solve the series for ρ and zµ given in (16) and the series for gµν given

in (6) only upto first derivative order. This is justified because the hydrodynamic

metric above in Eddington-Finkelstein form is a solution to Einstein’s equation

only upto first order in x-derivatives and hence it can have a Fefferman-Graham

expansion near the boundary only upto first derivative order. The results of the

non-vanishing terms in the expansion for ρ and zµ in (16) upto r−9 order are given

below:

ρ2 =
1

3
(∂.u), ρ5 =

1

8b4
, ρ6 =

13(∂.u)

120b4
, ρ9 =

7

128b8
(29)

z
µ

1
= uµ, z

µ

2
=

1

3
uµ(∂.u), z

µ

5
=

uµ

5b4
,

z
µ

6
=

9uµ(∂.u) + 7(u.∂)uµ

60b4
, z
µ

9
=

uµ

9b8

We can easily observe some patterns in the results above. Firstly the terms with-

out any derivatives only appear as coefficients of r−4n−1. These are precisely the

terms that appear in the expansion for the case of the boosted black brane as given

16



in (24). This is because the original black brane solution in Fefferman-Graham

coordinates as we know from (25) is a series with “gaps” of four (which means

only the fourth next term is non-zero). So the solution of (15) should provide a

series for ρ and zµ in gaps of four as well. Secondly, it also turns out that the terms

which have first derivative pieces occur for ρ2, ρ6, z
µ

2
, z
µ

6
, etc. again in gaps of four.

We obtain the coefficients of the series for gµν given in (6) which was part of our

ansatz. The second non-zero term in the series gives us the boudary stress tensor:

tµν = g(4)µν =
ηµν + 4uµuν

4b4
− 1

2b3
σµν (30)

where

σµν = P α
µ P β

ν ∂(αuβ) −
1

3
Pµν∂αu

α (31)

This is stress tensor for a relativistic conformal fluid satisfying Navier-Stokes’

equation and with η/s = 1/4π. The next non vanishing term in the series for gµν
is:

g(8)µν = −
uµuν

4b8
−
σµν

8b7
(32)

We can check that the expression for g(8) is given by the general results of the the

previous section when we substitute the dissipative stress tensor (30) in (10).

In this section we have worked out the case for a specific “hydrodynamic met-

ric” given in [10]. This metric has no naked singularities and this corresponds

to the choice of η/s = 1/4π in the dissipative stress tensor (31). However we

will see in section 5 that our ansatz (16) for translation between the Eddington-

Finkelstein and Fefferman-Graham coordinates will work even when the above is

not the case, i.e the metric contains naked singularities. In what follows we will re-

verse the translation. That is, we will work out the Fefferman-Graham form of the

metric exactly upto first order in derivatives first and then find out the Eddington-

Finkelstein form of the metric also exactly upto first order in derivatives. We will

see that the power series ansatz (16) is consistent for any metric corresponding to

an arbitrary hydrodynamic stress tensor.

4 The derivative expansion in Fefferman-Graham

coordinates

We have already seen that the Fefferman-Graham form of the metric is the ideal

one to use if we are asking given a boundary stress tensor what the corresponding
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solution of Einstein’s equations of motion should be. The most general hydrody-

namic stress tensor for a conformal fluid (in the Landau gauge) upto first order in

derivatives is as below:

tµν(z) =
ηµν + 4uµ(z)uν(z)

4b(z)4
− γ

2b(z)3
σµν(z) (33)

with σµν(z) given by (31), b related to the temperature through b = 1/πT and γ

an arbitrary constant. However here, unlike in the case of the specific solution

(without naked singularities) we considered in the previous section, η/s = γ/4π

and hence is arbitrary. We now ask what would be the corresponding solution for

this arbitrary case.

Before we get into this specific case, we will show that we can get some in-

sights into the reverse question from some generally known facts and our previous

results given in section 2. We have seen, briefly, at the end of section 2 that the re-

verse question is ill posed for an “abcd” (asymptotic boundary condition destroy-

ing) stress tensor, for which the formal power series (6) for gµν has zero radius of

convergence in ρ. One must devise a strategy in which such stress tensors do not

appear at all. To this end we may always exploit a general property of solutions

of Einstein’s equation that in the long run the solution always becomes stationary.

For the moment let us further restrict to those solutions which have no (ADM)

angular momentum or any other (ADM) conserved charges (like the R-charge).

These will, in the long run, settle down to the known boosted black brane solution

(19). Static multi blackbrane like solutions do not appear if we turn off p-form

gauge fields, so if more than one black brane are present they eventually will col-

lapse to form a single black brane. A good strategy to recover all solutions will

be to perturb around the late-time static black brane and build up all solutions in

a systematic derivative expansion. Since any solution would eventually become

static (or equilibriate) this strategy should always work at sufficiently late times.

Since the approach to equilibrium can be naturally described by hydrodynam-

ics, one can intuitively expect that the late time behaviour of the solutions will

correspond to a hydrodynamic description in terms of the boundary theory if the

equilibrium can be described in terms of a perfect fluid. The boundary stress

tensor of a boosted black brane indeed corresponds to that of a perfect confor-

mal fluid like that of photons in pure QED. Our expectation is indeed borne out

by the fact that all solutions in the derivative expansion correspond to a trace-

less conserved hydrodynamic boundary stress tensor, but with arbitrary number

of derivatives. We will see that in the derivative expansion at each order the solu-

tions always have finite radius of convergence away from the boundary, so we can
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conclude that all hydrodynamic stress tensors are asymptotic boundary condition

preserving.

The fact that all hydrodynamic stress tensors preserve the asymptotic AdS

boundary condition should have a certain measure of validity even for solutions

with net angular momentum. In fact in [18], it has been shown that a large class

of rotating black holes in AdS can be described by perfect fluid hydrodynamics.

