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Abstract

In this paper, we prove that the second eigenfunctions of the p-Laplacian, p > 1, are

not radial on the unit ball in R
N , for any N ≥ 2. Our proof relies on the variational

characterization of the second eigenvalue and a variant of the deformation lemma. We also

construct an infinite sequence of eigenpairs {τn,Ψn} such that Ψn is nonradial and has

exactly 2n nodal domains. A few related open problems are also stated.
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1 Introduction

Let B1 ⊂ R
N be the open unit ball centred at the origin. We consider the following eigenvalue

problem:

−∆pu = λ|u|p−2u in B1,

u = 0 on ∂B1, (1.1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplace operator with p > 1 and λ is the spectral

parameter. A real number λ for which (1.1) admits a non-zero weak solution in W
1,p
0 (B1) is

called an eigenvalue of (1.1) and corresponding solutions are called the eigenfunctions associated

with λ.

For p = 2, it is well known that the set of all eigenvalues of (1.1) can be arranged in a

sequence

0 < λ1 < λ2 ≤ λ3 . . .→ ∞
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and the corresponding normalized eigenfunctions form an orthonormal basis for the Sobolev

space W 1,2
0 (B1). Further, using the Courant-Weinstein variational principle (Theorem 7.8.14

of [4]), these eigenvalues can be expressed as follows:

λk := inf
{u⊥{u1,...,uk−1},‖u‖2=1}

∫

B1

|∇u|2 dx, k = 1, 2, 3, . . . ,

where ui is an eigenfunction corresponding to λi. For p 6= 2, using Ljusternik-Schnirelman

theorem, an infinite sequence {µn} of eigenvalues of (1.1) is provided in [7]. Possibly a different

sequence {λn} of variational eigenvalues of (1.1) is provided in [5]. We stress that a complete

description of the set of all eigenvalues of (1.1) for p 6= 2 is a challenging open problem.

Nevertheless, a complete description of the set of all radial eigenvalues {γn} (eigenvalue with

a radial eigenfunction) of (1.1) is given in [3]. The authors of [3] showed that λ is a radial

eigenvalue of (1.1) if and only if the following ODE has a non-zero solution:

−
(
rN−1 |u′(r)|p−2u′(r)

)′
= λrN−1 |u(r)|p−2u(r) in (0, 1),

u′(0) = 0, u(1) = 0. (1.2)

Regardless of the methods by which the eigenvalues are obtained, one can uniquely identify the

first two eigenvalues of (1.1) as below:

λ1 = min{λ : λ is an eigenvalue of (1.1)},

λ2 = min{λ > λ1 : λ is an eigenvalue of (1.1)}.

It is well known that the eigenfunctions corresponding to λ1 are radial and keep the same sign

on B1. All other eigenfunctions change its sign on B1. The structure of the second eigenfunctions

are not well understood, except for p = 2. In this case, the Fourier method for the Laplacian

in the polar coordinates gives the precise form of the second eigenfunctions. In particular, it is

evident that the second eigenfunctions are not radial. One anticipates the same results also for

p 6= 2.

In [12], Parini proved that the second eigenfunctions are not radial in a special case, whereB1

is the disc (B1 ⊂ R
2) and p is close to 1. In [1], this result is extended for every p ∈ (1,∞) using

a computer aided proof. Indeed, these methods are not readily extendable to dimensions greater

than 2. Here, we give a simple analytic proof for their result which works in all dimensions

(N ≥ 2) and for every p ∈ (1,∞). Our proof relies on the variational characterization of λ2

given in [5] and a variation of the deformation lemma given in [8]. We also use a result from

[2] that states that for a fixed r ∈ (0, 1),

λ1(B1 \Br(x)) ≤ λ1(B1 \Br(0)),

where Br(x) ⊂ B1 is the ball with centre x and radius r. Now we state our main result:

Theorem 1.1. Let B1 be the unit ball centred at the origin in R
N with N ≥ 2 and let 1 < p <∞.