However, we do not know how general the result is. The argument in the previous

paragraph shows that for any solution if the hydrodynamic description holds for

the stationary solution to which a given solution eventually equilibrates, it should

hold for sufficiently late times as well. So certainly a large class of solutions even

in the sector with net angular momentum which can be constructed by perturbing

around certain stationary solutions will have a hydrodynamic description at least

at late times. 7

To build up a solution corresponding to an arbitrary hydrodynamic stress ten-

sor, we will work in the Fefferman-Graham coordinate system as we have said

before and we will construct the solution exactly order by order in the derivative

expansion. To develop the derivative expansion we follow the same method which

the authors of [10] followed but now in the Fefferman-Graham coordinate system.

In fact, based on the results of section 2, we will see that their method simplifies

in these coordinates. We take the boosted black brane solution with gµν of the

form of (25), but now the “maximally commuting Goldstone parameters” (uµ, b)

are arbitrary functions of z. We will call this the zeroth order metric g0 which is

no more a solution to Einstein’s equation, so we need to correct this with g1 which

will now depend on the first derivatives of the “maximally commuting Goldstone

parameters” (uµ, b). This correction g1 can be found substituting g = g0 + g1 in

our equations of motion (5) and retaining only terms which have no more than

one derivative of z.

The first of the equations of motion (5), i.e the tensor equation gives us a

source free linear equation for g1 which is second order in the derivatives of ρ and

has no z-derivatives.

1

2
g
′′

1 −
3

2

g
′

1

ρ
− 1

2
g
′

1g−1
0 g

′

0 −
1

2
g
′

0g−1
0 g

′

1 +
1

2
g
′

0g−1
0 g1g−1

0 g
′

0

+
1

2
(Tr(g−1

0 g
′

1) − Tr(g−1
0 g1g−1

0 g
′

0))(
g
′

0

2
− g0

ρ
) +

1

2
Tr(g−1

0 g
′

0)(
g
′

1

2
− g1

ρ
) = 0

(34)

7As we have mentioned in a previous footnote, a non-trivial check of this strategy will be to

construct a solution for a boundary stress tensor for which there is no late time equilibriation and

see how it is connected to the “abcd” type of pathology.
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At the first order in derivative expansion, the only term which can provide a source

term is Ric(g) since it has no derivatives of ρ. However Ric(g) contains at least

two derivatives of z, so at this order the source vanishes.

At the first order the second of the equations of motion, which is a vector

equation gives us the following:

∇0µTr(g−1
0 g′0) − ∇ν0g

′

0µν = 0 (35)

where ∇0 is the covariant derivative constructed from g0.The major simplification

which occurs in the Fefferman-Graham coordinates is the general observation in

section 2, that this gives us nothing but the conservation of the stress tensor. It

may be checked that if we choose to solve this vector fluctuation equation order

by order in powers of ρ, like we did in section 2, at the leading order we would get

∂µtoµν = 0, where t0µν is the perfect fluid stress tensor (26) and all the coefficients

of the higher powers of ρ will vanish identically once the leading order condi-

tion is imposed. This simplification will happen at every order in the derivative

expansion, which means that if tn−1 is the stress tensor upto n-1 th order in the

derivative expansion, at the n-th order the second equation will simply imply the

conservation of tn−1.

At the first order in the derivative expansion the third equation of motion van-

ishes identically. It is easy to see why this will happen. Again we go back to

the general observations of section 2. If tµν = t0µν + t1µν with t0µν given by the

perfect fluid stress tensor (26) and t1µν is the first order correction to the stress

tensor satisfying the tracelessness and the Landau gauge uµt1µν = 0 conditions,

then the correction to the coefficients of the power series expansion g(n)µν (some

of which are listed in (10)) is simply proportional to t1µν. The first order deriva-

tives of t0µν doesn’t appear because, as we have observed the general expressions

for g(n) must contain even number of derivatives of t0µν. It follows that the cor-

rection to the zeroth order metric, g1, is proportional to t1. It also follows from

the the tracelessness of t1 and the Landau gauge condition that the third equation

vanishes identically as all traces appearing in the equation vanish. We will soon

see that, this simplifying feature also, remarkably generalises to all orders in the

derivative expansion.

In the Fefferman-Graham coordinates the first order correction to the metric

g1 is, therefore, proportional to the first order correction to the stress tensor which

is proportional to σµν and therefore g1 takes the form of γ
′
bσµν f (ρ), where γ

′
is

an arbitrary constant. Substituting this in the tensor equation (34), we find that
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f (ρ) satisfies the following differential equation:

f
′′ − f

′ (12b4 − ρ4)(4b4 + 3ρ4)

ρ(16b8 − ρ8)
+ f

128ρ6b4

(4b4 + ρ4)(16b8 − ρ8)
= 0 (36)

We already know that the solution is a power series in ρ4, so we change our vari-

able ρ to x = ρ4. The equation now reads

f
′′ − f

′ 8b4

16b8 − x2
+ f

8b4

(4b4 + x)(16b8 − x2)
= 0 (37)

The solution of this differential equation which vanishes at the boundary (after

resubstituting x with ρ4) 8 is:

(1 +
ρ4

4b4
)log(

1 − ρ4

4b4

1 +
ρ4

4b4

) (38)

The metric in Fefferman-Graham coordinates upto first order then is:

ds2 =
dρ2 + gµν(ρ, z)dzµdzν

ρ2

gµν(ρ, z) = (1 +
ρ4

4b4
)ηµν +

4ρ4

4b4 + ρ4
uµuν + γ

′
bσµν(1 +

ρ4

4b4
)log(

1 − ρ4

4b4

1 +
ρ4

4b4

) (39)

To read off the stress tensor upto first order, we simply need the ρ4 term in the

Taylor expansion of gµν. We get:

tµν =
ηµν + 4uµuν

4b4
− γ

′

2b3
σµν (40)

Comparing with (33) we get that we must set γ
′
= γ in the first order metric (39)

to get the desired solution corresponding to the boundary stress tensor.