Let λ2 be the second eigenvalue of (1.1). Then the eigenfunctions corresponding to λ2 are not

radial.
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In this paper we also construct a sequence {τn,Ψn} of eigenpairs of (1.1) such that the

eigenfunction Ψn is nonradial and has exactly 2n nodal domains. Furthermore, the sequence

{τn} is strictly increasing and unbounded. In fact the nodal domains can be specified using

the spherical coordinate system for R
N which consists of a radial coordinate r and angular

coordinates θ1, . . . , θN−1 where θ1, . . . , θN−2 ∈ [0, π] and θN−1 ∈ [0, 2π). By a sector of the ball

B1 we mean the set S given by S = {x ∈ B1 : 0 < θ∗ < θN−1 < θ∗ < 2π}. We prove the

following theorem.

Theorem 1.2. Let B1 ⊂ R
N . Then for each n ∈ N there exists an eigenpair {τn,Ψn} of (1.1)

such that Ψn has exactly 2n nodal domains where each nodal domain is a sector with measure
|B1|
2n .

The rest of this paper is organized as follows. In Section 2, we consider Dirichlet eigenvalue

for p-Laplacian on a general domain and discuss the existence and the regularity properties of

the eigenfunctions. We also discuss the variational characterizations of eigenvalues and state

a version of the deformation lemma. In Section 3, we give a proof for Theorem 1.1. The

last section consists of a proof of Theorem 1.2 and some important open problems related to

eigenvalues of p-Laplacian.

2 Preliminary

In this section we consider the eigenvalue problem on a bounded domain Ω in R
N :

−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω. (2.1)

We discuss the existence and regularity properties of the eigenfunctions of (2.1). If λ is an

eigenvalue of (2.1) and u ∈W 1,p
0 (Ω) is an associated eigenfunction, then we have

∫

Ω
|∇u|p−2∇u · ∇v dx = λ

∫

Ω
|u|p−2uv dx, ∀ v ∈W

1,p
0 (Ω). (2.2)

Now we consider the following two functionals on W 1,p
0 (Ω) :

J(u) =

∫

Ω
|∇u|pdx, G(u) =

∫

Ω
|u|pdx.

Using the Lagrange multiplier theorem, it can be easily verified that the critical values and

critical points of J on the manifold S = G−1(1) satisfy (2.2). Indeed, the eigenvalues of (2.1)

and the critical values of J on S are one and the same. The least critical value of J on S is

given by

λ1 = inf
u∈S

J(u).

In the next proposition, we list some of the important properties of λ1 and the corresponding

eigenfunctions.
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Proposition 2.1. Let λ1 be the first eigenvalue of (2.1). Then

(i) λ1 is simple

(ii) any eigenfunction corresponding to λ1 keeps the same sign on Ω,

(iii) any eigenfunction corresponding to an eigenvalue λ > λ1 changes its sign on Ω,

(iv) if Ω = Br(0), then the eigenfunctions corresponding to λ1 are radial.

Proof. For a proof of (i) and (ii) see [11] , (iii) follows from Theorem 1.1 of [9]. Finally (iv)

is evident from (i) and (iii) by noting the existence of a radial positive eigenfunction for (2.1)

when Ω = Br(0).

An infinite set of critical values of J on S are obtained in [7] using the variational methods.

Their approach relies on the notion of Krasnoselskii genus of a symmetric closed set. For a

symmetric closed subset A ⊂ S, Krasnoselskii genus of A is defined as

γ(A) := inf {n ∈ N : ∃ a continuous odd map from A into R
n \ {0}}

with the convention inf{∅} = ∞. For each n ∈ N, let

En :=
{
A ⊂ S : A = A, A = −A and γ(A) ≥ n

}
,

µn := inf
A∈En

sup
u∈A

J(u).

Then µn is a critical value of J on S (see Proposition 5.4 of [7]). Possibly another set of critical

values are obtained in [5] by considering a special collection of sets with genus n in S. Note

that, the unit sphere Sn−1 in R
n has genus n and hence its image under an odd continuous

map has the same genus. For each n ∈ N, let

Fn :=
{
A ⊂ S : A = h(Sn−1), h is an odd continuous map from Sn−1 → S

}
,

µ∗n := inf
A∈Fn

sup
u∈A

J(u).