One very interesting feature of our solution at the first order can be found

out by putting γ
′
= γ = 0. This implies that our zeroth order solution itself,

now with velocities and temperatures satisfying the relativistic Euler equation,

is an exact solution of Einstein’s equations upto first order. Such is never the

case in Eddington-Finkelstein coordinate system where as we will see we need to

8The other solution is f2 = 1 +
ρ4

4b4
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correct the zeroth order solution even for a dissipation-less stress tensor so that

the solution is exact upto first order. We do not understand any deep reason for

this feature of our solution.

Now we can proceed to examine the higher orders in the derivative expansion.

Though we will postpone explicit solutions beyond the first order for a future

publication, here we will show that it is trivial to satisfy the vector and scalar

constraints at each order in perturbation theory. The tensor equation takes the

following form at each order in perturbation theory:

D1gnµν + D2(gnµρu
ρuν + gnνρu

ρuµ) + D3(gnρση
ρσ)ηµν + D4(gnρση

ρσ)uµuν

+ D5(gnρσuρuσ)ηµν + D6(gnρσuρuσ)uµuν = snµν(z, ρ)
(41)

where D1, D2, etc. are linear differential operators involving derivatives in the

radial coordinate only and snµν(z, ρ) is the source term which is a (nonlinear) func-

tion of the corrections to the metric upto n-1 th order in the derivative expansion.

The left hand side of the above equation is in fact the same as in (34) with g1

replaced by the n-th order correction to the metric gn, but now source terms are

present on the right hand side. Also the differential operator D1 is the same as the

operator which acts on f in (36) at every order in the derivative expansion. We

dropped the operators D2, D3, etc. at the first order, i.e. for g1, because as we

saw the general results of section 2 (equations in (10) for instance) forced it to

be proportional to be stress tensor and hence be traceless and vanish when con-

tracted with the four velocity. However, from the second order in the derivative

expansion onwards, the general results of section 2 do not imply this to be true for

the correction to the metric and in fact the source terms which appear on the right

hand side of the equation indeed do not have this property. All the other operators

except D1, however, involve no more than one derivative in the radial coordinate.

We have to choose a particular solution to the above equation. We can always

choose the particular solution to be such that it vanishes at the boundary like ρ6

so that it doesn’t contribute to the stress tensor (as the coefficient of its ρ4 term

vanishes). One can explicitly check this, however, more efficiently we can prove

it as follows. The source term for the n-th order correction clearly is determined by

various terms of the stress tensor upto n-1 th order, so it follows from the general

results of section 2 that the particular solution can be chosen to be independent

of tnµν, which is the n-th order correction to the stress tensor. In that case the ρ4

term should be absent. For instance, based on the results like those in (10), we can

write down the Taylor series expansion in the radial coordinate for the particular
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solution for g2 as below.

g2µν = −
ρ6

12
�t0µν + ρ

8[
1

2
t
ρ

1µ
t1ρν −

1

24
ηµν(t

ρσ

1
t1ρσ)]

+ ρ10[− 1

24
(t
α

0µ
�t0αν + t α0ν�t0αµ)

+
1

180
ηµνt

αβ

0
�t0αβ +

1

360
t
αβ

0
∂µ∂νt0αβ −

1

120
t
αβ

0
(∂µ∂αt0βν + ∂ν∂αt0βµ)

+
1

60
t
αβ

0
∂α∂βt0µν −

1

180
∂µt
αβ

0
∂νt0αβ +

1

720
ηµν∂αt

βγ

0
∂αt0βγ

+
1

120
(∂µt

αβ

0
∂αt0βν + ∂νt

αβ

0
∂αt0βµ) −

1

60
∂αt

β

0µ
∂βt
α
0ν] + .....

(42)

More generally, the particular solution for gn is uniquely determined once we

specify that it vanishes at the boundary like −(1/12)ρ6
�tn−2. Then it follows that

it is independent of tn and doesn’t contribute to the stress tensor at the n th order.

Now the particular solution at every order in the derivative expansion should

by itself satisfy the scalar constraint. Let us see it explicitly for the particular

solution for g2. The particular solution chosen to vanish at the boundary like

−(1/12)ρ6
�t0 has an expansion of the above form (42). So by this choice, the

coefficients of the Taylor expansion (now fixed by the source) will automatically

agree with the general formulae, like those in (10). These general formulae are

automatically consistent with the scalar constraint. The scalar constraint also will

be a linear differential equation for gn with a source term. The source term again

is a (nonlinear) function of the corrections to the metric upto n-1 th order in the

derivative expansion. The particular solution by itself will satisfy this equation. So

the homogenous solution of the tensor equation for gn must also be a homogenous

solution of the scalar constraint.

The homogenous solution of the tensor equation for gn which will be consis-

tent with the scalar constraint is simply −2b4 f (ρ)tnµν, with f (ρ) being given by

(38) and tnµν being an arbitrarily chosen correction to the hydrodynamic stress

tensor involving n derivatives of the field theory coordinates z. However tnµν must

be traceless and also satisfy the Landau gauge condition. Let us illustrate again

by explicitly doing the Taylor series expansion of the homogenous solution to g2

which is −2b4 f (ρ)tnµν. The Taylor expansion is as below:

g2µν = t2µν(ρ
4 +
ρ8

4b4
+
ρ12

48b8
+ ...) (43)

Using the tracelessness and Landau gauge condition for t2, one can check from the

general formulae like those in (10) that this is just the part of the metric determined
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by t2 at the second order. Hence this should be the only homogenous solution that

is consistent with the scalar constraint. Similarly at each order one can see that

the part of the solution for gn which contains tn is proportional to tn and since the

particular solution by choice contains all other terms, the homogenous solution

should be always proportional to tn. Then the tensor equation fixes the radial part

of the homogeneous solution so that it should be −2b4 f (ρ)tnµν.