Then µ∗n is a critical value of J on S (see Theorem 5 of [5]). Since Fn ⊂ En, we always

have µn ≤ µ∗n. It is known that λi = µi = µ∗i for i = 1, 2. This result for i = 1 follows as

the set {u,−u} lies in both E1 and F1 for u ∈ S. Let u be an eigenfunction corresponding

to λ2. Then by (ii) of Proposition 2.1 both u+ and u− are nonzero. Thus the set A :={
au+ + bu− : |a|p‖u+‖

p

p + |b|p‖u−‖
p

p = 1
}

lies in both E2 and F2. Now as J(au+ + bu−) = λ2,

we get µ2 ≤ λ2 and µ∗2 ≤ λ2. Since there is no eigenvalue between λ1 and λ2, it follows that

λ2 = µ2 = µ∗2. In particular, we have the following variational characterization of λ2 that we

use later:

λ2 = inf
A∈F2

sup
u∈A

J(u). (2.3)

The next proposition is a consequence of the deformation lemma (see Lemma 3.7 of [8], see also

Theorem 2.1 and Remark 2.3 of [6]). Note that J ∈ C1(W 1,p
0 (Ω);R) and S is a C1 manifold.

Further, J(u) = J(−u) and S = −S.
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Proposition 2.2. Let S, J be as before. Let K be a compact subset of S. If ‖J ′(u)‖∗ ≥ ε > 0

for all u ∈ K, then there exists a continuous one parameter family of homeomorphisms Ψ :

S × [0, 1] → S such that

(i) J(Ψ(u, t)) ≤ J(u)− εt, for every u ∈ K, t ∈ [0, 1],

(ii) Ψ(−u, t) = −Ψ(u, t), for all u ∈ S, t ∈ [0, 1].

In particular, if K ∈ Fn and J has no critical point on K, then the set K̃ = {Ψ(u, 1) : u ∈ K}

is in Fn and

sup
u∈K̃

J(u) < sup
u∈K

J(u). (2.4)

We also need the following result on the regularity of the eigenfunctions of (2.1) which is a

consequence of Theorem 1 of [10].

Proposition 2.3. Let Ω be a bounded domain in R
N with smooth boundary. Let φ be an

eigenfunction of (2.1). Then there exists α ∈ (0, 1) such that φ ∈ C1,α(Ω).

3 Radial asymmetry of the second eigenfunctions

In this section we prove our main result. First we state a lemma that follows from Proposition

4.1 of [3].

Lemma 3.1. Let γ2 be the second radial eigenvalue of (1.2). Then any radial eigenfunction

corresponding to γ2 has exactly two nodal domains - a ball and an annulus with centre at the

origin. In particular, there exist r ∈ (12 , 1) such that λ1(Br(0)) = γ2 = λ1(B1 \Br(0)).

Now using the ’r’ given by the above lemma, we construct a special collection of sets in F2.

Let r be as in Lemma 3.1. Then for each n ∈ N∪ {0}, we construct a special set An ∈ F2 such

that supu∈An
J(u) = γ2. Let {tn} be a sequence in [0, 1 − r) such that t0 = 0 and tn → 1 − r.

For each n ∈ N ∪ {0}, let Bn = Br(tne1) and Ωn = B1 \ Bn where e1 is the unit vector in

the direction of the first coordinate axis. Let un, vn be the respective first eigenfunctions on

Bn and Ωn satisfying un > 0 on Bn, vn > 0 on Ωn and ‖un‖p = ‖vn‖p = 1. By translation

invariance of the p-Laplacian, we have λ1(Bn) = γ2. Further, from Theorem 1 of [2], we also

have λ1(Ωn) ≤ γ2. Let ũn and ṽn be the zero extensions to the entire B1. For each n ∈ N∪{0},

we consider

An := {aũn + bṽn : |a|p + |b|p = 1}.

One can easily verify that An ∈ F2 and supu∈An
J(u) = γ2,∀n ∈ N ∪ {0}.