The vector constraint, at the n-th order in the derivative expansion, as we have

argued before simply implies the conservation of the stress tensor upto n-1 th

order.

To summarize, these are the features of the derivative expansion in the Feffer-

man Graham coordinates.

• At every order in the derivative expansion, the tensor equation for gn is a

linear differential equation of the form of (41) involving derivatives in the

radial coordinate only. The operators D1, D2, etc are the same at every order,

while the source term sn is a nonlinear function of the various corrections to

the metric upto n-1 th order.

• The particular solution to the tensor equation for gn can be chosen to vanish

at the boundary like −(1/12)ρ6
�tn−2. With this choice the particular solution

automatically satisfies the scalar constraint.

• The homogenous solution to the tensor equation which is consistent with

the scalar constraint is −2b4 f (ρ)tnµν at very order, with f being given by

(38) and tnµν being an arbitrary n th order correction to the stress tensor

which satisfy the tracelessness and the Landau gauge condition conditions.

• The vector constraint at the n-th order just implies the conservation of n-1

th order stress tensor.

• We can keep manifest Lorentz covariance at each order in the derivative

expansion.

• We can construct a solution corresponding to an arbitrary stress tensor be-

cause the homogenous solution of the tensor equation for gn at the n-th

order is simply proportional to an arbitrarily chosen n-th order correction to

the stress tensor. At every order in the derivative expansion for any choice

of the hydrodynamic stress tensor, the solution has finite radius of conver-

gence away from the boundary, so all hydrodynamic stress tensors preserve

the asymptotic AdS boundary condition.
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5 Getting rid of naked singularities

The comparative advantage of solving Einstein’s equation of pure gravity in Fef-

ferman Graham coordinates in the derivative expansion over doing the same in

Eddington-Finkelstein coordinate system is that the constraints simplify dramati-

cally and also we do not need to split the terms into tensors, vectors and scalars

of SO(3), thus preserving manifest Lorentz covariance. The comparative disad-

vantage of the Fefferman-Graham coordinate system is that the regularity analysis

is not straightforward. At the first order in the derivative expansion, the metric

in Fefferman-Graham coordinates (39) has a singularity at ρ =
√

2b. This is the

location of the horizon at the zeroth order and the zeroth order metric itself is not

invertible here.

The first order perturbation has a log piece which also blows up here. This

singularity could be just a coordinate singularity in which case it could be re-

moved by going to a different coordinate system as it happened for the boosted

black brane, or it could be a real singularity. If it is a real singularity, it is naked

because it coincides with the original horizon at late time. At late times the solu-

tion approaches a boosted black brane but since the horizon coincides with a real

singularity, no infalling observer can continue life after reaching the horizon.

To analyse the singularity in the Fefferman-Graham coordinates we will sim-

ply translate the metric to Eddington-Finkelstein coordinates (r, x). It will be of

course suffice to change our coordinates near ρ =
√

2b, however, for the sake

of completeness and better general understanding we will do the change of co-

ordinates exactly upto first order in the derivative expansion. The Eddington-

Finkelstein metric which we will get as a result of this translation will also be

an exact solution of Einstein’s equation upto first order in x-derivatives. We now

return to the equations (15) in section 3 which gives the translation between the

two coordinate systems. We still treat the Fefferman-Graham coordinates (ρ(x, r),

zµ(x, r)) as unknowns, but the third unknown is now the Gµν(x, r) which appears in

the Eddington-Finkelstein metric (11). The zeroth order solutions to these three

are known and are given in (19) and (24). To find the corrected solutions due to

change in the Fefferman-Graham metric at first order it is straightforward to per-

turb these equations and solve them exactly at first order. The complete solutions

to the three unknowns exact upto first order are:

ρ =

√
2b

√

b2r2 +
√

b4r4 − 1

(1 + bk(br)
∂.u

3
)
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zµ = xµ + uµbk(br) + uµ
∂.u

3
b2kA(br) + (u.∂)uµb2kB(br) (44)

Gµν =r2Pµν + (−r2 +
1

b4r2
)uµuν + 2r2bF(br)σµν − r((u.∂)(uµuν) −

2

3
uµuν(∂.u))

+
(γ − 1)b

4
r2log(1 − 1

b4r4
)σµν

where,

k(x) =
1

4
(log(

x + 1

x − 1
) − 2arctan(x) + π) (45)

F(x) =
1

4
(log(

(x + 1)2(x2 + 1)

x4
) − 2arctan(x) + π)

and kA(x), kB(x) satisfy the following differential equations

dkA

dx
= − x2

x4 − 1
(k(x) +

x
√

x4 − 1
) (46)

dkB

dx
=

1

x
√

x4 − 1
− k(x)x2

x4 − 1

with the boundary condition that they vanish at x = ∞. One may easily check that

if we do the Taylor series expansion of ρ, zµ in 1/r, we can reproduce the results

(29) of section 3 in which we have solved these equations using a power series

ansatz.

The crucial point, as realized by authors of [10] is that in the Eddington-

Finkelstein coordinates if there is a blow-up in Gµν(x, r) it should be a real sin-

gularity. For a general conformal fluid at first order with η/s = γ/4π, the cor-

responding solution in Eddington-Finkelstein coordinates has Gµν(x, r) given by

(44). Except for the log term which appears in the last line, all other terms are

well behaved for r > 0 and the log term blows up at r = 1/b, the location of the

unperturbed black brane horizon. Only when γ = 1, the coefficient of the log term

vanishes and so the naked singularity at r = 1/b is absent. For this value of γ we

have in fact reproduced the Gµν of the Eddington-Finkelstein metric given by the

authors of [10].

We learn the following general facts. The translation to Eddington-Finkelstein

coordinates exists for an arbitrary solution in the Fefferman-Graham coordinates

irrespective of whether there is any naked singularity or not. Also the Fefferman-

Graham coordinates have a power series expansion in terms of the inverse of the

radial Eddington-Finkelstein coordinates for all cases. For all cases, the change
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of coordinates also become singular at the location of the original horizon in the

Eddington-Finkelstein coordinates which is r = 1/b.

We can continue the regularity analysis to higher orders in the derivative

expansion by solving the equations (15) for translating the solution from the

Fefferman-Graham coordinates to Eddington-Finkelstein coordinates order by or-

der in the derivative expansion as well. In this way at each order we will be able

to determine what values the coefficients in the terms of the hydrodynamic stress

tensor should have so that a naked singularity is avoided. It would be interesting

to see if we can understand the values of these coefficients of the hydrodynamic

stress tensor, more directly in terms of the geometry of the unperturbed boosted

black brane horizon.

We will conclude this section by emphasizing certain points.

• We can think of translating to outgoing Eddington-Finkelstein coordinates

also as an attempt to remove the singularity and then as expected the situa-

tion will be time-reversed. We will now need γ = −1 for regularity. In the

boundary theory, all fluid dynamical solutions will then be time-reversed

and our gravity solutions will be perturbed white-hole solutions exact upto

first order in the derivative expansion.

• We could have attempted to fix γ by studying regularity at the horizon by

computing curvature invariants (like RµνρσRµνρσ). However, we do not know,

if for these “hydrodynamic” space-times, checking that a finite number of

curvature invariants do not blow up at the horizon will suffice to demon-

strate regularity. So the best strategy is to translate to a coordinate system

where the solution is explicitly regular upto first order in the derivative ex-

pansion and this is what we have done here. For the sake of completeness,

however, we have studied a few curvature invariants and have found that the

leading singularity of RµνρσRµνρσ at second derivative order vanishes for the

right choices of γ which are 1 and -1, the details of which are presented in

Appendix B.

• The derivative expansion in Fefferman-Graham coordinates is equivalent to

the same in Eddington-Finkelstein coordinates to all orders in the derivative

expansion even when the solutions do not have a regular horizon. This is so

because the equations (15) for translating Fefferman-Graham coordinates to

Eddington-Finkelstein coordinates can always be solved order by order in

the derivative expansion as well. In fact, this is natural, because any asymp-

totic AdS solution can be written in the Fefferman Graham coordinates.
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6 Discussion

We will point out some implications of our results for dynamics in the universal

sector of CFT. Our first result is that a solution of pure classical gravity is uniquely

specified by the stress tensor. This implies that the dynamics of all states in the

universal sector of the dual CFT at strong coupling and large N is completely

determined by the conservation of the traceless stress tensor. The implication for

dynamics on the CFT side is even more surprising than the result for classical

theory of gravity itself. It is surprising because to characterise a state uniquely

we would typically need the expectation values of infinite number of operators.

However, it is not hard to give an example of a special sector of states with this

property in a 2D CFT. These special states are spanned by Ln|VAC > (n > 2)and

are created by descendendants of the identity operator (Ln),with n > 2, acting on

the vacuum. Each such state is uniquely character by the L0 eigenvalue n, hence

by the expectation value of the stress tensor T(z). Moreover each state Ln|VAC >

(n > 2) being an eigenvector of the Hamiltonian, the sector spanned by these states

is closed under time evolution. It would be interesting to find such examples

of class of states in CFTs in higher dimensions where the expectation value of

the stress tensor uniquely identifies each member and moreover is closed under

time evolution. The real question, however is, whether we can give an intrinsic

microscopic description of the universal sector of CFTs with gravity duals. If we

can achieve this, we will be able to understand better how the vev of the stress

tensor and its conservation alone determines the dynamics in the universal sector

completely.

Our second set of results are (a) all hydrodynamic stress tensors are free of

the “abcd” type of pathology, which means that they preserve the asymptotic AdS

boundary condition and (b) there is a unique hydrodynamic stress tensor for which

there is no naked singularity. This means that the late time equilibriation in the

boundary CFT can be determined by a unique and universal hydrodynamic stress

tensor. The coefficients of the terms should be set to values which avoids for-

mation of naked singularities in the bulk. It would be interesting to find out an

intrinsic microscopic definition for the higher order coefficients of the hydrody-

namic stress tensor, in terms of say, multi point correlations of the stress tensor.

The first order coefficient, namely the viscosity has indeed such a definition in

terms of two-point correlation function of the stress tensor and the validity of the

definition can be verified by the AdS/CFT correspondence as well. So we may

hope that a pure gravity analysis should suffice to arrive at similar definitions for

the higher order coefficients in the hydrodynamic stress tensor.

28



We would like to mention that while we were updating our work, it was a

great pleasure to find out that our method has been generalised in [20] to com-

pute the stress tensor in the universal hydrodynamic sector of strongly coupled

large N dual theories of various p-branes, which are in most cases non-conformal.

We would like to take this opportunity to mention that since our method keeps

the asymptotic boundary condition manifest, it could be given a preference when-

ever implementing the asymptotic boundary condition in Eddington-Finkelstein

coordinates becomes laborious or complicated.

Finally, we would like to point out, that it will be interesting to find a physical

understanding of the “abcd” type of pathology. Our results in the hydrodynamic

sector gives support for claiming that whenever we have late-time equilibriation

in the boundary stress tensor, this pathogy is absent. It will be interesting to find

a real example with such a pathology and trace its physical origin.
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Appendix A : Proof of the power series solution for

AdS 5 asymptotics

Here we will prove that any asymptotically AdS 5 solution of Einstein’s equation

with a negative cosmological constant, in the Fefferman-Graham coordinates, has

a solution for gµν which is a power series in the radial coordinate when the bound-

ary metric is flat. Though not explicitly mentioned in most of what follows, it

should be kept in mind that here we are specifically investigating five-dimensional

solutions with a flat boundary metric. At the end, we will mention if our proof can
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be generalised to other cases.