Now we ask the question whether An contains a critical point of J on S or not. This leads

to the following two alternatives:

(i) for every n ∈ N, An contains at least one critical point of J on S,

(ii) there exists n0 ∈ N such that An0
does not contain any critical point of J on S.
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In the next lemma we show that alternative (i) does not hold.

Lemma 3.2. Let An be as above. Then alternative (i) does not hold.

Proof. Let un and ũn be as above. Then un(x) = u0(x− tne1) and hence the sequence {ũn(x)}

converges to u∗(x) = ũ0(x − (1 − r)e1) both pointwise and in W 1,p
0 (B1). On the other hand,

the sequence {ṽn} is bounded by γ2 in W 1,p
0 (B1). Thus up to a subsequence, ṽn converges to

some v∗ weakly in W
1,p
0 (B1) and a.e. in B1. If alternative (i) holds, then we get a sequence

{φn = anũn + bnṽn : |an|
p + |bn|

p = 1} of eigenfunctions of (1.1) with eigenvalues J(φn). By

Proposition 2.3, the eigenfunctions are in C1(B1) and hence we must have anbn < 0. Now we

may assume that an > 0 and bn < 0 for each n. Further, the sequences {J(φn)}, {an} and

{bn} are bounded. Thus for a subsequence we get J(φn) → λ∗, an → a∗ and bn → b∗ for

some λ∗, a∗ ≥ 0 and b∗ ≤ 0. The sequence {φn} is bounded in W
1,p
0 (B1) and hence up to a

subsequence φn ⇀ φ∗ in W 1,p
0 (B1) and a.e. in B1. Since anũn + bnṽn → a∗u∗ + b∗v∗ a.e. in B1,

we must have

φ∗ = a∗u∗ + b∗v∗.

Since, each φn is an eigenfunction of (1.1), it is easy to verify that φ∗ is an eigenfunction

corresponding to the eigenvalue λ∗. Thus by the regularity of φ∗, we must have a∗b∗ < 0 and

hence

a∗ > 0, b∗ < 0.

Let B∗ = Br((1 − r)e1) and Ω∗ = B1 \ B
∗. Clearly u∗ > 0 on B∗ and u∗ = 0 on Ω∗. On the

other hand, v∗ = 0 a.e. in B∗ and v∗ ≥ 0 a.e. on Ω∗. Thus from the continuity of the φ∗ we get

φ∗(x) > 0, ∀x ∈ B∗, φ∗(x) ≤ 0, ∀x ∈ Ω∗.

Now we apply Theorem 5 of [15] (a Hopf’s lemma type result for p-Laplacian) on B∗ ∪ {e1} to

get

∂φ∗

∂x1
(e1) = c < 0.

Since φ∗ ≤ 0 on Ω∗ we also have

∂φ∗

∂η(x)
(x) ≥ 0, ∀x ∈ ∂B1 \ {e1},

where η(x) is the outward unit normal to B1 at x. The above two inequalities contradicts the

fact that φ∗ is in C1(B1). Thus we conclude that alternative (i) does not hold.

Proof of Theorem 1.1 Let An be as before. Thus we have supv∈An
J(v) ≤ γ2. By the above

lemma, the alternative (ii) holds, i.e. there exists n0 ∈ N such that An0
does not contain any

critical points of J on S. Thus by Proposition 2.2 and by (2.4), we get Ã ∈ F2 such that

sup
u∈Ã

J(u) < sup
v∈A

J(v) ≤ γ2.

Now from (2.3) we get λ2 < γ2.
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4 Construction of nonradial eigenfunctions

In this section we construct an infinite sequence of nonradial eigenfunctions of (1.1). First

we fix the following conventions. A vector x in R
N is always taken as a 1 ×N row vector, i.e

x = (x1, x2 . . . xN ). The transpose of x, denoted by xT , is an N×1 column vector. We denote the

scalar product in R
N by x·y (= xyT ). LetH be the hyperplane given byH = {x ∈ R

N : x·a = 0}

for some unit vector a ∈ R
N . Let σH be the reflection about H. Then

σH(x) = x− 2(x · a)a = x(I − 2aT a).

Next we list some of the elementary properties of σH that we use in this article.