To simplify the proof we first rearrange the tensor and the scalar components

of Einstein’s equation (5) while keeping the vector components of Einstein’s equa-

tion unchanged. The old scalar equation is added with an appropriate linear com-

bination of the trace of the old tensor equation so that now it does not contain any

term which has second derivative of gµν with respect to the radial coordinate ρ.

Since the vector equation also does not contain any term with second derivative

of gµν with respect to the radial coordinate we can now think of the vector and

scalar components as a set of five constraint equations. We also change the tensor

components of Einstein’s equation by appropriately replacing Tr(g−1g′) using the

new scalar equation. We do this so that now the tensor equation by itself is suf-

ficient to determine all the ρn coefficients of gµν. The old tensor equation had the

feature that to determine g(8)µν, the coefficient of ρ8 in gµν, we had to use the scalar

equation as well, but now this can be fully determined using the tensor equation

alone. So our equations now are as below.

1

2
g′′ − 3

2ρ
g′ − 1

2
g′g−1g′ +

1

4
Tr(g−1g′)g′ − Ric(g)

+ g[
1

6
R(g) +

1

24
Tr(g−1g′g−1g′) − 1

24
(Tr(g−1g′))2] = 0

(47)

∇µTr(g−1g′) − ∇νg′µν = 0 (48)

R(g) +
3

ρ
Tr(g−1g′) +

1

4
Tr(g−1g′g−1g′) − 1

4
[Tr(g−1g′)]2 = 0 (49)

It is not difficult to see that we can use a power series ansatz to solve the tensor

equation as at the n-th order. At the n-th order the only terms which can contain

g(n)µν or Tr(g(n))ηµν are g′′µν, g′µν and Tr(g−1g′)gµν. Now since the tensor equation

contains no term with Tr(g−1g′)gµν, at the n-th order,for n > 4, the tensor equation

gives us n(n − 4)g(n)µν/2 = f(n)µν(tρσ), where f(n)µν(tρσ) is a polynomial in tρσ and

its various derivatives with respect to the boundary coordinates only. Hence, for

n > 4, we can always solve g(n)µν using the tensor equation alone.

We have now got to show that the power series we have so obtained as a

solution to the tensor equation is consistent with the vector and scalar constraints.

We will do this by the method of induction iterating over the various coefficients

of ρn in gµν, order by order in n. We will first establish the following fact that the

ρ-derivative of the vector and scalar constraints vanish when the tensor equation

along with the vector and scalar constraints are satisfied. This just articulates

the intuition that once the initial data consisting of gµν and g′µν satisfy the vector
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and scalar constraints on hypersurface with a fixed value of the radial coordinate

ρ, the dynamical evolution in ρ should be such that the constraints should be

automatically satisfied for any other hypersurface. To show this we will need the

following:

Γµνσ
′
=

1

2
gµα(∇νg′ασ + ∇σg′αν − ∇αg′νσ) (50)

R
µ

ναβ

′
=

1

2
gµγ[∇α∇νg′γβ − ∇α∇γg′νβ − ∇β∇νg′γα + ∇β∇γg′να]

One can use the tensor (47) and scalar (49) equations to write

Rµν −
1

2
δµνR =

1

2
gµαg′′αν −

3

2ρ
gµαg′αν −

1

2
gµαg′αβg

βγg′γν +
1

4
Tr(g−1g′)gµαg′αν

+
5

4ρ
Tr(g−1g′)δµν −

1

4
δµν[Tr(g−1g′′) − Tr(g−1g′g−1g′) +

1

2
(Tr(g−1g′))2]

(51)

Now when all the equations (47), (48) and (49) are satisfied, the ρ-derivative of

the vector constraint can also be written as:

(∇µTr(g−1g′) − ∇νg′µν)′ =∂µ[Tr(g−1g′′ − 3

4
g−1g′g−1g′) +

1

4
(Tr(g−1g′))2]

− ∇ν(gανg′′µα − gαβg′βγg
γνg′αµ +

1

2
gναg′αµTr(g−1g′))

(52)

Now comparing the right hand sides of (51) and (52) using all the equations of

motion again, we see that

(∇µTr(g−1g′) − ∇νg′µν)′ = ∇ν(Rνµ −
1

2
δνµR) (53)

So the Bianchi identity implies that the ρ-derivative of the vector equation should

vanish when all the equations of motion are satisfied. We will now get to the scalar

equation.

When the vector equation of motion (48) is satisfied we get

Rµν
′ = −1

2
Rαµ(g

αβg′βν) +
1

2
Rγναµ(g

αβg′βγ) +
1

2
∇µ∇νTr(g−1g′) − 1

2
∇2g′µν (54)

This implies that when the vector equation of motion is satisfied, we have:

R′ = −gµνg′νσgσαRµα (55)
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On the other hand the vanishing of the ρ-derivative of the scalar constraint (49)

ought to give us:

R′ = − 1

2
Tr(g−1g′g−1g′′) +

3

2ρ
Tr(g−1g′g−1g′)

+
1

2
Tr(g−1g′g−1g′g−1g′) − 1

4
Tr(g−1g′)Tr(g−1g′g−1g′) +

1

2ρ
[Tr(g−1g′)]2

(56)

Now using the tensor and scalar equations of motion, we can see that the right

hand sides of (55) and (56) are the same, or in other words the ρ-derivative of the

scalar constraint indeed vanishes when all the equations of motion are satisfied.

So we have established that the ρ-derivatives of the all the five constraints vanish

when all the equations of motion are satisfied, or to state compactly

(47), (48), (49)⇒ (48)′, (49)′ (57)

To prove that the power series solution of the tensor equation is consistent with

the constraints, we will use the above at ρ = 0. To obtain a condition for g(n)µν

(the coefficient of ρn in gµν) from the tensor equation we need to differentiate it

n-2 times with respect to ρ and then set ρ = 0. Similarly to obtain a condition for

g(n)µν from the vector and scalar constraints we need to differentiate each of them

n-1 times with respect to ρ and then set ρ = 0.