(i) σH is linear and σH = (I − 2aT a).

(ii) σH
−1 = σH .

(iii) σH is symmetric and orthogonal.

(iv) DσH(x) = σH and detDσH(x) = −1, ∀x ∈ R
N .

Let O be a bounded domain symmetric about H, i.e, σH(O) = O. Let O+ := {x ∈ O :

〈x, a〉 > 0} and let O− = σH(O+). Let u ∈ W
1,p
0 (O+) be a weak solution of (2.1) on Ω = O+.

Define u∗ on O as below

u∗(x) =





u(x), x ∈ O+,

0, x ∈ ∂(O+) ∪ ∂(O−),

−u(σH(x)), x ∈ O−.

Clearly u∗ ∈W
1,p
0 (O) and we also have the following lemma:

Lemma 4.1. Let u∗ be defined as above. Then u∗ is a weak solution of (2.1) on Ω = O.

Proof. Let φ ∈W
1,p
0 (O) be a test function. We show that

∫

O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx = λ

∫

O
|u∗(x)|p−2u∗(x)φ(x)dx. (4.1)

From the definition of u∗,
∫

O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

∫

O+

|∇u(x)|p−2∇u(x) · ∇φ(x)dx

+

∫

O−

|∇(−u(σH(x)))|p−2∇(−u(σH(x))) · ∇φ(x)dx

Now by noting that DσH(x) = σH and σH is an isometry we get
∫

O−

|∇(−u(σH(x)))|p−2∇(−u(σH(x))) ·∇φ(x)dx

= −

∫

O−

|∇u(σH(x))σH |p−2[∇u(σH(x))σH ] · ∇φ(x)dx,

= −

∫

O−

|∇u(σH(x))|p−2∇u(σH(x)) ·[∇φ(x)σH ]dx,
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where the equality in the last step also uses the fact that σH is symmetric. Now the change of

variable y = σH(x) along with properties (ii) and (iv) of σH will give

∫

O−

|∇(−u(σH(x)))|p−2∇(−u(σH(x)) ·∇φ(x)dx = −

∫

O+

|∇u(y)|p−2∇u(y) · [∇φ(σH(y))σH ]dy.

Thus
∫

O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

∫

O+

|∇u(x)|p−2∇u(x) · [∇φ(x)− [∇φ(σH(x))σH ]]dx.

Let ψ(x) = φ(x)− φ(σH(x)). Then we have

∫

O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

∫

O+

|∇u(x)|p−2∇u(x) · ∇ψ(x)dx. (4.2)

Further, ∫

O
|u∗(x)|p−2u∗(x)φ(x) =

∫

O+

|u(x)|p−2u(x)ψ(x)dx. (4.3)

Clearly ψ ∈W
1,p
0 (O+) and hence

∫

O
|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

∫

O+

|u(x)|p−2u(x)ψ(x)dx, (4.4)

since u solves (2.1) on Ω = O+. Now (4.1) follows from (4.2),(4.3) and (4.4).

Proof of Theorem 1.2: For n ∈ N, we consider the sectors Sk given by Sk = {x ∈ B1 :
(k−1)π

n
< θN−1 <

kπ
n
}, k = 1, . . . , n. Let Hk be the hyperplane given by Hk = {x ∈ R

N : θN−1 =
πk
n
}, for k = 1, ...n. Let τn be the first eigenvalue for the p-Laplacian on S1 and u1(x) be a

corresponding eigenfunction. For i = 2, . . . , n, we define ui recursively by ui = −ui−1(σHi−1
(x)),

the odd reflection of ui about Hi−1. Let D+ be the sector given by {x ∈ B1 : 0 < θN−1 < π}.

Now we define u∗ on D+ by

u∗(x) = ui(x), x ∈ Si, i = 1, . . . , n.

From Lemma 4.1, it is clear that u∗ solves (2.1) on the union of two adjacent sectors with

λ = τn. Let Ui = {x ∈ B1 : (i−1)π
n

< θN−1 <
(i+1)π

n
}, for i = 1, . . . , n − 1. Then {Ui}

n−1
i=1 is an

open covering of D+. Let {φi}
n−1
i=1 be a C∞ partition of the unity corresponding to this open

covering. Note that for each i, φi intersects at most Si and Si+1. Since
∑n−1

i=1 φi = 1, we have

∫

D+

|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =

∫

D+

|∇u∗(x)|p−2∇u∗(x) · ∇
(
φ(x)

n−1∑

i=1

φi(x)
)
dx

=

n−1∑

i=1

∫

D+

|∇u∗(x)|p−2∇u∗(x) · ∇(φ(x)φi(x))dx.
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For a fixed i, the product φφi ∈W
1,p
0 (Ui). Hence by the definition of u∗ and Lemma 4.1, we get

∫

D+

|∇u∗(x)|p−2∇u∗(x) · ∇(φ(x)φi(x))dx =

∫

Ui

|∇u∗(x)|p−2∇u∗(x) · ∇(φ(x)φi(x))dx,

= τn

∫

Ui

|u∗(x)|p−2u∗(x)(φ(x)φi(x))dx,

= τn

∫

D+

|u∗(x)|p−2u∗(x)(φ(x)φi(x))dx.

Thus we get

∫

D+

|∇u∗(x)|p−2∇u∗(x) · ∇φ(x)dx =
n−1∑

i=1

τn

∫

D+

|u∗(x)|p−2u∗(x)(φ(x)φi(x))dx,

= τn

∫

D+

|u∗(x)|p−2u∗(x)
( n−1∑

i=1

φ(x)φi(x)
)
dx,

= τn

∫

D+

|u∗(x)|p−2u∗(x)φ(x)dx.

Now define Ψn on B1 by

Ψn(x) =





u∗(x), x ∈ D+,

0, x ∈ ∂(D+) ∪ ∂(D−),

−u∗(σH0
(x)), x ∈ D−,

where D− = {x ∈ B1 : π < θN−1 < 2π} is the “lower” half-ball and H0 is the hyperplane

corresponding to θN−1 = 0. Applying Lemma 4.1 once again, we get that Ψn is a weak solution

of (1.1). Thus we have constructed an eigenpair {τn,Ψn} of (1.1) such that Ψn has 2n nodal

domains and each nodal domain is a sector with measure |B1|
2n .

In the next remark we list some of the interesting open problems related to the results of

this paper:

Remark 4.2. (Open problems associated with (1.1))

1. Payne conjectured (Conjecture 5, [13]) that the nodal line of a second eigenfunction of

Laplacian on a bounded domain Ω ⊂ R
2 cannot be a closed curve. In [14], he proved his

conjecture for the special case when Ω is convex in x and symmetric about y axis. For

a ball, his result was easily obtained by applying the Fourier method to the Laplacian

in polar co-ordinates. We conjecture that the nodal surface of a second eigenfunction of

p-Laplacian on B1 cannot be a closed surface in B1 for 1 < p <∞ and for every N ≥ 2.

2. For p = 2, it is easy to see that λ2 = τ1. We anticipate the same result for p 6= 2 as well.

More precisely, the nodal surface of any second eigenfunction is given by the intersection

of a hyperspace with B1 and the nodal domains are the half balls symmetric to this

hyperspace.
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3. We have just shown that all the eigenfunctions corresponding to λ2 are nonradial. Is

it true that all the eigenfunctions corresponding to the second radial eigenvalue γ2 are

radial?

4. Note that λ2 is the least eigenvalue having an eigenfunction with two nodal domains. For

p = 2, it can also be seen that γ2 is the maximal eigenvalue having an eigenfunction with

two nodal domains. In other words, the eigenfunctions corresponding to λ > γ2 must

have at least three nodal domains. Is this true for p 6= 2?
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[1] J. Benedikt, P. Drábek, and P. Girg. The second eigenfunction of the p-Laplacian on the

disk is not radial. Nonlinear Anal., 75(12):4422–4435, 2012.

[2] A. Chorwadwala and R. Mahadevan. A shape optimization problem for the p-laplacian.

ArXiv e-prints, accepted in Proceedings of Royal Society of Edinburgh.
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