The vector and scalar constraints imply that g(2)µν should vanish while the ten-

sor equation identically vanishes at this order. The tensor equation for g(4)µν which

we have appropriately renamed tµν, also identically vanishes while the vector con-

straint gives us the conservation equation ∂µtµν = 0 and the scalar constraint gives

the tracelessness condition Tr(t) = 0. We can start our induction from here, since

the three equations are all consistent with each other upto this order

Let us suppose, by the induction hypothesis that the solution for g(n−1)µν ob-

tained from the tensor equation is consistent with the vector and scalar constraints.

We now denote the m-th ρ-derivative as m
′
. So, by induction hypothesis, the three

equations (n − 3)′(47)(ρ = 0), (n − 2)′(48)(ρ = 0) and (n − 2)′(49)(ρ = 0) are

consistent with each other. Now we iterate by determining g(n)µν from the tensor

equation, or in other words we solve

(n − 2)′(47)(ρ = 0) (58)

But by induction hypothesis we can assume (n−2)′(49)(ρ = 0) and (n−2)′(48)(ρ =

0) are consistent with the tensor equation. Now our result (57) for a general fixed
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ρ hypersurface implies that

(n − 2)′(47), (n − 2)′(48), (n − 2)′(49)⇒ (n − 1)′(48), (n − 1)′(49) (59)

We can apply the above at ρ = 0 9 to iterate and say that if the solution for g(n−1)µν

from the tensor equation is consistent with the constraints so would the solution

for g(n)µν from the tensor equation be. This completes the proof by induction that

the power series solution of the tensor equation is consistent with the constraints.

Let us see if our proof can be generalised to other cases, in particularly for all

dimensions if the boundary metric is flat. The only change in the equation of mo-

tion happens to be the coeffiecient of g′µν in the tensor equation. Let us, for exam-

ple, take the case when the number of boundary coordinates is six. We can check

by hand that all g(n)µν vanish for all n such that 0 < n < 6 and g(6)µν cannot be deter-

mined from the tensor equation for an exactly similar reason as for g(4)µν when the

number of boundary coordinates was four, namely the tensor equation identically

vanishes. The vector and scalar constraints imply conservation and tracelessness

of g(6)µν implying that it should be identified with the stress tensor (and indeed

it has been shown in [5] that this agrees with with the Balasubramanian-Krauss

stress tensor). We can begin our induction, from here as before and hence our

proof generalises. So, the general problem in applying the induction is to show

that the equations of motion are consistent with the power series ansatz at g(d)µν.

We have not been able to prove it generally but we have checked it upto d = 6.

The same problem appears when we try to apply induction to prove the validity

of the power series solution when the number of boundary coordinates is odd, but

the boundary metric is arbitrary. Before we apply induction, we need to prove

that the power series works at g(d)µν, (in fact this is harder to show, because when

the boundary metric is not flat g(n)µν’s do not vanish for 0 < n < d). However,

Fefferman and Graham have proved the validity of the power series solution by a

different method for an arbitrary boundary metric when the number of boundary

coordinates is odd.

9At ρ = 0 the statement (59) has a non-trivial content strictly for n > 2, because of the

slight technicality that what we really need to use to find a condition for g(n)µν is that we need

to differentiate (ρ(49)) not really (49) n-1 times. So at ρ = 0, this result is trivial for the scalar

constraint when n = 2 and we do not need to use the result (59), but since the first step of induction

starts from n = 4, it is safe to use this in the iteration procedure.

33



Appendix B: On fixing η/s by calculating curvature

invariants

We have already done the regularity analysis of our first order solution in Fef-

ferman Graham coordinates by translating to Eddington-Finkelstein coordinates

where the regularity or irregularity becomes manifest. However, one may ask if

the regularity analysis can be done also by calculating some curvature invariants.

We will see that indeed at the first order, this analysis can also be done by cal-

culating an appropriate curvature invariant, but we will argue that there may not

be a finite number of curvature invariants which can be reliably used to fix all the

coefficients in the hydrodynamic stress tensor at higher orders in the derivative

expansion.

Before we do that, we want to point out that though the metric in Fefferman-

Graham coordinates and in Eddington-Finkelstein coordinates could be made co-

ordinate equivalent upto any given order in the derivative expansion for an arbi-

trary hydrodynamic stress tensor, the curvature invariants calculated from the two

metrics will typically never be the same! Let us examine why this should happen

at the first order itself. Any typical curvature invariant, like the Ricci scalar R it-

self, will show a divergence only when we expand it to second order in derivatives

of the boundary coordinates. In this case, this should be so, because the metric in

either coordinate system is a solution of the equations of motion upto first order

in derivatives of boundary coordinates. However, the second order piece in R cal-

culated from the metric in either coordinate system will not be the same, because

the two metrics are related by a coordinate transformation only upto first order

in derivatives. In fact we will explicitly demonstrate that R itself can be used to

fix the value of 4πη/s in the Eddington-Finkelstein metric at first order but not

in the Fefferman-Graham metric at first order. So the procedures of using curva-

ture invariants to fix the coefficients in the hydrodynamic stress tensor in the two

coordinate systems are indeed very different!

Another crucial aspect should be kept in mind because this also features in

comparing curvature invariants calculated from the metrics in the two coordinate

systems. Fundamentally, solving Einstein’s equations in either of the two co-

ordinate systems involves a trade-off between manifest regularity and manifest

asymptotic boundary condition. The solution in Eddington-Finkelstein coordi-

nate system at the zeroth order and also at the first order for the right value of

4πη/s are manifestly regular so any curvature invariant calculated at the hori-

zon will be regular to all orders as well. However, the solution preserves the
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asymptotic AdS boundary condition only upto first order in derivatives as it can

be translated to Fefferman-Graham coordinate system only upto that order. The

solution in Fefferman-Graham coordinate system at first order, of course preserves

boundary condition to all orders, but even for the right choices of 4πη/s it is not

regular to all orders. In other words, for the right choice of 4πη/s all order diver-

gences should vanish when we calculate curvature invariants from the metric in

Eddington-Finkelstein coordinate system, but in case of the solution in Fefferman-

Graham coordinates at first order, at most the leading divergence at the second

order vanishes for the right choice of 4πη/s. In fact, for certain curvature invari-

ants even that do not happen. Of course, eventually if we add a right second order

correction to the Fefferman-Graham metric, all divergences in the curvature in-

variants at the second order should vanish, but still divergences at higher orders

will remain and so on. We will illustrate the first order case with examples below.

To compute curvature invariants it is useful to first choose a velocity and tem-

perature profile. As mentioned before, the vector constraint in Einstein’s equations

of motion demand that the velocity-temperature profile should be a solution of the

relativistic Euler equation

∂µb

b
= (u.∂)uµ − uµ

∂.u

3
(60)

We call our boundary coordinates (t, x, y, z) and we select the following static

velocity profile which is a relativistic version of laminar flow

uµ =
1

√

1 − a2y2
(1, ay, 0, 0) (61)

where a is a constant of dimension 1/length. The advantages of using this velocity

profile are twofold, namely,

• The relativistic Euler equation gives us that temperature, hence b, should be

a constant.

• It is easy to employ the derivative expansion by using the following trick.

We note that the only non-trivial derivatives of the boudary coordinates are

the y-derivatives. Any y-derivative of the velocities will bring in an extra a

which is unpaired with a y so that it picks up the right dimension. Hence to

do the derivative expansion we may first set y = p/a and simply do a Taylor

expansion in a about a = 0. The correct dimensionless parameter of the

derivative expansion, of course will be ab.
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We can use the above velocity-temperature profile in the first order solution in any

coordinate system. Though away from the boundary the boundary coordinates

(or, in other words, the field-theoretic coordinates) in a given coordinate system

will mix with all the coordinates in another coordinate system, at the boundary

they will always align with other. This is, how solutions in two different coor-

dinate systems come to share the same boundary stress tensor and also the same

conservation equation, which in this case, is the relativistic Euler equation.

If we use the above velocity-temperature profile to calculate R in the Edding-

ton Finkelstein coordinate system we will find that

R = −20 + a2 1

8(1 − a2y2)2b4r6

[
(γ − 1)(b2r2(9 + 3γ − 2π) − 16b5r5 + 2πb6r6))

(br − 1)(1 + br + b2r2 + b3r3)
+

(γ − 1)(γ + 1 − 8b3r3)b2r2Log(1 − 1

b4r4
) + O(1)] + O(a3)

(62)

At the zeroth order in a, R should of couser be -20 and at order a, R should of

course vanish because our metric is a solution of equations of motion upto first

order. At order a2, we indeed expect some divergence at the horizon, which is at

r = 1/b, because the metric is explicitly not regular there unless γ = 4πη/s = 1.

We see that when 4πη/s = γ = 1 all divergences go away. This feature replicates

also at higher orders in a. 10 On the other hand, if we calculate R from the

Fefferman-Graham metric at first order, we get

R = −20 + a2[
128b10ρ8(12b4γ2 + 4b2ρ2 + 3γ2ρ4)

(1 − a2y2)2(4b4 − ρ4)2(4b4 + ρ4)3

+
16b6ρ4γ2

(1 − a2y2)2(4b4 + ρ4)2
Log(

4b4 − ρ4

4b4 + ρ4
)] + O(a3)

(63)

At order a2, we see that there is a leading inverse power two divergence for any

value of γ and a subleading log divergence except when γ = 0. So this is useless

to figure out the right value of γ. Of course this will certainly be useful to fix

certain coefficients of the hydrodynamic stress tensor at second order, because

these divergences should go away for any right second order correction to the

Fefferman-Graham metric.

10We would like to thank Sayantani Bhattacharya for confirming that this indeed happens for

arbitrary velocity and temperature profiles.
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It turns out, however, that, RµνρσRµνρσ can be used to fix the value of γ in the

Fefferman-Graham metric. We get

RµνρσRµνρσ =
4(1280b16 + 1280b12ρ4 + 2784b8ρ8 + 80b4ρ12 + 5ρ16)

(4b4 + ρ4)4

− a2[
2(1 − γ2)b6

(1 − a2y2)2(ρ −
√

2b)4
+ O(

1

(ρ −
√

2b)2
) + O(Log(

√
2b − ρ)) + O(1)]

(64)

We see that the zeroth order piece is always finite and independent of γ and at

order a (for some reason we do not understand) the scalar vanishes. However,

at order a2, we find that when γ is 1 or -1 the leading divergence at ρ =
√

2b

goes away, though, the subleading divergences remain and as before, they should

disappear when we add any right second order contribution to the Fefferman-

Graham metric. We are also not sure, if by computing RµνρσRµνρσ itself we can fix

the values of all the coefficients in the hydrodynamic stress tensor at second order.

To fix all the coefficients of the second order hydrodynamic stress tensor, one may

have to look for another appropriate curvature invariant.

It is certainly, worth exploring, if the “hydrodynamic” Fefferman-Graham so-

lutions are “‘special” enough so that computing a finite number of curvature in-

variants will suffice to determine regularity, hence in fixing all the coefficients

in the hydrodynamic stress tensor to all orders. We will leave this for a future

work. Nevertheless, our procedure of fixing the coefficients in the hydrodynamic

stress tensor by translating to Eddington-Finkelstein coordinate system works for

all orders in the derivative expansion.
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